Issue 59, 2021

Effect of support on hydrogen generation over iron oxides in the chemical looping process

Abstract

Fe2O3 is recognized as an excellent oxygen carrier for its low cost and high oxygen capacity. However, pure Fe2O3 must be deposited on supports to ensure high reactivity and durability. Here, we proposed several Fe2O3-based oxygen carriers using MgAl2O4, Ce0.8Gd0.2O1.9, and Zr0.8Y0.2O1.9 as supports and investigated their performance for chemical looping hydrogen generation. The support effect on chemical looping hydrogen generation performance was evaluated, and the fundamental insights were investigated in depth. Fe2O3/Ce0.8Gd0.2O1.9 exhibited a superior performance regarding high hydrogen yield and stable trend over 20 cycles at 750 °C. However, hydrogen yield of Fe2O3/Zr0.8Y0.2O1.9 exceeded that of Fe2O3/Ce0.8Gd0.2O1.9 at higher temperatures (850 °C). Characterizations show that Ce0.8Gd0.2O1.9 exhibits the highest oxygen vacancy concentration, which significantly improves the reduction and reoxidation reactions of Fe2O3, thus leading to an enhanced hydrogen yield. However, the interaction between Fe2O3 and Ce0.8Gd0.2O1.9 contributed to the increase in Fe2+ concentration, thus decreasing the oxygen capacity during the redox cycle and contributing to the declined hydrogen yield at higher temperatures. This work highlights the potential of Ce0.8Gd0.2O1.9 to be used as an effective support for Fe2O3 at mid-temperatures. We hope that the support effect in this work can be extended to design and select more active and durable oxygen carriers.

Graphical abstract: Effect of support on hydrogen generation over iron oxides in the chemical looping process

Associated articles

Article information

Article type
Paper
Submitted
27 Sep 2021
Accepted
29 Oct 2021
First published
22 Nov 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 37552-37558

Effect of support on hydrogen generation over iron oxides in the chemical looping process

Z. Gao, F. Fu, L. Niu, M. Jin and X. Wang, RSC Adv., 2021, 11, 37552 DOI: 10.1039/D1RA07210B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements