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Distinguishing liquid crystalline nematic variants
by machine learning

Alexander R. Quinn,a Rebecca Walker, b Naila Tufaha,b John MD Storey,b

Corrie T. Imrie †b and Ingo Dierking *a

Two different machine learning architectures – sequential convolutional neural networks (CNN) and

parallel inception models were evaluated with respect to their ability to identify nematic liquid crystal

variants, including the ferroelectric and the twist-bend nematic phases. Varying levels of model

complexity were employed from 1- to 5-layer CNNs, to 1- to 3-block inception models. Various types of

augmentations like flip, contrast and brightness were used, together with dropout-layer regularisation.

Flip was the only augmentation trialled to yield positive results with an acceptable level of accuracy and

error, while the inclusion of dropout regularisation almost exclusively led to lower accuracies. From the

systematic investigation it is advised that different variants of the nematic phase can be distinguished to

an accuracy better than 0.96–0.98 � 0.01 by the use of 3-layer CNNs or a model with a single

inception block, if flip augmentation is applied. Computational restraints therefore suggest that a

sequential CNN is sufficient to characterise phase sequences with four or fewer different phases. Higher

accuracies, closer to 100%, can be achieved for extended and class-balanced datasets. In the latter case

an inception approach would possibly be beneficial, depending on the size of the dataset, but overfitting

needs to be avoided.

Introduction

For more than a century, liquid crystal (LC) phases have been
characterised by polarising optical microscopy (POM), exploit-
ing the wonderful and colourful world of textures, structures
and defects provided by the optics of anisotropic fluids.1–4

Nevertheless, this method is still largely based on practice
and experience, because POM can only provide indications of
transition temperatures and leaves the actual phase character-
isation to the qualified guess of the researcher investigating the
liquid crystal textures. For a more detailed characterisation,
other methods need to be employed in addition, such as
differential scanning calorimetry (DSC),5 which provides phase
transition temperatures and the order of respective transitions,
but no indication of the actual LC phase. The actual phase
structure can only be obtained by X-ray diffraction,6 which is
time consuming and, in many cases, not experimentally trivial.

In recent years, a fourth method of phase characterisation
has been established in the form of machine learning via
convolutional neural networks (CNN) and other algorithms.7

Naturally, this started with the distinction between the isotro-
pic and the nematic phase, thus the simple case of dark vs.
bright,8–11 which is used for example in the automatic readout
of liquid crystal sensors.12 Work was mainly carried out on
thermotropic nematics with their characteristic schlieren tex-
ture; while the training of algorithms was performed mostly
with simulated textures,13 some experimental studies14 have
been reported. It was not until recently,15 that the characterisa-
tion of liquid crystal phases was expanded to various other
phases with algorithm training being performed on experimen-
tally obtained textures. It was demonstrated that nematic, fluid
smectic, hexatic smectic, and soft crystal phases can be distin-
guished and characterised with good accuracies of approxi-
mately 95%15; and even continuous second order transitions
like SmA–SmC were surprisingly easy to be distinguished.16

Further successful experiments were carried out on transitions
involving the soft crystal B phase17 and glasses,18 while other
transitions like the fluid SmA to hexatic SmB phase are still
somewhat illusive,19 due to the absence of any distinguishing
features in the textures of both phases. Chiral phases, like the
fluid sub-phases exhibiting paraelectric, ferroelectric, ferri- and
antiferroelectric behaviour, could also be well distinguished
and characterised.20

Despite all the success in the application of machine learn-
ing algorithms to liquid crystals in the last few years, it is also of
importance to realise the limitations of this approach. A good

a Department of Physics and Astronomy, University of Manchester, Oxford Road,

Manchester, M13 9PL, UK. E-mail: ingo.dierking@manchester.ac.uk
b Department of Chemistry, School of Natural and Computing Sciences, University

of Aberdeen, Meston Walk, Aberdeen, AB24 3UE, UK

† Deceased.

Received 24th October 2025,
Accepted 28th November 2025

DOI: 10.1039/d5sm01070e

rsc.li/soft-matter-journal

Soft Matter

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
D

ez
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 0

2.
02

.2
02

6 
01

:3
9:

42
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0001-5167-7183
https://orcid.org/0000-0001-6497-5243
https://orcid.org/0000-0001-8107-1342
http://crossmark.crossref.org/dialog/?doi=10.1039/d5sm01070e&domain=pdf&date_stamp=2025-12-05
https://rsc.li/soft-matter-journal
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sm01070e
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM022001


96 |  Soft Matter, 2026, 22, 95–108 This journal is © The Royal Society of Chemistry 2026

quality set of training data is of utmost importance to achieve
decent results, which obviously implies the correct labelling of
phases. One further criterium was already mentioned above:
different phases need to exhibit different varying features,
which is not always the case, as for example in the transition
between SmA to hexatic SmB, where sometimes no differences
in textures are observed when the transition is passed.19

Another point of importance is that the individual textures
for a particular phase need to show some variation, otherwise,
the algorithm will show pronounced overfitting. A similar effect
is observed for datasets that are too small. In our experience it
is best to have at least 1000 images per phase, unless the phase
is completely different from the others, like the isotropic or the
crystalline phase, for which fewer images may be sufficient. For
example, in the simple yes–no classification problem of a LC
sensor, fewer images are permittable. Further, it is important to
rely on a balanced dataset of approximately equal numbers of
images for each liquid crystal phase, otherwise, the analysis will be
biased towards the phase with the larger number of images.15 At
last, the complexity of the machine learning algorithm employed
should be matched to that of the problem to be investigated, in the
case of an over-complex model, overfitting and a reduced accuracy
is observed.21 A detailed investigation of the factors influencing the
performance of CNNs can be found in ref. 22.

The nematic is probably the best studied and most well-
known of the liquid crystal phases, due to its broad range of
applications. It is the least ordered of the liquid crystal phases,
and the one with the highest symmetry. Until some time ago it
was thought that the thermotropic nematic phase exhibits a
structure with only uniaxial orientational order of the long axis
of calamitic (rod-like) molecules. The first observation of a
biaxial nematic was then suggested23,24; a much-discussed
question which does not seem to have been resolved to
date.25 A nematic variant which has indeed been confirmed
beyond doubt is the twist-bend nematic (NTB) phase,26,27 which
has recently been reviewed,28 also with respect to chemistry,29

theory,30 and applications.31 A more recent variant is the long
sought after ferroelectric nematic phase (NF),32,33 with a very
informative summary provided in,34 and reviews published
with respect to chemistry,35 theory,36 as well as properties and
applications.37

Both the twist-bend nematic and the ferroelectric nematic
phases have been schematically illustrated in Fig. 1(a) and (b),
respectively, in comparison to the standard thermotropic
nematic phase composed of calamitic molecules. The standard
nematic phase exhibits orientational order of the long axis of
rod-like molecules along an average direction called the direc-
tor n, while the centres of mass are isotropically distributed.

Fig. 1 (a) Schematic illustration of the standard nematic phase with orientational order, its chiral counterpart, the cholesteric phase which exhibits a
macroscopic helical superstructure, and the twist-bend nematic phase which locally spirals around a preferred direction. (figure reproduced by
permission after38). (b) In the ferroelectric nematic phase, the head–tail symmetry n = �n of the standard nematic phase is broken, and the molecular
electric dipoles align approximately parallel, leading to the formation of a spontaneous polarisation whose direction can be reversed between two stable
states by reversal of an applied electric field. (figure reproduced by permission after39).
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The director is a pseudo-vector which shows head–tail sym-
metry, thus n = �n. For reasons of completeness, we should
mention that the nematic phase of chiral molecules (chiral
nematic, cholesteric phase) exhibits a helical superstructure
with a pitch of the order between 100 nm to many mm. In the
twist-bend nematic phase the molecules spiral around a pre-
ferred direction with a pitch which is extremely small, consist-
ing of approximately 10 molecules.

For the ferroelectric nematic phase, the common head–tail
symmetry of n = �n is broken and the molecular electric dipole
moments do not compensate across small spatial dimensions.
The structure therefore exhibits a spontaneous polarisation
which can be switched between two polar states by reversal of
an applied electric field.

In this study we demonstrate that the different nematic
variants, as well as the isotropic and the crystalline phase can
be distinguished by machine learning via convolutional neural
networks and inception models.

Experimental
Materials, image acquisition and experimental input

The twist-bend nematic material investigated in this study is a
homologue of a series of 1-(4-cyanobiphenyl-4 0-yl)-6-(4-alkyl-
anilinebenzylidene-40-oxy)hexanes abbreviated as CB6O.7 and

reported by Walker et al. in ref. 40. The molecular structure is
depicted in Fig. 2(a), together with a selection of characteristic
textures observed. The NTB phase is monotropic and the phase
sequence is given by Cr. 89 NTB (73) N 109 Iso. (temperatures in 1C).

The molecular structure of the ferroelectric nematic phase is
provided in Fig. 2(b), together with respective textures. The
compound was reported by Tufaha et al. in ref. 41. Its nematic
and ferroelectric nematic phases are also monotropic, with the
phase sequence given by Cr. 102 NF (63) N (68) Iso. (tempera-
tures in 1C). We note that CB6O.7 exhibits a thread-like texture
of the standard nematic phase, while NT3.5 shows that of a
schlieren texture with topological defects, besides the NTB and
NF textures.

The texture images to create a dataset were frame grabbed
from a number of different movies taken at different positions
of the sample between untreated glass plates with optical
polarising microscopy (POM, Leica DMLP). This was equipped
with a Linkam LTSE350 hot stage and a TP94 temperature
controller for relative temperature accuracies of �0.1 K. Movies
were recorded on cooling, at rates between 0.1–0.5 K min�1 at
10 frames per second (fps) with a IDS uEye digital camera. Care
was taken to generate images that were different from each
other to prevent the employed machine learning algorithms
to learn textures ‘‘by heart’’. Images of 2048 � 1088 pixel
resolution were extracted using the video scene filter in the
VLC media player.42 Depending on the rapidity of changes in

Fig. 2 Structural formulae and representative textures of the materials investigated, (a) the twist-bend nematic CB6O.740 and (b) the ferroelectric
nematic NT3.5.41 The longer length of the texture images corresponds to 860 mm.
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textures, from each of the recorded videos approximately one
frame every 1.5 seconds was grabbed. These images were then
cropped to a resolution of 256 � 256 pixels and changed to
greyscale with a pixel value between 0 and 1, in order to reduce
computational cost and to avoid misidentification of phases
due to colour instead of texture. The number of images
generated for this study is shown in Fig. 3.

From Fig. 3 it can be seen that the dataset of the compound
exhibiting the NTB phase is not quite ideally balanced, with the
respective phase representing approximately 1000 images more
than the standard nematic phase. However, according to a study43

where class imbalances were investigated in detail, it was pointed
out that imbalances of the order of 2 : 1 are not of significant
concern, but that such imbalances only have marketable effects on
prediction accuracies when imbalances like 20 : 1 are included.
The imbalances of our dataset should thus only have minimal
impact on the accuracy, although of course a balanced set of class
images would obviously be better. This could be achieved by
leaving out images from the over-represented classes, but this
would lead to fewer training images, which would have a larger
effect on the accuracy than the class imbalance.

The collected images were separated into training, validation,
and test data subsets at an approximate ratio of 70 : 15 : 15. For this
separation to provide accurate results, it is important that the
subsets have no overlap with each other, to prevent data leakage,
which would inflate the accuracy. Images of the same phase
coming from the same video were therefore not divided between
the subsets and further shuffled to ensure randomness within
each batch. Overall, and before augmentation, this procedure
provided roughly balanced datasets of about 1500 images, which
should provide reasonable accuracies, especially since the crystal-
line and the isotropic phase are very distinct, either showing
features of typical cracks and simply a black image, which are
easy to identify by the machine learning models. During the
investigations, images were further subjected to different augmen-
tations, which will be discussed in more detail below.

Machine learning algorithms

As in previous investigations, sequential and inception models
were also used for this study. Each model was implemented

using Google Colab44 with the TensorFlow45 and Keras
libraries46 in Python. ADAM optimisation47 was used in all
models as it runs natively in Keras and is computationally
efficient with little memory requirement. Categorical cross
entropy was used as the loss function for all models to quantify
the dissimilarity between the predicted probabilities and the
true labels. ReLU activation48 was used on each layer, with the
output layer using SoftMax activation.49 The stride of the
convolutional layers was set to 2, and the padding was set as
to ensure the output size was the same as the input. In cases
where overfitting was observed, dropout regularisation was
used, set at 0.5. To maximise the accuracy of the machine
learning model output, underfitting as well as overfitting needs
to be avoided. The two models employed are schematically
shown in Fig. 4.

For the inception models, Google’s prebuilt inceptionV350

model was used, as its architecture has been fine-tuned by
experts for the sole purpose of image identification. Inception
V3 has been trained on ImageNet,51 a large database of approxi-
mately 14 Mio. classified images. This iteration of Google’s
inception model is freely available. The model utilises batch
normalisation, factorised 7 � 7 convolutions, average and max
pooling layers, and, like the CNN models, SoftMax activation on
the output. The pre-loaded version of InceptionV3 in Keras
comes with the weights and biases found when training on the
ImageNet database; these are turned off when training with the
datasets from this study to avoid any unintentional bias in the
predictions. The number of inception blocks will also be greatly
reduced as the fully intact and trained architecture has approxi-
mately 25 Mio. parameters. With only four classes and about
5000 images in each dataset, the complete Inceptionv3 archi-
tecture would result in memorising each image, delivering high
accuracies but making any predictions meaningless. At the end
of each chosen number of inception blocks, a global average
pooling layer is used as well as a SoftMax activation layer and
dropout layer(s) when required.

Each model was trained for 50 epochs on both the training
and validation datasets. The accuracy (Fig. 5(a)) and loss
(Fig. 5(b)) of each epoch was monitored and once the initial
training was complete, the learning curve was used to evaluate

Fig. 3 Number of images generated for the different phases of (a) the twist-bend nematic CB6O.7 and (b) the ferroelectric nematic NT3.5, before
augmentation.
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a model’s performance. Successful training was characterised
by accuracy and loss curves that follow a similar pattern as the
exemplary data depicted in Fig. 5(a) and (b), with the accuracy

for the training and validation datasets converging at a similar
value close to one and the loss curves converging at a low value
close to zero. Overfitting is shown by diverging training and

Fig. 5 Typical (a) accuracy and (b) loss curve of a 5-layer CNN with flip augmentation. (c) Schematic illustration of under- and overfitting to determine
the ideal range of model complexity for which the machine learning model provides best predictions. (d) Typical definition of a confusion matrix.

Fig. 4 General representation of (a) the convolutional neural network (CNN) model and (b) the Inception model, employed.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
D

ez
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 0

2.
02

.2
02

6 
01

:3
9:

42
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sm01070e


100 |  Soft Matter, 2026, 22, 95–108 This journal is © The Royal Society of Chemistry 2026

validation curves, while underfitting is observed from low
training loss at the beginning and dropping to an arbitrary
minimum point (Fig. 5(c)).52 The trained model would then be
subjected to the test dataset of completely unseen images to
evaluate model performance. Its predictions for each image
were plotted on a confusion matrix to visualise the model’s
accuracy (Fig. 5(d)).

Hyperparameters and augmentations

The quality of learning curves and the model’s efficiency are
affected not only by the quality of the datasets (size and
variation between training and validation) but also by the
hyperparameters. Learning rate, batch size, dropout, and
model size can be varied throughout testing to find the optimal
implementation for each model with each dataset. A learning
rate of 1 � 10�4 was chosen, which is sufficiently small to allow
for the optimisation algorithm to find the minimum, but large
enough to not significantly slow the training process.

The batch size has a direct impact on the accuracy of a
model and its efficiency during the training process. The ideal
batch size will vary depending on the size of the dataset in
relation to the complexity of the model. As the datasets in this
study are all of roughly equal size, the model’s complexity was
varied and the optimum batch size found for the first dataset
will be used for all subsequent datasets. This was done by
adding convolutional layers or inception blocks until the pre-
diction accuracy starts to decrease or until satisfactory test
accuracies between 90–100% were achieved. If similar results
were observed in two models of differing complexity, the least
complex model was chosen as the sufficiently optimal solution.
A similar approach was applied to regularisation and dropout,
adding a dropout layer to each successful iteration of a model
and evaluating its effect on performance and accuracy.

In previous studies we have shown that flip augmentations
are particularly effective in generating larger datasets without
loss in phase prediction accuracy. Here, this was achieved both
by manually editing images using batch editing software or by
using the inbuilt augmentation layers from the Keras library
during training. An investigation of the different types of
augmentation, their effect on the dataset and the model’s
performance was conducted using the same approach as to
testing the hyperparameters of the models. The most effective
augmentation or combination of augmentations was then used
on all datasets to improve the accuracy of the models.

Three augmentations were chosen for investigation:
(i) brightness, (ii) contrast and (iii) flip augmentation. These
were chosen in a way to significantly alter the appearance of the
texture images without distorting the features key to identifi-
cation. It should be mentioned that the Keras library also offers
zoom and translation augmentation layers. These were not
used as they were found to distort or change the image in
undesirable ways. Using the zoom layer resulted in significant
pixelation of images, which could result in the model being
unable to identify certain key features. The translation layer
applies random translations to each image during training,
filling empty space with the part of the image that has been

displaced. This generates boundaries which could result in
some anomalous features and misinterpreted as being char-
acteristic of a texture, thus leading to the inability to identify
the actual phase.

Flip augmentations progress by flipping images on either
one or both axes. In this study, we used a Keras augmentation
layer for the CNN models which randomly selects images
during each epoch and flips them depending on the conditions
given by the user. Both horizontal and vertical flip were used to
maximise the variation between the augmented images and the
originals.

When inception models were employed, these are functional
models rather than sequential, and as such, inception models
cannot use the augmentation layer during training. All aug-
mentations used for functional models have been completed
manually using the BeFunky53 batch editing software. Bright-
ness and contrast augmentations were implemented using a
Keras augmentation layer within a range of 0.2–0.8, avoiding
either extreme of 1 or 0 where images lose all features, becom-
ing either a blank white image or a blank black image. This
protected against possible confusion during training, relating
to false positives where darkened textures are misidentified as
the isotropic phase.

Horizontal and vertical flipping was used for both, the CNN
and the Inception models. For CNNs and inbuilt Keras function
was used that selected a portion of images in each batch and
applied the chosen flip augmentation. For the Inception
models manual vertical flipping was applied to all the images
in the training dataset, because the random function as
used for the CNNs was not compatible with the Inception
models within Keras. Further, due to the complexity of the
Inception models it is beneficial for those datasets to have an
increased size.

For improved computational performance all training and
testing was completed in Google Colaboratory, a hosted Jupyter
Notebook service that allows access to the GPUs hosted on
Google servers. The Nvidia T4 Tensor Core GPU was used for all
models as they have been specifically designed for machine
learning and deep learning training.54

Results and discussion
Ferroelectric nematic compound NT3.5

Our machine learning investigation of liquid crystals with
various nematic phases is divided into three main categories,
(i) the phase sequence which includes a ferroelectric nematic
phase, NT3.5, (ii) that which includes a twist-bend nematic
phase, CB6O.7, and (iii) a hypothetical sequence that combines
the two compounds, where we also distinguish between the two
standard nematic phases, because these do exhibit quite dif-
ferent textures, as mentioned above. We thus also investigate
in how far different textures of the same phase, here the
standard nematic, can be distinguished. Further, we employ
two different machine learning models, convolutional neural
networks (CNN) and Inception models, varying a range of
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hyperparameters to unveil some general rules of thumb for
texture characterisation via machine learning.

Using a basic CNN model with a single convolutional layer,
one max pooling layer and a final dense layer to give output,
testing was performed on some of the model’s hyperparameters
including batch size and learning rate. In the following, the
effect of augmentations was investigated with different levels of
complexity, followed by different regularisation techniques.
Similarly, the inception model was studied.

The batch size, e.g. the number of data points given to a
model at each iteration, can influence the learning of the model
during training. The optimal batch size can depend on the size
of the dataset, the optimisation algorithm used, or hardware
constraints. As all the datasets in this study are of similar size
and the same hardware was used throughout, an initial test was
carried out to determine the optimal batch size, which was then
used for the remainder of the investigations. It was found that a
batch size of 32 gave the lowest validation loss and the highest
test accuracy, together with the smallest amount of noise
observed for the loss curves (Fig. 6). As such, for all further
testing a batch size of 32 was to be used.

Augmentations were applied to the NT3.5 dataset to artifi-
cially increase the number of images used for model training
and to increase the variability between those images. This was
implemented using a Keras augmentation layer that augments
and randomly selects images in each batch, every epoch.
Horizontal and vertical flip, brightness, and contrast augmen-
tations were all individually tested and compared against a
non-augmented dataset with increasing model complexity. It
was found that increasing the model complexity resulted in a
slight increase in the test accuracy of the flip-augmented
dataset. Yet on the other hand, the brightness- and contrast-
augmented datasets performed much below the models with
the non-augmented dataset. The difference in test accuracies
for each model is illustrated in Fig. 7. The graph clearly shows
that brightness and contrast augmentations are unsuccessful
augmentations, associated with large variations between indi-
vidual runs during the test phase, as illustrated by large errors.

Even at higher levels of complexity, the models with bright-
ness and contrast augmentations consistently displayed low
validation and test accuracies with diverging losses. As the
texture images of the datasets are greyscale, it is possible that

Fig. 6 (a) Accuracy and Loss for the training, validation and test cycles for a variation of the batch size for a single layer CNN. (b) Confusion matrix from
testing with a single layer CNN and batch size 32. The dataset uses was that of the ferroelectric nematic compound NT3.5.

Fig. 7 (a) Effect of varying augmentations such as brightness, flip and contrast on the accuracy of the phase identification for increasing CNN complexity
from 1 to 5 layers. Integers indicate the number of CNN layers used without augmentation. Only flip augmentation increased the model performance,
while brightness and contrast resulted in poor performance. (b) Confusion matrix for the best performing CNN model only using flip augmentations. The
dataset uses was that of the ferroelectric nematic compound NT3.5.
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even small changes to brightness and/or contrast largely
obscure the features of the textures – the datasets with contrast
tending to be identified as isotropic and the datasets with
brightness tending to be categorised as crystalline. Horizontal
and vertical flips were the only augmentation used in subse-
quent investigations.

A method to reduce possible overfitting is regularisation,
done by reducing the weights put on connections between
layers in the network or by removing them entirely; this latter
case is known as dropout. To further increase the accuracy of
the models used in this study, a dropout of 0.5 was used on
models with both an un-augmented dataset and a flip-
augmented dataset, essentially removing at random 50% of
the connections between layers at random between each epoch.

Fig. 8 depicts the accuracies of each CNN model with flip
augmentation, dropout, and both flip augmentation and drop-
out. The models with flip augmentation are the best perform-
ing and display an increase in accuracy with each added level of
complexity. Adding a dropout layer to both the augmented and
un-augmented datasets resulted in decreased accuracies, which
varied significantly with each test, resulting in clearly larger
errors. The best-performing model within this group of testing
was the five-layer flip-augmented CNN with a test accuracy of
0.96 � 0.01. One could anticipate that the even more complex
models may lead to even higher accuracies, but this is generally
not the case, due to overfitting. This can also be seen on the
respective learning curves, where in general flip augmentation +
dropout showed lower accuracies and higher loss, together with
larger noise, when compared to pure flip augmentations. We
therefore terminated this investigation at the 5-layer model.

Using the dataset of the ferroelectric nematic material NT3.5
we finally also employed a different machine learning model.
For testing with the inceptionV3 model, the same NT3.5 dataset
was used as before with manually implemented horizontal
and flip augmentation. The complexity of the model is varied
by altering the number of inception blocks. Due to the much
larger number of variables, the inception model proves

successful with already the one-block model outperforming
the five-layer CNN leading to a test accuracy of 0.99 � 0.01.
Increasing the complexity still further improves the test accu-
racy, which is most likely the result of overfitting, as suggested
by the accuracy and loss curves. With this in mind, and with
high accuracies being achieved by the two and three-block
models, dropout layers were only added to the lowest perform-
ing one-block model, with the results depicted in Fig. 9 (note
the change in scale as compared to previous CNN graphs).

Twist-bend nematic compound CB6O.7

The dataset of the compound CB6O.7 with the twist-bend
nematic phase is very comparable to the previous one in size.
The same hyperparameters as used with the NT3.5 dataset,
were also used for the testing of CB6O.7, e.g. a batch size of 32
and no further augmentations with respect to brightness and
contrast as these had a detrimental effect on the model’s
accuracy. A procedure very similar to that of the previous
section was followed, starting with a CNN model with one
convolutional layer, then introducing flip augmentation, and
finally a layer of 0.5 dropout. The accuracies for increasing the
model’s complexity are depicted in Fig. 10.

As can be seen in Fig. 10, the test accuracies for the simple
non-augmented models increase from about 89% to 96% as the
model complexity is increased from one to three layers. Appli-
cation of flip augmentations increases the average test accuracy
slightly by another 1–2% to 97–98% prediction accuracy, while
additional dropout not only decreases the overall accuracy
considerably, but also increases the errors observed. Overall,
the best performing model is the CNN with five layers and flip
augmentation with an average of 98% accuracy.

For demonstration we also show the respective learning
curves for the model accuracy and loss for the 1-layer, 3-layer
and 5-layer CNN in Fig. 11(a)–(c), respectively. For the model
accuracy it can clearly be seen that the validation curves
approach the training curves as the CNN complexity increases.
At about 40 epochs the training accuracy has reached

Fig. 8 Effect of regularisation on models with increasing complexity using 1–5 CNN layers. Integers indicate the number of CNN layers used without
augmentation. Flip augmentation increases the accuracy as compared to non-augmented datasets, which both pure dropout and flip augmentation +
dropout decrease the accuracy. It is thus evident that pure flip augmentation is the best process to increase model performance and accuracy.
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approximately 98%, 99% and 100% for the 1-, 3-, and 5-layer
model, while the validation curves reach 93%, 97% and 99%.

Similarly, the training loss curves are approximately 0.5%,
0% and 0% for the 1-, 3-, and 5-layer model, while the valida-
tion loss approaches these values to about 5%, 0.1%, and

0.05%. At the same time the noise on the loss curves is strongly
reduced between the 1-layer and the 3-layer CNN. The beha-
viour is further evidenced in the confusion matrices of Fig. 12.

The confusion matrix obtained from the tests of this model
shows that the increase in complexity enabled more accurate

Fig. 10 Average test accuracies from CNN models with 1–5 layers, flip augmentation and flip + dropout for the CB6O.7 dataset of the material exhibiting
a twist-bend nematic phase in its phase sequence. Integers indicate the number of CNN layers used without augmentation.

Fig. 11 Comparison of the learning curves for accuracy and loss for the (a) 1-layer, (b) 3-layer, and (c) 5-layer CNNs with flip augmentation.

Fig. 9 (a) Accuracy as a function of inception model complexity with regularisation only applied to the simplest model with one inception block. (b) The
confusion matrix verifies an excellent prediction of the phase sequence of the ferroelectric nematic compound NT3.5.
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identification of all phases of CB6O.7. The twist-bend phase
showed an increase in accuracy to almost 100%. The greatest
improvement is seen for the crystalline phase, for which the
test accuracy increased from approximately 88% to 98%.

Using the same CB6O.7 dataset, the InceptionV3 model proved
immediately adept at identifying the phase sequence. With only
one inception block, test accuracies of 0.9992 � 0.0008 were
achieved (Fig. 13). Manual flip augmentation was used in all cases.

Fig. 12 Confusion matrices for the phase classification of CB6O.7 with a twist-bend nematic phase, for a (a) 1-layer, (b) 3-layer, and (c) 5-layer CNN with
flip augmentation.

Fig. 13 (a) Average test accuracies of inception models tested with the CB6O.7 dataset. (b) Confusion matrix from a one-block inception model and (c)
confusion matrix for a 1-block inception model with one layer of dropout.
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It appears that any number of inception blocks up to at
least three would provide an accuracy of very close to 100%,
yet a closer look at the learning curves shows that already after
few epochs the training and validation curves have reached an
accuracy of 100% at zero loss, even for the one-block model.
In principle this implies that the inception model is simply
too complex for the task. The addition of dropout regularisa-
tion, an action that should help to avoid overfitting, even
decreases the accuracy slightly. Similar to the compound
NT3.5 with the ferroelectric nematic phase, more so for
CB6O.7 with the twist-bend nematic phase, the inception
models are too complex for the task of phase sequence
characterisation to exclude overfitting, which will always lead
to accuracies of roughly 100%. It can thus be suggested that
the best model employed for tasks as discuss so far are 3-layer
CNNs with flip augmentation.

Combined dataset of nematic NT3.5 and CB6O.7

To increase the complexity of the characterisation task, we
combined the textures of the ferroelectric nematic NT3.5 and
the twist-bend nematic CB6O.7, while also treating the two
standard nematic phases as independent, due to the fact that
they exhibited different texture appearances throughout, as
mentioned above. This purely nematic dataset describes a
hypothetical nematic phase sequence with dataset size of about
6800 images.

Fig. 14(a) demonstrates that an increase in the model’s test
accuracies is related to the number of convolutional layers.
In all cases, the inclusion of flip augmentation resulted in
higher accuracies at each level of complexity. The inclusion of a

0.5 dropout layer to the augmented datasets resulted in lower
test accuracies (Fig. 14(b)). The exemplary confusion matrix
shown in Fig. 14(c) shows that the CNN model is clearly able to
identify both the ferroelectric nematic and nematic twist-bend
phases but is slightly less effective at identifying the standard
nematic phases. Nevertheless, with both accuracies for the
standard nematic phase being clearly above 90%, it is demon-
strated that machine learning models are feasible to identify
not only different phases but also different textures of the
same phase.

Unlike it was observed with the previous datasets, training
the 1-block inception model with the ‘‘all nematic’’ dataset did
not result in 100% accuracy. The highest test accuracy (0.998 �
0.000) was achieved by a 3-block model with manual flip
augmentation applied. Fig. 15(a) shows that the inclusion of
a 0.5 dropout layer resulted in a decrease in test accuracies
within the limits of error.

Fig. 15(c) shows the learning curves for the one-block
inception model with flip augmentation. Training and valida-
tion accuracies start at high levels from the first epoch and
reach a value close to 100% by the end of the 50 epochs.
Applying this model to the test dataset, accuracies of 0.987 �
0.003 are achieved. The associated confusion matrix (Fig. 15(b))
confirms this behaviour, with the lower accuracies being found
when identifying the standard nematic phases. However, these
two phases are not often mistaken for one another despite
being the same phase.

When comparing the highest accuracies achieved by the
CNN and Inception models for the all nematic dataset (0.970 �
0.003 vs. 0.987 � 0.003, respectively), the inception models

Fig. 14 (a) An increasing CNN model complexity leads to an increase in prediction accuracy until a plateau is reached for about three CNN layers. (b) Flip
augmentation slightly increased the model accuracy, while dropout regularisation exhibited a rather detrimental effect on the accuracy. Integers indicate
the number of CNN layers used without augmentation. (c) Confusion matrix for the different nematic phases/textures of the hypothetical nematic phase
sequence for the 4-layer flip-augmented CNN model.
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appear slightly more adept at identifying the LC phases from
their texture images. It is clear, however, that the CNN models
offer sufficient accuracies to demonstrate the feasibility of such
models as well. Given the fact that training an inception model
consumes considerably more time and computer resources than
training a CNN, the latter is certainly sufficient for characterisa-
tion, at least for unconventional nematic phases. The effect of
adding dropout to these models rarely had a positive impact on
accuracy.

Conclusions

Sequential CNNs and modified pre-built Inception models were
tested for their ability to identify unconventional nematic
liquid crystal phases. Three datasets, including ferroelectric
nematic and twist-bend nematic phases besides the standard
nematic, were tested with different machine learning architec-
tures for their suitability. In this process the model complexity
was varied to assess its effect on accuracy as well as the use of
various augmentation and regularisation techniques. The use
of brightness and contrast augmentation led to the loss of
textural information, resulting in considerably lower test
accuracies and higher errors. Flip augmentation was the most
effective means and resulted in higher test accuracies when
compared to non-augmented datasets.

Without loss of generality, flip-augmented three- to four-
layer CNNs were found to be of sufficient complexity to

fulfil the task of characterising all sequences to better than
95%. The inception model was found to achieve higher accura-
cies of 99% with as little as one inception block, however,
learning curves during training and validation suggested that
these high accuracies were most likely the result of overfitting.
It is worth noting that for both models the inclusion of dropout
regularisation resulted in the worst test accuracies. Thus, the
inception model is deemed to be far too complex for the
datasets investigated, even with considerable regularisation
employed. Inception models are also computationally much
more expensive than CNNs. One can thus conclude that for the
present investigation the use of Inception models is not neces-
sary or justified.

The datasets used in this study are relatively small in
machine learning terms and exhibit minor class imbalances.
While these problems do not necessarily negatively impact the
efficacy of the findings, greater accuracies could possibly be
achieved in cases with larger and more balanced datasets. If
such higher accuracies are required rather than the ones
achieved, it is clearly necessary to collect larger and more
balanced datasets. In the latter case, one may then also need
to resort to more complex machine learning models at the
expense of computational costs.

Conflicts of interest

There are no conflicts to declare.

Fig. 15 (a) Average accuracies of the inception models with increasing complexity, e.g. number of inception blocks, without and with dropout
regularisation. (b) Confusion matrix and (c) learning curves for the 1-block inception model with flip augmentation.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
D

ez
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 0

2.
02

.2
02

6 
01

:3
9:

42
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sm01070e


This journal is © The Royal Society of Chemistry 2026 Soft Matter, 2026, 22, 95–108 |  107

Data availability

All the important data is shown in the paper. Raw data, such as
images used for training, can be made available upon reason-
able request.
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