Issue 39, 2014

Synthesis and properties of low bandgap star molecules TPA-[DTS-PyBTTh3]3 and DMM-TPA[DTS-PyBTTh3]3 for solution-processed bulk heterojunction organic solar cells

Abstract

Two symmetrical planar star shaped organic small molecules TPA[DTS-PyBTTh3]3 (1) and DMM-TPA[DTS-PyBTTh3]3 (2) with TPA and fused TPA core donors, respectively, and three branched DTS-PyBTTh3 units were synthesized and characterized. These small molecules were used as donor materials along with PC71BM as acceptor for solution-processed bulk heterojunction (BHJ) solar cells. The power conversion efficiency (PCE) of the solar cells based on 1 and 2 is about 2.87% and 3.83%, respectively, when the active layers were processed in chlorobenzene (CB) solvent. The higher PCE of the solar cell based on 2 may be attributed to its low bandgap and broad absorption profile as compared to 1. The PCE of the solution-processed BHJ solar cells was improved up to 3.88% and 5.81% for 1 and 2, respectively, when active layers were processed with 0.4% (v/v) 1-chloronaphthalene (CN) as additive in the CB solvent. The enhancement in the PCE was mainly because of the increase in Jsc and FF. The increase in the Jsc and FF may be attributed to the balance charge transport between the electron and hole transport and reduction in the bimolecular recombination, leading to an increase in the PCE.

Graphical abstract: Synthesis and properties of low bandgap star molecules TPA-[DTS-PyBTTh3]3 and DMM-TPA[DTS-PyBTTh3]3 for solution-processed bulk heterojunction organic solar cells

Associated articles

Article information

Article type
Paper
Submitted
10 Jul 2014
Accepted
14 Aug 2014
First published
18 Aug 2014

J. Mater. Chem. C, 2014,2, 8412-8422

Author version available

Synthesis and properties of low bandgap star molecules TPA-[DTS-PyBTTh3]3 and DMM-TPA[DTS-PyBTTh3]3 for solution-processed bulk heterojunction organic solar cells

K. Lim, S. Y. Lee, K. Song, G. D. Sharma and J. Ko, J. Mater. Chem. C, 2014, 2, 8412 DOI: 10.1039/C4TC01495B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements