Volume 195, 2016

Low-temperature chemistry using the R-matrix method

Abstract

Techniques for producing cold and ultracold molecules are enabling the study of chemical reactions and scattering at the quantum scattering limit, with only a few partial waves contributing to the incident channel, leading to the observation and even full control of state-to-state collisions in this regime. A new R-matrix formalism is presented for tackling problems involving low- and ultra-low energy collisions. This general formalism is particularly appropriate for slow collisions occurring on potential energy surfaces with deep wells. The many resonance states make such systems hard to treat theoretically but offer the best prospects for novel physics: resonances are already being widely used to control diatomic systems and should provide the route to steering ultracold reactions. Our R-matrix-based formalism builds on the progress made in variational calculations of molecular spectra by using these methods to provide wavefunctions for the whole system at short internuclear distances, (a regime known as the inner region). These wavefunctions are used to construct collision energy-dependent R-matrices which can then be propagated to give cross sections at each collision energy. The method is formulated for ultracold collision systems with differing numbers of atoms.

Associated articles

Article information

Article type
Paper
Submitted
02 May 2016
Accepted
01 Jun 2016
First published
02 Jun 2016

Faraday Discuss., 2016,195, 31-48

Author version available

Low-temperature chemistry using the R-matrix method

J. Tennyson, L. K. McKemmish and T. Rivlin, Faraday Discuss., 2016, 195, 31 DOI: 10.1039/C6FD00110F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements