Issue 2, 2022

Structural, magnetic and hyperthermia properties and their correlation in cobalt-doped magnetite nanoparticles

Abstract

Cobalt doped magnetite nanoparticles (CoxFe3−xO4 NPs) are investigated extensively because of their potential hyperthermia application. However, the complex interrelation among chemical compositions and particle size means their correlation with the magnetic and heating properties is not trivial to predict. Here, we prepared CoxFe3−xO4 NPs (0 ≤ x ≤ 1) to investigate the effects of cobalt content and particle size on their magnetic and heating properties. A detailed analysis of the structural features indicated the similarity between the crystallite and particle sizes as well as their non-monotonic change with the increase of Co content. Magnetic measurements for the CoxFe3−xO4 NPs (0 ≤ x ≤ 1) showed that the blocking temperature, the saturation magnetization, the coercivity, and the anisotropy constant followed a similar trend with a maximum at x = 0.7. Moreover, 57Fe Mössbauer spectroscopy adequately explained the magnetic behaviour, the anisotropy constant, and saturation magnetization of low Co content samples. Finally, our study shows that the relaxation loss is a primary contributor to the SAR in CoxFe3−xO4 NPs with low Co contents as well as their potential application in magnetic hyperthermia.

Graphical abstract: Structural, magnetic and hyperthermia properties and their correlation in cobalt-doped magnetite nanoparticles

Associated articles

Article information

Article type
Paper
Submitted
06 Oct 2021
Accepted
08 Dec 2021
First published
24 Dec 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 698-707

Structural, magnetic and hyperthermia properties and their correlation in cobalt-doped magnetite nanoparticles

L. T. H. Phong, D. H. Manh, P. H. Nam, V. D. Lam, B. X. Khuyen, B. S. Tung, T. N. Bach, D. K. Tung, N. X. Phuc, T. V. Hung, T. L. Mai, T. Phan and M. H. Phan, RSC Adv., 2022, 12, 698 DOI: 10.1039/D1RA07407E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements