Issue 21, 2018

Ab initio calculation of energy levels of trivalent lanthanide ions

Abstract

The energy levels of Ln3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f–f transitions in Ln3+ complexes using group theory and simple semiempirical models: Russell–Saunders scheme for spin–orbit coupling, ligand-field theory for the splitting of the electronic levels, and Judd–Ofelt parameterization for reproducing the intensity of f–f transitions. Nevertheless, a fully ab initio computational scheme employing no empirical parameterization and suitable for any asymmetrical environment of Ln3+ would be instructive. Here we present such a scheme based on the multireference SA-CASSCF/XMCQPDT2/SO-CASSCF (state-averaged complete active space SCF, quasi-degenerate perturbation theory, and spin–orbit CASSCF) approach for trivalent lanthanide ions from Ce3+ (4f1) to Yb3+ (4f13). To achieve the most accurate results, we analyse the factors that influence the accuracy of the calculation: basis set size, state averaging scheme, effect of the low-spin states on the energy gap between the high-spin states (e.g., effect of triplets on the septet–quintet gaps in f6 or f8 configurations), and radial and angular correlations in the 4f shell. Our calculated energy levels agree well with the experimental values. We have shown that low-lying highest-spin and second-highest spin states are reproduced very well, while for higher-lying states the accuracy of the calculation decreases. The procedure was verified by calculating optical emission spectra of NaYF4:Eu,Tb; YAG:Eu,Tb; and Tb(acac)3bpm (bpm is 2,2′-bipyridine, acac is acetylacetonate, and YAG is yttrium aluminium garnet). For these compounds ligand-field induced electric-dipole transition intensities were calculated.

Graphical abstract: Ab initio calculation of energy levels of trivalent lanthanide ions

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
14 Dec 2017
Accepted
08 May 2018
First published
09 May 2018

Phys. Chem. Chem. Phys., 2018,20, 14564-14577

Ab initio calculation of energy levels of trivalent lanthanide ions

A. Ya. Freidzon, I. A. Kurbatov and V. I. Vovna, Phys. Chem. Chem. Phys., 2018, 20, 14564 DOI: 10.1039/C7CP08366A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements