Issue 3, 2022

Tempering of Au nanoclusters: capturing the temperature-dependent competition among structural motifs

Abstract

A computational approach to determine the equilibrium structures of nanoclusters in the whole temperature range from 0 K to melting is developed. Our approach relies on Parallel Tempering Molecular Dynamics (PTMD) simulations complemented by Harmonic Superposition Approximation (HSA) calculations and global optimization searches, thus combining the accuracy of global optimization and HSA in describing the low-energy part of configuration space, together with the PTMD thorough sampling of high-energy configurations. This combined methodology is shown to be instrumental towards revealing the temperature-dependent structural motifs in Au nanoclusters of sizes 90, 147, and 201 atoms. The reported phenomenology is particularly rich, displaying a size- and temperature-dependent competition between the global energy minimum and other structural motifs. In the case of Au90 and Au147, the global minimum is also the dominant structure at finite temperatures. In contrast, the Au201 cluster undergoes a solid–solid transformation at low temperature (<200 K). Results indicate that PTMD and HSA very well agree at intermediate temperatures, between 300 and 400 K. For higher temperatures, PTMD gives an accurate description of equilibrium, while HSA fails in describing the melting range. On the other hand, HSA is more efficient in catching low-temperature structural transitions. Finally, we describe the elusive structures close to the melting region which can present complex and defective geometries, that are otherwise difficult to characterize through experimental imaging.

Graphical abstract: Tempering of Au nanoclusters: capturing the temperature-dependent competition among structural motifs

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
03 Aug 2021
Accepted
23 Dec 2021
First published
24 Dec 2021

Nanoscale, 2022,14, 939-952

Tempering of Au nanoclusters: capturing the temperature-dependent competition among structural motifs

M. Settem, R. Ferrando and A. Giacomello, Nanoscale, 2022, 14, 939 DOI: 10.1039/D1NR05078H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements