Volume 190, 2016

Application of infiltrated LSCM–GDC oxide anode in direct carbon/coal fuel cells

Abstract

Hybrid direct carbon/coal fuel cells (HDCFCs) utilise an anode based upon a molten carbonate salt with an oxide conducting solid electrolyte for direct carbon/coal conversion. They can be fuelled by a wide range of carbon sources, and offer higher potential chemical to electrical energy conversion efficiency and have the potential to decrease CO2 emissions compared to coal-fired power plants. In this study, the application of (La, Sr)(Cr, Mn)O3 (LSCM) and (Gd, Ce)O2 (GDC) oxide anodes was explored in a HDCFC system running with two different carbon fuels, an organic xerogel and a raw bituminous coal. The electrochemical performance of the HDCFC based on a 1–2 mm thick 8 mol% yttria stabilised zirconia (YSZ) electrolyte and the GDC–LSCM anode fabricated by wet impregnation procedures was characterized and discussed. The infiltrated oxide anode showed a significantly higher performance than the conventional Ni–YSZ anode, without suffering from impurity formation under HDCFC operation conditions. Total polarisation resistance (Rp) reached 0.8–0.9 Ω cm2 from DCFC with an oxide anode on xerogel and bituminous coal at 750 °C, with open circuit voltage (OCV) values in the range 1.1–1.2 V on both carbon forms. These indicated the potential application of LSCM–GDC oxide anode in HDCFCs. The chemical compatibility of LSCM/GDC with carbon/carbonate investigation revealed the emergence of an A2BO4 type oxide in place of an ABO3 perovskite structure in the LSCM in a reducing environment, due to Li attack as a result of intimate contact between the LSCM and Li2CO3, with GDC being stable under identical conditions. Such reaction between LSCM and Li2CO3 was not observed on a LSCM–YSZ pellet treated with Li–K carbonate in 5% H2/Ar at 700 °C, nor on a GDC–LSCM anode after HDCFC operation. The HDCFC durability tests of GDC–LSCM oxide on a xerogel and on raw bituminous coal were performed under potentiostatic operation at 0.7 V at 750 °C. The degradation mechanisms were addressed, especially on raw coal.

Associated articles

Article information

Article type
Paper
Submitted
04 Jan 2016
Accepted
24 Feb 2016
First published
24 Feb 2016

Faraday Discuss., 2016,190, 269-289

Application of infiltrated LSCM–GDC oxide anode in direct carbon/coal fuel cells

X. Yue, A. Arenillas and J. T. S. Irvine, Faraday Discuss., 2016, 190, 269 DOI: 10.1039/C6FD00001K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements