Issue 39, 2023

Comment on “Applicability of perturbed matrix method for charge transfer studies at bio/metallic interfaces: a case of azurin” by O. Kontkanen, D. Biriukov and Z. Futera, Phys. Chem. Chem. Phys., 2023, 25, 12479

Abstract

Polarizability is a fundamental property of all molecular systems describing the deformation of the molecular electronic density in response to an applied electric field. The question of whether polarizability of the active site needs to be included in theories of enzymatic activity remains open. Hybrid quantum mechanical/molecular mechanical calculations are hampered by difficulties faced by many quantum-chemistry algorithms to provide sufficiently accurate estimates of the anisotropic second-rank tensor of molecular polarizability. In this Comment, we provide general theoretical arguments for the values of polarizability of the quantum region or a molecule which have to be reproduced by electronic structure calculations.

Graphical abstract: Comment on “Applicability of perturbed matrix method for charge transfer studies at bio/metallic interfaces: a case of azurin” by O. Kontkanen, D. Biriukov and Z. Futera, Phys. Chem. Chem. Phys., 2023, 25, 12479

Associated articles

Article information

Article type
Comment
Submitted
05 Jul 2023
Accepted
26 Sep 2023
First published
02 Oct 2023

Phys. Chem. Chem. Phys., 2023,25, 26923-26928

Comment on “Applicability of perturbed matrix method for charge transfer studies at bio/metallic interfaces: a case of azurin” by O. Kontkanen, D. Biriukov and Z. Futera, Phys. Chem. Chem. Phys., 2023, 25, 12479

S. M. Sarhangi and D. V. Matyushov, Phys. Chem. Chem. Phys., 2023, 25, 26923 DOI: 10.1039/D3CP03178K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements