Volume 192, 2016

Kinetic studies of CO2 methanation over a Ni/γ-Al2O3 catalyst

Abstract

The production of methane by reacting CO2 with H2 (CO2 methanation) has the potential for producing synthetic natural gas, which could be exported using the existing infrastructure for the distribution of natural gas. The methanation of CO2 was investigated over a wide range of partial pressures of products and reactants using (i) a gradientless, spinning-basket reactor operated in batch mode and (ii) a laboratory-scale packed bed reactor operated continuously. The rate and selectivity of CO2 methanation, using a 12 wt% Ni/γ-Al2O3 catalyst, were explored at temperatures 445–497 K and pressures up to 20 bar. Research with the batch reactor showed that the rate increased with increasing partial pressures of H2 and CO2 when the partial pressures of these reactants were low; however, the rate of reaction was found to be insensitive to changes in the partial pressures of H2 and CO2 when their partial pressures were high. A convenient method of determining the effect of H2O on the rate of reaction was also developed using the batch reactor and the inhibitory effect of H2O on CO2 methanation was quantified. The kinetic measurements were compared with a mathematical model of the reactor, in which different kinetic expressions were explored. The kinetics of the reaction were found to be consistent with a mechanism in which adsorbed CO2 dissociated to adsorbed CO and O on the surface of the catalyst with the rate-limiting step being the subsequent dissociation of adsorbed CO. The ability of the kinetic expressions to predict the results from the continuous, packed-bed reactor was explored, with some discrepancies discussed.

Associated articles

Article information

Article type
Paper
Submitted
07 Mar 2016
Accepted
22 Apr 2016
First published
29 Jul 2016

Faraday Discuss., 2016,192, 529-544

Kinetic studies of CO2 methanation over a Ni/γ-Al2O3 catalyst

R. A. Hubble, J. Y. Lim and J. S. Dennis, Faraday Discuss., 2016, 192, 529 DOI: 10.1039/C6FD00043F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements