Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 17 Januar 2025. Downloaded on 30.01.2026 00:25:36.

(cc)

¥® ROYAL SOCIETY

Environmental Science s OF CHEMISTRY

Advances

View Article Online
View Journal | View Issue,

TUTORIAL REVIEW

Emerging membrane technologies for sustainable

i'.) Check for updates
water treatment: a review on recent advancesf

Cite this: Environ. Sci.: Adv., 2025, 4,
530
Sahar Foorginezhad, & *2 Mohammad Mahdi Zerafat,*® Ahmad Fauzi Ismail*®

and Pei Sean Goh®

The growing scarcity of freshwater resources, coupled with industrial pollution, necessitates the
development of efficient and sustainable water treatment technologies. Membrane-based desalination
and heavy metal removal processes are at the forefront of these technologies, providing efficient and
reliable solutions to meet the growing demand for clean water. This study provides a comprehensive
review on recent advancements in desalination technologies, focusing on emerging materials that have
significantly influenced desalination and heavy metal removal performances. A meticulous screening of
recent review papers on both along with experimental studies published within the last year is provided,
thereby offering an updated perspective on the ongoing experiments dedicated to water treatment using
membranes. Notably, this review considers various membrane types, including nanocomposites,
biomimetic, thin-film composites, hybrids, and membranes associated with forward osmosis. Results
indicate that nanocomposite membranes, thin-film composite membranes, and forward osmosis
membranes are widely used for desalination and heavy metal removal compared to hybrid and
biomimetic membranes. This widespread utilization can be attributed to their well-established fabrication
techniques, robust mechanical properties, high removal%, and better scalability for industrial applications.
In contrast, while hybrid and biomimetic membranes are promising, they are still under development and
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rsc.li/esadvances facing challenges pertaining to material synthesis, cost, and integration into existing systems.

Environmental significance

Water scarcity and contamination by heavy metals pose serious threats to environmental and public health globally. Current desalination and heavy metal
removal technologies often suffer from limitations in energy efficiency, sustainability, and effectiveness. This review examines the recent advances in membrane
technologies, focusing on innovations that enhance the efficiency and environmental compatibility of desalination and heavy metal removal processes. The key
findings highlight breakthroughs in material design and process optimization, presenting implications for reducing environmental impacts and improving
access to clean water. Thus, this work underscores the need for continued innovation in membrane technologies to address critical water quality issues and
supports sustainable environmental management.

Health Organization (WHO) reports a persistent rise in water
pollution, identifying it as a significant contributor to the
widespread illnesses and fatalities worldwide.>* Freshwater

1. Introduction

The past century has witnessed a rapid surge in global pop-

ulation, alongside explosive industrial development and esca-
lating energy requirement. Consequently, water scarcity has
emerged as a formidable global challenge, with projections
indicating a worsening scenario in the future."” The World
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resources are limited, with roughly 97% of the global water
reservoirs consisting of seawater, necessitating desalination for
most applications and generally <1% of the world's water supply
is readily available as freshwater.>® In this context, desalination
technologies, offering the capability to harvest freshwater from
saline sources, stand as a promising avenue for increasing
freshwater supply and achieving global water security.” Two
primary approaches, namely, thermal/distillation and
membrane separation, are mainly used for desalination, where
membrane separation technology has garnered widespread
attention over its counterpart owing to its high efficiency and
low energy demand.®® A diverse range of water and wastewater
filtration systems, including conventional pressure-driven
seawater and brackish water reverse osmosis (RO),
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nanofiltration (NF), ultrafiltration (UF), and microfiltration
(MF), have been employed in industrial plants. Additionally,
osmotically driven technologies, such as forward osmosis (FO)
and pressure retarded osmosis (PRO), have been extensively
developed.*

Apart from the salt and mineral content of saline water, the
escalating pace of industrialization and population growth has
resulted in heavy metal contamination attributed to its wide-
spread prevalence, significant toxicity, and facile mobility.*>**
The contemporary heavy metal pollution is predominantly
driven by anthropogenic activities, such as electroplating,
petroleum refining, and metal smelting. Excessive discharge of
heavy metal ions, including Hg, Cd, Pb, As, and Cr, into water
bodies, such as drinking water sources, poses significant health
risks to humans.”'* In this context, membrane separation
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technologies have also emerged as a promising route for large-
scale applications owing to its outstanding heavy metal rejec-
tion capability and high operational efficiency.*>*

In general, the pressure-driven membrane technology using
MF, UF, NF, and RO represents the most widely employed
technique, wherein transmembrane pressure is used to facili-
tate the transport of feed stream across the membrane, while
non-pressure-driven membrane processes such as FO present
notable advantages for efficient separation, characterized by
operation under mild conditions (atmospheric pressure) and
potential for in situ separation during product synthesis.'”
While membranes have been extensively employed for heavy
metal removal and desalination, there remains room for
improvement and challenges to overcome. These challenges
include membrane fouling, material-based limitations, capital
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costs, reproducibility issues, detachment of membrane layers,
low selectivity, and water flux drop. Addressing these challenges
will be crucial for further advancements in membrane-based
separation approaches for desalination and heavy metal
removal.

In the rapidly evolving field of wastewater treatment using
membranes, multiple review studies have summarized the
experimental findings. It is crucial to compile current knowl-
edge for ongoing and future research in wastewater treatment
and environmental protection. However, many existing studies
are still in the research phase and often lack comprehensive
documentation of membrane properties. This gap poses chal-
lenges in selecting the most suitable membrane for specific
wastewater conditions including pollutant type, concentration,
temperature, pressure, and desired purity of water. To address
these challenges, an updated database has been compiled,
focusing on removal percentages and other key properties of
commonly used membranes such as nanocomposites, thin-film
composites, biomimetic membranes, forward osmosis
membranes, and hybrid organic-inorganic membranes. This
compilation aims to explore potential correlations among the
properties, with a specific focus on developments from 2023 to
2024. Given the inconsistent reporting of key parameters such
as removal efficiency, permeability, cost, long-term stability,
durability, and fouling resistance, along with the interdepen-
dence of structural properties and surface chemistry, identi-
fying a promising membrane becomes a complex task.
Considering the methodology adopted in our previous study,'®
this study provides a comprehensive literature review and
screening of both review papers and experimental studies. The
initial screening and survey are conducted based on removal
efficiency as the primary criterion, and top-performing
membranes are identified. The discussion further explores
membrane performance and key properties including perme-
ability, economic viability, fouling resistance, comparisons
across various membrane types, and considerations of envi-
ronmental impact and sustainability. Additionally, the role of
artificial intelligence (AI) and machine learning (ML) in
enhancing membrane-based processes is examined. Finally, the
challenges facing the field and potential future directions are
thoroughly analyzed.

2. Separation mechanisms

The membranes facilitate selective removal and separation
using the unique physicochemical properties of solutes,
including size, charge, and chemical composition. The inter-
action between solutes and the membrane matrix dictates
which solutes are permeable and which are rejected.*

2.1. Size-based separation

Size exclusion is a fundamental mechanism in membrane-
based separations, crucial for filtering particles based on their
size, relative to the pore size of the membrane (Fig. 1). As rep-
resented in Fig. 2(a), particles smaller than the membrane pores
can permeate through the membrane, while larger particles are
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Fig. 1 Schematic of particle separation via size-sieving using
membranes (reprinted with permission from ref. 20, Elsevier 2023).
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Fig. 2 Three primary membrane separation mechanisms: (a) size
exclusion, (b) Donnan exclusion, and (c) dielectric exclusion (reprinted
with permission from ref. 21, Wiley 2023).

excluded. In the context of hydrated ions and salts, steric
hindrance plays a pivotal role: ions with a hydrated diameter
exceeding the membrane pore size encounter significant resis-
tance and are effectively rejected.” This mechanism under-
scores the importance of pore size in determining the selectivity
and efficiency of the membrane. For neutral solutes, size
exclusion remains the primary mode of separation, high-
lighting its universal applicability in membrane filtration
processes.” As shown in Table 1, the sizes of common metal
and salt ions are all less than 1 nm. Despite their small size,
these ions can be effectively removed through size exclusion,
provided that the membrane pore size is sufficiently small. This
highlights the importance of precise pore size control in
membrane fabrication to ensure high rejection rates of
these ions.

One limitation of this model is its failure to consider
concentration polarization (CP), which is crucial in membrane
design. CP involves the accumulation of retained solutes in the
boundary layer of the membrane, leading to a higher solute

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Size of bare and hydrated ions

Bare ion size Hydrated ion

Ion (A Ref. size (A) Ref.

Li 0.60 24 3.82 24 and 25
Ni** 0.69 26 4.04 27

Na' 0.95 24 3.58 24 and 25
K* 1.33 24 3.31 24 and 25
mg? 0.72 25 and 28 4.28 24 and 25
ca* 1.00 25 4.12 24 and 25
cl™ 1.81 24 and 28 3.32 24 and 25
S0,* 2.90 24 3.79 24

NO;~ 2.64 24 3.35 24

Pb* 1.63 29 4.01 24

Zn>* 0.74 30 4.30 24

Mn?* 0.80 30 4.38 24

cr’t 0.62 31 4.61 24

cu®* 0.73 32 4.19 24

ca* 0.95 32 4.26 25

concentration at the membrane surface compared to the bulk
solution. This concentration gradient is critical for both fouling
and solute retention. Additionally, the separation of ionic
species relies not only on size exclusion but also on the charge
of the membrane, which plays a vital role in the separation
process.*

2.2. Charge-based separation

In liquid-phase separations, membranes often incorporate
charged functional groups that selectively bind to solutes with
opposite charges (counterions) while repelling those with
similar charges (co-ions) via the Donnan exclusion® (Fig. 2(b)).
Neutral solutes, which lack a charge, typically experience
minimal interaction with these membranes.* The Donnan
exclusion, proposed in 1911, remains as a foundational theory
for understanding ion distribution across semi-permeable
membranes.**?*” This is particularly significant in
exchange membranes where electrical forces drive the
process, and in nanofiltration membranes where pressure
differentials play a crucial role.?®

The Donnan exclusion relies on electrostatic interactions
between the membrane's fixed charge groups and the ionic
species. Membranes with negatively charged surfaces strongly
repel anions, and the degree of exclusion increases with ionic
charge density. Multivalent ions, possessing a higher charge
density than their monovalent counterparts, generate stronger
electrostatic interactions, leading to greater rejection.***° For
instance, as shown by Epsztein et al.,* fluoride ions with high
charge density were rejected more effectively than chloride or
nitrate ions under certain pH conditions due to the Donnan
exclusion effects. Similarly, Balster et al.** demonstrated that
the transport of Ca®" ions through sPEEK/PES blend
membranes is significantly affected by both the conductivity
and charge density of the membrane, where higher conductivity
and charge density led to enhanced transport of these multi-
valent ions. Gilron et al* found that NF200 and NF45
membranes exhibited significant divalent ion rejection of >90%
for MgSO,, while NaCl rejection remains comparatively low,

ion-
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often between 60 and 80%. Asante-Sackey et al.'s*® review
highlighted the Donnan membrane process (DMP) as an effi-
cient, energy-free method for the recovery and removal of
multivalent ions such as AI**, Fe*, and Mg>". Using Nafion 117
membranes, Mg>" and Ca>* removal rates of 50 and 20%,
respectively, were reported, while Au* recovery from electronic
waste reached up to 89%.*** Seidel et al.*® investigated the
impact of surface charge and pore size on the rejection of NacCl,
CaCl,, and Na,SO,. Findings revealed that the rejection rates
followed the order of Na,SO, > NaCl > CaCl,, attributed to the
Donnan exclusion principles, where ion rejection increases with
higher charged co-ions and decreases with higher charged
counter-ions. Specifically, Na,SO, exhibited the highest rejec-
tion with a significant negative charge of co-ions. Conversely,
CacCl, showed the lowest rejection rate with a higher charge of
counterions. These results indicate that ion separation is
primarily governed by the combination of size and Donnan
exclusion, whereas the observed rejection trends do not corre-
spond to the sizes of the hydrated ions.

Nicolini et al.*® investigated the saline rejection performance
of NF membranes, observing varying degrees of rejection for
different salts in the following order: Na,SO, > K,SO, > CaSO, >
MgSO, > NaCl. This sequence reflects the interactions of
membranes with ions, where stronger rejection of sulfate salts
(S0,>7) is due to electrostatic repulsion with the negative charge
of the membrane. Conversely, divalent cations (e.g., Ca®>" and
Mg>") exhibit greater attraction to the membrane, leading to
higher rejection rates than that of monovalent cations such as
Na*. Moreover, the concentration distribution of ions within the
electrical double layer is significantly influenced by the surface
potential, which regulates the partitioning of ions within the
membrane, thereby determining ion concentrations and
impacting their subsequent diffusion through the pores.*®

Despite these insights, experimental data on the nuanced
behavior of specific ions remain sparse, especially concerning
the variable performance of membranes favoring monovalent
or multivalent salts. Factors such as feedwater composition,
membrane surface charge heterogeneity, and dynamic oper-
ating conditions introduce additional complexities.**>*
Addressing these gaps requires systematic studies that integrate
advanced modeling approaches such as the Donnan steric pore
model (DSPM) with dielectric exclusion, alongside empirical
validations.**?

2.3. Further mechanisms and considerations

Chemical properties of solutes play crucial roles in their transport
and selectivity across membranes, extending beyond consider-
ations of size and charge. Factors including hydrophobicity/
hydrophilicity, polarity, polarizability, hydrogen bonding capa-
bilities (both donating and accepting), and interactions governed
by van der Waals forces have all been identified as influential in
determining the solute behavior during membrane processes.>* >
Dielectric exclusion (Fig. 2(c)) refers to the phenomenon where
ions interact with the bound electrical charges at the interface of
materials with different dielectric constants such as the
membrane matrix and the surrounding solvent. This mechanism

Environ. Sci.: Adv., 2025, 4, 530-570 | 533
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is independent of ionic charge sign but enhances the rejection of
ions with a higher valence due to their stronger polarization
effects. This property is especially pronounced in confined
membrane environments, where the altered dielectric properties
of water further enhance ion rejection.® Studies including that
conducted by Suhalim et al.*® highlight the role of dielectric
exclusion in supplementing the Donnan and size exclusion
mechanisms, particularly for high-valence ions. This interaction
induces polarization within the two media according to their
dielectric properties, leading to the formation of polarization
charge distribution at the interface surface.”® Zhu et al.* investi-
gated how dielectric exclusion affects the relationship between
fixed charge distribution and electrolyte rejection performance.
The findings indicated that reducing the dielectric constant
enhances the rejection performance.

Despite extensively studied size and Donnan exclusion
mechanisms, hydration-based mechanism has received relatively
less attention in the literature. This approach relies on the affinity
of water molecules to ions dissolved in the solution (Fig. 3(a)).
Specifically, hydrated ions (ions surrounded by water molecules)
exhibit different sizes and affinities towards the membrane
matrix compared to their dehydrated counterparts (Table 1). This
difference in hydration shell size can influence their transport
through the membrane. For instance, larger hydrated ions may
face steric hindrance within smaller membrane pores, leading to
reduced permeation rates. Additionally, the hydration shells of
ions can alter their effective charge and interactions with the
membrane surface, influencing their rejection or permeation
behavior* (Fig. 3(b)). Chen et al® studied the mechanism of
water transport and ion movement across the multilayer GO
membrane. The results revealed that the difference in hydration
radius between Mg(u) and Ca(u) ions influences their ability to
penetrate GO membrane. Due to its smaller hydration radius,
Mg(n) ions can more easily infiltrate bilayer GO membranes than
Ca(u), which has a larger hydration radius.

Concentration polarization (CP) plays a pivotal role in the
performance and sustainability of membrane-based separation
processes, significantly influencing fouling and rejection effi-
ciency. CP refers to the accumulation of solutes near the
membrane surface due to selective rejection. This localized
concentration gradient reduces the driving force for separation,
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impacting the overall solute rejection and increasing the energy
demand for maintenance.®*** The build-up of solutes exacer-
bates fouling by promoting the formation of a cake layer,
a phenomenon termed cake-enhanced concentration polariza-
tion (CECP), comprising organic, inorganic, or biological fou-
lants, not only acting as a secondary barrier to solute rejection
but also enhancing the solute accumulation near the
membrane surface while accelerating fouling.*

CP also influences the performance of FO membranes,
particularly in terms of fouling and rejection efficiency. This
process impacts both the osmotic driving force and the
membrane's long-term efficiency. In this context, CP can be cate-
gorized into external concentration polarization (ECP)*® and
internal concentration polarization (ICP).” ECP occurs at the
surface of the active layer, where solutes accumulate or are diluted,
depending on the flow direction, and can be mitigated by effective
crossflow or mixing. This phenomenon can be partially controlled
through hydrodynamic modifications such as increasing flow
velocity or turbulence. However, in long-term applications, it still
contributes to fouling by facilitating the deposition of colloids,
organic materials, and layers onto the membrane surface, further
hindering the performance.®® However, ICP occurs within the
porous support layer of asymmetric membranes with a more
profound effect on performance, as it reduces the effective osmotic
pressure differential, which in turn reduces the water flux.* The
structural characteristics of the support layer, such as tortuosity,
thickness, and porosity, are pivotal in controlling the degree of ICP
level.*>”° Additionally, reverse solute diffusion, where draw solutes
migrate back into the feed solution, can interact with feed impu-
rities to aggravate fouling, compounding the challenges posed by
CP.” Innovations such as electrospun nanofiber supports, which
offer low tortuosity, high porosity, and minimal thickness, have
demonstrated potentials in ICP reduction and maintaining high
water flux over extended operational periods.””*

3. Literature survey, analysis, and data
extraction
3.1. Nanocomposite membranes

Membrane materials are classified into organic (polymeric) and
inorganic (ceramic) types. Organic membranes are desirable for

Fig.3
GO membrane (reprinted with permission from ref. 62).
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(a) Hydration shells around a large and a small ion (reprinted with permission from ref. 61) and (b) hydrated ions passing through the bilayer

© 2025 The Author(s). Published by the Royal Society of Chemistry
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water treatment due to their ease of processing, low cost, and
flexibility for surface modifications to enhance separation and
antifouling properties. However, their major drawback is
reduced flux at high temperatures due to polymer chain
degradation.” To address these issues, nanoparticles have been
incorporated into polymeric membranes, resulting in superior
properties, including reduced fouling and improved perfor-
mance. Various types of nanocomposite membranes including
mixed-matrix, thin-film, and surface-located nanocomposites,
which offer enhanced thermal stability, mechanical strength,
and overall efficiency in water treatment applications have been
developed.” Generally, the performance of nanocomposite
membranes is highly influenced by the properties of the
support layer, inner layer, and active layer. The support layer,
which provides mechanical strength and structural integrity,
should be highly porous and hydrophilic to minimize resistance
to water flow and enhance permeability. The inner layer, often
a polymeric matrix, is designed to reduce ICP, thereby
improving flux and selectivity. The active layer, typically
composed of polyamide or other selective polymers, is known
for its selective rejection properties. Its thickness, surface
morphology, and chemical functionalization determine the
membrane's efficiency in rejecting salts and heavy metals while
minimizing fouling (Fig. 4). By carefully optimizing these
parameters, nanocomposite membranes can achieve enhanced
performance in water treatment applications.

In a recent review, Cheng et al.” studied the development of
polymeric nanocomposite membranes and found that the
sodium titanate nanobelt (Na-TNB) membrane showed 97.5%
and 57.5% removal of Cs(i) and Sr(1), respectively,® and (anatase
titania/hydrous MgO)@PVC UF mixed matrix membrane (MMM)
exhibited 97% and 98% removal of Cu(u) and Cd(u), respectively.®
In another review, Aryanti et al.** surveyed ultra-low-pressure RO
membranes for desalination and revealed that among a range on
nanomaterial-incorporated TFN membranes, the polyamide TFC
RO membrane prepared using nano-TiO, showed a promising
NaCl rejection up to 99.83% and 2.59 L m > h™" bar ' perme-
ability,® while the NaY zeolite-incorporated TFN membrane
showed lower NacCl rejection (98.80%) and higher permeability
(479 L m> h™" bar ').** Another literature survey reported by

View Article Online

Environmental Science: Advances

Valamohammadi et al.** considered the effects of carbon nano-
tubes (CNTs) on the performance and properties of nano-
composite membranes for wastewater treatment. Screening the
reported literature revealed that the highest removal of salts and
heavy metals is as follows: Na,SO, (99%, 6.98 L m > h™* bar™*
permeability) with CNT-enhanced TFN membrane,* MgCl,
(97.36%, 7.57 Lm > h™ ' bar " permeability) with hyperbranched
polyethyleneimine-modified multi-walled CTN (MWCNT)-
incorporated NF,*” NaCl (98%, 1.50 L m > h™" bar ' perme-
ability) with zwitterion-functionalized CNT nanocomposite
membrane,® MgSO, (97.60%, 14.03 L m > h™* bar " perme-
ability) with modified hydroxyl-containing MWCNT-incorporated
NF,* as well as Zn(u) (99.06%), Cd(u) (96.72%), Cu(n) (95.84%),
Ni(m) (94.63%), and Pb(u) (93.39%) with 7.57 L m~> h™" bar™*
permeability using a hyperbranched polyethyleneimine-modified
MWCNT-incorporated NF membrane.”” Yu et al®® reviewed
studies reported on TFN membranes with a 2D nanomaterial
interlayer. Regarding their literature survey on various pollutants,
hierarchical flower-like MoS,-incorporated TFN membrane with
>98% removal of Na,SO, and MgSO,, and 18.3 L m>h! bar?
permeability,”* GO-incorporated TFN membrane with >99.7%
removal of NaCl and 3 L m™> h™" bar™' permeability,”> and PEI/
MOF-incorporated TFN with 95.50% removal of MgCl, and
460 L m > h™' bar ' permeability™ delineated the highest
removals. Here, the effect of GO and its 2D structure on the
tortuosity of the pores and the improvement of water channels is
prominent. Moreover, charge modification can help ionic
removal. The effect of nanoparticles on the mechanical properties
of the sublayer has also been reported in some studies.”* Nano-
particles in the membrane structure can affect hydrophilicity as
well as the size and tortuosity of membrane pores and channels
by intervening the structure formation process.”” This and
similar studies provide valuable insights into selecting hydro-
philic nanomaterials for incorporation into the support, inter-
layer, or active layer of NC membranes. Integrating these
materials can significantly enhance the membrane flux and
improve rejection rates through the combined effects of hydro-
philicity and charge modification. This strategy effectively regu-
lates membrane charge relative to the charge and size of the ions
to be removed, offering a promising route for optimizing NC

Effective parameters:
Surface charge

Pore size

Thickness

Hydrophilicity
Sufficient attachment of
support

and active layer

Porosity
){ Strength

Fig. 4 Schematic structure of thin-film nanocomposite membranes with effective parameters of each layer (reproduced with permission from

ref. 76 Elsevier 2021, ref. 77 Elsevier 2020, and ref. 78 RSC 2018).
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membrane performance. Proper selection of nanomaterials
added to the active PA layer can result in thinner layers, leading to
higher water flux values and improving membrane fouling
performance.*>*

Table S11 summarizes the most recent studies on desalination
and heavy metal removal using NC membranes in the 2023-2024
range. It can be noted that polysulfone (PSF) is one of the most
common substrates or support materials due to promising
properties including high thermal, mechanical, and hydrolytic
strength.®® Besides, poly(m-phenylene isophthalamide),” poly(-
vinylidene fluoride)-grafting-poly(acrylic acid),'* poly(vinyl buty-
ral)," cellulose acetate,'®'** polyamide 66,'> poly vinylidene
fluoride,*® cellulose diacetate,'”” polyphenylsulfone and poly-
vinylpyrrolidone,'®'*  polyacrylonitrile,”*'%***  polyethylene,*
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polyphenylsulfone,”>"* polyurethane,”* polyvinylidene fluo-
ride,"*"** and poly(vinyl alcohol)'*® have been used. Regarding
Table S1,T Fig. 5(a) and (b) summarize the number of publica-
tions focused on salt and heavy metal removal using NC
membranes in the 2023-2024 range. Moreover, the highest
removals have been reported in these figures. In terms of salt
removal, it can be observed that NaCl and Na,SO, are mainly
used as the common salts, while MgSO, and MgCl, are in the
second place. Fewer studies are also focused on KNOj3, CaCl,, and
LiCl. According to Table 2, the highest removals of NaCl,'**
Na,S0,,” and MgS0,,*>* were found to be 99.88, 99.80, and
99.50%, respectively. In terms of heavy metals, Pb(i), Cd(u), and
Cu(u) are the most common species as the most abundant heavy
metal pollutants in industrial wastewaters, where the highest

No. of TFN membranes (2023-2024)
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Fig. 5 Most recent publications in the field of (a) salt and (b) heavy metal removal using NC membranes with the maximum removal%.
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Table 2 Top NC membranes with the most promising salt and heavy metal removal’%

Membrane Water permeability

matrix Nanoparticle (Lm™>h ' bar ™) Pollutant Removal% Ref.
PVDF Perfluoroctylamine-graphene ~1.28 NaCl 99.86 114

nano-sheets

PE/PA TiO, 5 Na,S0, 99.80 9
PE/PA TiO, 5 MgSO, 99.50 96
PES WO;@GO 445 Ni(m) 99 117
PES Mo0,@GO 410 Ni(u) 99 117
PES Amine, thiol-Si0, 6.70 Pb(n) 99 118
cA Amine-SiO, — Cd(u) 99 103
PES/PA MCM-41 4.05 Cu(u) 100 119
PES/PA Titania nanosheet 1.57 Cs(y) 100 120
PE/PA TiO, 5 As(v) 100 96

removals belong to Cu(u),"® Cs(1),"** and As(v)*® with 100%, Zn(i)
with 92.23% removal,””* and Cd(u),'* Pb(u),"** and Ni(u)""” with
99% removal.

Generally, the membrane separation efficiency relies on
achieving a delicate balance between high rejection rates and
permeability while maintaining low costs, which presents
a great challenge in developing a sustainable membrane filtra-
tion system. However, literature review and screening highlight
that the efforts to enhance removal rates often coincide with
a decrease in permeability****>*** and vice versa."*>*** Overall, it
is verified that nanoparticle incorporation help improve the
porosity, hydrophilicity,"”” and surface charge. Hence, high salt
rejection can be attributed to the enhanced surface charge or
dilution effect caused by water permeability enhancement.'****°
The highest improvement in NaCl rejection was observed using
the membrane-incorporated PVA/attapulgite nanocomposite®®
and MoO,@GO."” Conversely, the overall removal of Na,SO,
was found to be higher than that of NaCl when using NC
membranes. In this context, g-C;N,/CuFe,0,4,"*° chitosan/
MWCNT,"* and rGO@Au'"" demonstrated the highest
improvement in Na,SO, removal. In terms of MgSO,, nano-
particles of GO-ZnO"* and TiO, (ref. 132 and 133) posed
a higher impact on removal. Regarding MgCl, removal, O-
MoS,,"* Si0,,"** and (ZnFeCe) layered double hydroxide'*®
exhibited the most notable surge.

The highest improvement and change in permeability were
observed with the addition of LAPONITE®/GO,** GO,*” and
cellulose NC.*” Upon closer analysis of these studies, it was
observed that the addition of LAPONITE®/GO resulted in
improved porosity and hydrophilicity, consequently enhancing
permeability.®* The incorporation of GO into the polymeric
hydrogel layer led to the improvement of hydrophilicity and
reduction of surface roughness, along with a further decrease in
surface charge. These properties combined with a reduction in
layer thickness yielded a promising enhancement in water
permeability."®” Additionally, the inclusion of high-aspect-ratio
cellulose nanocrystals improved the hydrophilicity and water
permeability due to the nanorods' percolation-induced nano-
channels.'” Moreover, the polyamide layer is often charged and
effectively rejects divalent ions and most organic solutes based
on the Donnan repulsion and pore sieving approach.”*'® In

© 2025 The Author(s). Published by the Royal Society of Chemistry

this context, it was found that some studies have considered the
cytotoxicity of the membranes caused by the possible detach-
ment of nanomaterials®® and their entry into the flow, while
others have remained silent on the subject.

Regarding Table S1,f it was noted that the addition of 2D
nanoparticles to the membrane matrix led to the most prom-
ising improvement in permeability and rejection rates. It is re-
ported that the selective mass transport using 2D nanomaterials
is attributed to size and Donnan electrostatic exclusion.™’ It is
suggested that surface electrostatic charges block ions either on
the pore edges of the nanopores or on the line edges and
surfaces of nanosheets. Table 1 summarizes the size of bare and
hydrated ions, which, together with the surface charge and pore
size of the membranes documented in Table S1,f further
confirm the removal mechanism of the membranes. Besides,
other than tuning pore size and surface charge, decreasing
membrane thickness can improve membrane permeability
through diminishing solute diffusion friction.™*°

3.2. Thin-film composite (TFC) membranes

Thin-film composite (TFC) membranes stand as the premier
technology for pressure-driven RO and NF water treatment
processes. The promising separation performance, high water
flux, and robust durability make them the leading choice for
efficient water purification.”* In a recent review, Kadhom'”’
discussed the synthesis steps, basics, and alternatives of PA TFC
membranes for desalination. They highlighted the cost-
effectivity, easy preparation procedure of the active PA layer,
and long-term operation of TFC membranes as the most
promising advantage, while fouling and low thermal stability
have been recognized as the most prominent shortcomings.
Park et al'* studied polyester-based TFC membranes for
desalination. They considered polyester as a promising alter-
native to PA membranes with enhanced water permeability,
chlorine resistance, oxidation stability, and efficient separation
of multivalent ions. Regarding their survey, CD polyester/
DMAP-reconstructed the p-CD-EDA/PAN membrane with
98.75-98.88% NaCl rejection and 4.94-5.33 L m > h™* bar™*
permeability,’** PA TFC membrane with 99.6% of Na,SO,
rejection and 4.2 L m~> h™" bar ' permeability,'** and resorcin
4 arene macrocycle/PSF membrane'® with 94.80% KOH,
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93.85% LiOH, and 89.03% NaOH rejections and 8.14, 9.57, and
1473 L m > h™' bar™' permeability, respectively, which
exhibited the highest salt removal. In another recent review by
Sarkar et al.,"** PA nanofilm composite NF membranes with
99.99% Na,SO, removal and 32.1 L m 2 h™! bar ' perme-
ability"” and dual-layer slot coating/polydopamine-coated PE
membrane with 99.5% NaCl removal and 2.6 L m > h™* bar™*
permeability**®* showed the highest removal rates. Another
review by Wu et al.**® reported that the PIP/PSF membrane with
99.7% Na,SO, rejection and 17.5 L m > h™" bar ' perme-
ability,” ZCD-based TFC membrane with 99.8 and 98.9%
rejection of CrCl; and FeCls, respectively,** PHMTBA/PSF with
99% rejection of Na,SO, and 43.1 L m > h™! bar ™' perme-
ability,’ and PVA/PIP/PSF membrane with 97.6% MgSO,
rejection and 35.5 L m > h™* bar~ ' permeability*® depicted the
highest rejections. The literature survey compiled by Zhang
et al.,"** revealed that m-phenylenediamine/trimesoyl chloride/
PSF membrane with 99.4% NaCl rejection and 2.96 Lm > h™"
bar™" permeability, and piperazine/4-
hydroxybenzenesulfonic acid sodium salt/PSF membrane with
99.1% Na,SO, rejection and 34.4 L m > h™" bar ' perme-
ability"*® represented as the most promising membranes with
the highest removal. An et al.**” studied in situ modification of
NF and RO membranes through the incorporation of thin films
and it was verified that the P(NIPAM-co-Am)/TFC with 98.6-
98.8% NaCl rejection and ~5.5 L m~> h™" bar™ " permeability*®
showed the highest salt rejection. Liu et al.*> studied the effect
of interlayer on the TFC performance. It was observed that the
MXene/PIP/PSF membrane with 99.9% Na,SO, rejection and
27.8 Lm > h™" bar ' permeability,'* and MXene/Fe;O,/PS/PIP/
PSF membrane with >97% MgCl, rejection and 9.48 Lm™>h™"
bar " permeability*®* represented the highest rejection values.
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Improving water permeability without compromising the
high rejection rate remains a major challenge in membrane-
based technologies. To address this, recently, Sun et al'®
have developed TFC membranes using a tannic acid (TA)-
MXene interlayer. The straightforward synthesis process
involved incorporating tannic acid-functionalized MXene
nanosheets onto a polyether sulfone (PES) substrate, followed
by the interfacial polymerization of piperazine and trimesoyl
chloride (Fig. 6). The resulting membrane demonstrated a 96%
rejection rate for divalent ions and a water permeability of
22.3 L m 2 h™' bar '. Additionally, the membrane exhibited
sustained performance in filtration tests lasting up to 140 h.
These promising results indicate that the membrane has
potential for high-efficiency applications. Further studies
focusing on the fouling behavior and stability of the coated layer
would be beneficial to ensure long-term operational stability.

Table S2f summarizes the most recent studies focused on
salt and heavy metal removal using composite membranes in
the 2023-2024 range. Regarding the documented results, PSF is
mainly used as the substrate, while polyacrylonitrile stands out
as the second common substrate. Considering Table S2,1 Fig. 7
summarizes the number of publications focused on salt and
heavy metal removal using TFC membranes in the 2023-2024
range. Moreover, the highest removals are reported in Fig. 7 and
Table 3. Similar to nanocomposite membranes, it can be
observed that NaCl and Na,SO, are the most common salts for
such studies, while MgSO, and MgCl, are in the second place.
Fewer studies are also focused on CaCl,, and LiCl. According to
Table S2,T the highest removals of these salts were found to be
NaCl with >99%,"**'®* Na,SO, with 99.7%,'* MgS0O, with
99.3%,'*® and MgCl, with 99.7%.'® In terms of heavy metal
removal, it was noted that less focus has been devoted to TFC
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Fig. 6 Process of fabricating an interlayer-enhanced TFC membrane (reproduced with permission from ref. 162, ACS 2024).
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Fig. 7 Most recent publications in the field of salt removal using TFC
membranes with the maximum removal’%.

compared to TFN membranes for this purpose. However, the
highest improvement/change in permeability was observed for
PSF/t-arginine/polyamide,'”® PSF/sulfonated GO/polyamide,'”*
and PSF/UiO-66-SO;H/polyamide,'”* while the highest rejection
improvement was obtained from GO-PVDF/CS,'” plasma-
treated PE/PA/SDS,"”* and PSF/PMMA grafted silica.'®® Besides,
from Table S2,f it was found that not all the reported studies
have considered surface roughness, pore size, and surface
charge of the membranes and their effect on removal rates.
However, almost all of the reported membranes except that
reported in ref. 175-178 exhibited a negative charge. Positive-
charged membranes performed salt removal through size
sieving combined with Donnan exclusion (repulsion), while
negative-charged membranes fulfilled the removal via the
combination of size sieving with the Donnan exclusion
(attraction).

3.3. Biomimetic membranes

Biomimetic membranes are typically composed of synthetic
materials incorporating key features of biological membranes,
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such as ionic channels, aquaporins, and selective transport
proteins. To this end, potential biomimetic membrane mate-
rials include lipid bilayers, aquaporins, and a variety of
membrane proteins, which can be integrated into membranes
to enhance the permeability, selectivity, and resistance toward
fouling.”® Aquaporins (AQPs) are transmembrane proteins
found in mammalian and microbial cell membranes, facili-
tating water transport.’®® Integrated into liposomes or poly-
mersomes, they enhance the synthetic membrane performance
by increasing both water permeability and selectivity.'®* These
membranes can be fabricated via assembling aquaporins into
lipid membrane layers on a porous support or integrating
aquaporin-containing vesicles into a thin-film rejection layer of
the membrane.'® Fig. 8(a-c) depicts the schematic of biomi-
metic membranes with sub-nanometer channels made by either
aquaporin or synthetic nanochannels. Beyond their role as
selective agents in membranes, aquaporins offer valuable
insights into the synthetic channel design, showcasing an
improved transport performance.'**'®” While aquaporins and
other protein nanochannels can be synthesized using estab-
lished bioprocessing techniques, they are prone to denaturation
and loss of functionality, and the channels often face stability
challenges during membrane synthesis and utilization and may
not offer the optimal pore-loading efficiency and functionality.
Furthermore, synthetic bioinspired channels can address the
instability and poor processability issues inherent in their bio-
logical counterparts. Porter et al.'® investigated the challenges
and advancements in biomimetic desalination membranes.
They identified aquaporins such as human Aqp1 and bacterial
AqpZ as promising biological channels. Additionally, the study
highlighted several innovative synthetic channels including
cyclic peptide nanotubes, carbon nanotube porins, imidazole-
derived quartet channels, pillararene-based channels, and
aquafoldamer-based synthetic water channels as promising
alternatives for improved desalination performance.
Regarding the literature review and screening, it was noted
that in the last year minor attention has been paid to the
utilization of biomimetic membranes for desalination and
heavy metal removal. Moreover, as expected, TFC and TFN
membranes have been widely used for this purpose showing

Table 3 Top TFC membranes with the most promising salt and heavy metal removal%

Water permeability

trimesoyl chloride), Fe-TA complex

© 2025 The Author(s). Published by the Royal Society of Chemistry

Membrane matrix Nanoparticle (Lm™>h " bar™) Pollutant Removal% Ref.

PSF Polymethyl acrylate grafted silica 2-5 NacCl >99 163
nanoparticles

PES PA (piperazine, TMC, 2-acrylamido-2- 30.5 Na,SO, 99.7 164
methyl-1-propanesulfonic acid)

PES PA (piperazine, 1,3,5-benzenetricarbonyl 15.80 MgSO, 99.3 165
trichloride)

PES PA (branched PEI, 1,4-phenylene 1.25 MgCl, 99.7 166
diisocyanate, cyanuric chloride)

Commercial PA-TFC BWRO Poly(acrylic acid)-polyamide 1.69 As(m), As(v) 96, 99.6 167

PSF Polyamide (polyethyleneimine, 11 Heavy metals 98-99 168
terephthaloyl chloride, piperazine)

PSF Polyamide (m-phenylenediamine, 3.58 Boron 98.37 169
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promising results. In 2023, Azarafza et al.*®® considered protein-
based membranes fabricated using aquaporin for desalination
and separation purpose. They characterized these membranes
by their high osmotic water permeability and excellent ability
for small molecules removal. Based on their literature survey,
PMOXA-PDMS-PMOXA/PCTE"® and AQP-DOPC/PSF***
membranes with 99% removal of NaCl, DOPC-PDA-PEI/PAT**°
and POPC-POPG-Chol/bilayer polyelectrolyte-coated H-PANI
UF*' membranes with 95% removal of MgCl,, and DOPC/
DOTAP/liposome-embedded TFC with 95.9% MgCl,, 94.5%
MgSO,, and 88.5% Na,SO, rejections™ exhibited the highest
removal rates. Table S31 summarizes the last published papers
in the 2023-2024 period. Regarding the documented results, it
can be observed that the overall salt and heavy metal removal of
biomimetic membranes was found to be less than that of TFC
and TFN membranes, while NaCl was the most common salt
considered for treatment using biomimetic membranes. The
analysis of Table S3f reveals that the PAN-PA-peptoid
membrane exhibited the highest NaCl removal of 99.5%."*
One of the central challenges in fabricating biomimetic
membranes is the integration of biological components into the
membrane structure.'® The substrates for biomimetic
membranes must provide mechanical strength, chemical
stability, and biocompatibility while being compatible with
protein compounds.” For instance, the utilization of aqua-
porins necessitates stabilizing these proteins as functional
groups, ensuring structural integrity under operational condi-
tions.' Various techniques such as vesicle fusion, interfacial
polymerization, and covalent attachment have been employed
to achieve this, each addressing specific hurdles such as protein
denaturation and membrane fouling.'®****'** Advanced

540 | Environ. Sci: Adv, 2025, 4, 530-570

polymeric materials, often modified with hydrophilic or zwit-
terionic groups, are increasingly employed to generate the
desired interface."”**

The realization of defect-free, cohesive, and industrial-scale
production remains a formidable challenge, particularly in
terms of aligning nanoscale biological features via macroscopic
fabrication processes.' Recent innovations have been sought
to overcome these barriers. For instance, the incorporation of
aquaporin proteins into TFC membranes has led to improved
desalination efficiency, combining high water flux along with
significant salt rejection.”” Innovations in nanocomposite
materials such as integrating block copolymers with engineered
channels have resulted in membranes exhibiting improved
stability and reduced fouling tendencies. Nevertheless,
achieving consistency in membrane performance during scale-
up continues as a challenge.*****

Ensuring the functional integrity of aquaporins into
membranes during extraction and incorporation into the
membranes is critical. Traditional lipid bilayers, while effective
in mimicking the aquaporin natural environment, lack the
mechanical robustness and stability required for industrial
applications. Consequently, synthetic amphiphilic block
copolymers have emerged as more viable alternatives, offering
superior durability and flexibility.>*> However, the compatibility
of these polymers with aquaporins and the precision required
in forming defect-free membranes pose additional complex-
ities. The delicate balance of maintaining the native function-
ality of aquaporins while being integrated into a stable, scalable
synthetic matrix remains a formidable barrier.”®® Techniques
such as vesicle embedding, interfacial polymerization, and
chemical crosslinking have been developed to immobilize

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4va00378k

Open Access Article. Published on 17 Januar 2025. Downloaded on 30.01.2026 00:25:36.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Tutorial Review

aquaporins effectively. However, these methods often
encounter difficulties in the realization of defect-free, large-
scale membranes. %220

Recent advancements in artificial water channels (AWCs)
offer a promising alternative, replicating the selectivity and
efficiency of biological water channels through synthetic
means. AWCs, such as carbon nanotube porins and imidazole-
based channels, have shown comparable performance to
aquaporins in laboratory settings. These structures are engi-
neered to maintain molecular-scale precision, enhancing water
permeability while preventing ion transport. However, repli-
cating the precise structural and functional attributes of natural
channels remains a concern.™

The path toward the widespread adoption of biomimetic
membranes in practical applications is under considerations.
The synthesis of biomimetic membranes involves a multi-step
process, remaining as a unique technical obstacle.'*® First, the
production of aquaporins, either through natural extraction or
recombinant techniques, is constrained by low yield, instability,
and the hydrophobic nature. While advancements in recombi-
nant protein technology have enabled higher yields, production
remains costly and time intensive. Continued research into
scalable fabrication techniques, such as roll-to-roll processing
and advanced polymer blending, is essential for transitioning
these membranes from experimental stages to industrially
viable visions. Additionally, exploring hybrid designs merging
the advantages of biological and artificial channels may pave
the way for more robust and versatile systems.'”® Another
promising avenue is the hybrid integration of aquaporins with
nanomaterials such as GO and CNT, which enhance the
mechanical properties and fouling resistance of the
membranes. These hybrid systems harness the strengths of
both biological and synthetic components, providing a pathway
toward more durable and efficient water purification systems.
Furthermore, the use of advanced computational modeling and
machine learning is enabling the optimization of membrane
design at the molecular level, accelerating the development of
next-generation biomimetic membranes.>***°® Additionally, the
economic feasibility of large-scale production and deployment
must be addressed for laboratory-to-industry transition of these
technologies. %%

3.4. Forward osmosis (FO) membranes

To address the limitations of conventional RO, forward osmosis
(FO) technology has been proposed for seawater desalination.
While FO offers the advantage of reduced energy consumption
and appears well-suited for applications in arid regions where
conventional energy sources may be scarce or costly, it
confronts several significant challenges. Foremost among these
challenges is the selection of an appropriate draw solute type
and concentration. The draw solute must generate adequate
transmembrane pressure to facilitate water transport while
minimizing reverse salt flux, which can compromise process
efficiency. Additionally, the choice of the membrane material is
critical; it must exhibit high flux values to maximize water
throughput while maintaining a low reverse solute flux to

208
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prevent contamination of the feed solution. Furthermore, the
orientation of the membrane's active layer whether facing the
draw solution or the feed solution poses a crucial consideration,
as it can influence overall system performance. Moreover, the
behavior of the membrane when exposed to feed solutions of
different concentrations is a key area of concern. Under-
standing membrane performance, defined by water flux and
reverse solute flux, is crucial for optimizing FO processes across
diverse applications and environmental conditions.*”
Addressing these challenges is imperative for unlocking the full
potential of FO technology and expanding its practical appli-
cability in diverse settings.

To date, substantial research has been devoted to improving
the efficiency, reliability, and overall performance of FO tech-
nology. Abounabhia et al.>* reviewed the commercially available
FO membrane characteristics and the development of labora-
tory scale fabricated membranes based on cellulose triacetate
and TFN membranes together with various draw agents and
their effects on FO performance. The study highlighted that
asymmetric membranes often underperform in FO processes.
Moreover, the characteristics of the draw solute are critical, as
ICP can lead to a reverse solute flux and a reduced water flux if
the draw solute concentration decreases within the dense
support layer. A promising approach to mitigate these issues
involves utilization of highly porous, thin, and water-permeable
support to enhance permeability. The ideal FO membrane
should exhibit low ICP, high permeance, antifouling properties,
chemical stability, sustained mechanical strength, and minimal
reverse solute flux.”***'*

In the pursuit of finding an ideal FO membrane, Abdul-
Hussein et al.”** reviewed the most recent design and deploy-
ment of FO desalination technologies, their applications, and
the remaining challenges and prospects. In this review, cellu-
lose acetate, polyamide, and TFC membranes are considered as
the common FO membranes for seawater desalination. NaCl
and MgSO, are highlighted as the primary minerals that can be
effectively removed through the FO process. For high-salinity
feed solutions, the state-of-the-art draw solutions including
sodium sulfate, sodium chloride/magnesium chloride
mixtures, calcium chloride, potassium phosphate, ammonia-
carbon dioxide, polyethylene glycol, lithium chloride, and
sodium alginate were recommended. In Ibraheem et al.'s*®
review and screening, among a range of nanoparticles used for
TFC membrane fabrication, including GO, TiO,, zeolite, SiO,,
ZnO, Al,03, Fe;0,, and MOF, the FO membrane made by PSF as
support and MPD/TMC/GO as polyamide active layer with NaCl
as a draw solute exhibited the highest NaCl removal of
98.71%,** and FO membrane consisting of PSF/PEG/NMP
support and MPD/GO as the active layer with NaCl as the
draw solute showed the highest Pb, Cd, and Cr removal of 99.9,
99.7, and 98.3%, respectively.””® Reddy et al.**® reviewed the
design, synthesis, and application of thermally responsive draw
solutes used in the FO system. This paper considered ionic
liquids (ILs) and hydrogels as advanced thermally responsive
draw solutes. Kanagaraj et al*’ studied the TFC and TFN
membranes used in the FO system. The results confirmed that

the surface hydrophilicity, roughness, porosity, water

Environ. Sci.: Adv., 2025, 4, 530-570 | 541


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4va00378k

Open Access Article. Published on 17 Januar 2025. Downloaded on 30.01.2026 00:25:36.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Environmental Science: Advances

permeation, solute retention, reverse solute permeation (RSP),
and specific reverse salt permeation (SRSP) were significantly
influenced by the alteration of the skin layer structure in FO
membranes. Besides, TFN membranes demonstrated enhanced
salt rejection and FO water flux, along with superior fouling
resistance properties. Piash and Sanyal**® reviewed the strate-
gies developed for FO support layer design. Among the screened
membranes, the Al,O;/PSF membrane with 1 M of NaCl as the
draw solute,” Oasys TFC flat sheet membrane,”® sPPSU
membrane with 2 M of NaCl as the draw solute,?** and PSF/PAN
membrane with 1 M of NaCl as the draw solute*** showed the
highest permeability of 8.43, 4.25,3.7 and 3.68 Lm >h ™" bar*,
respectively. Kallem et al.**® reviewed and screened the recent
developments in electrospun nanofiber-based substrates used
for the fabrication of composite membranes in the FO system.
Documented data verified that PVDF-SiO, depicted the highest
salt removal of 99.7% (ref. 224) and PDA-modified electrospun
nanofiber mat®*® exhibited the complete removal of Zn(u), Fe(ur),
and Cr(vi). Tharayil et al.>*® analyzed the current research trend
on the FO system used in various fields including desalination,
fertigation, pharmaceutical, dye and textile industries, algae
dewatering, and diary processing. In terms of desalination, the
TFN membrane with p-aramid nanofibers (ANFs) and sucrose
solution as the draw solute showed the highest salt rejection of
98.6% (ref. 227) and NIPS TFN membrane**® exhibited the
highest removal of 99.9, 99.7, and 98.3% for Pb, Cd, and Cr.

Selecting the appropriate draw solute is a critical challenge
in FO. Extensive research has been dedicated to identifying
novel draw solutes that can generate high transmembrane
pressures while minimizing the reverse salt flux. Recent inves-
tigations have explored various promising alternatives
including ILs,***2* deep eutectic solvents (DES),*** magnetic
nanoparticles (MNPs) coated with polymers,>* thermo-
responsive nonionic amphiphilic copolymers,** sugars,**®
polyelectrolytes,*”>** hydrogels,** surfactants,***>*> and carbon
quantum dots (CQDs).** Despite these advancements, many
studies continue to evaluate the efficacy of FO membranes
using 1 M NaCl as a standard draw solution, while novel draw
solutes are often tested with commercial membranes. This
highlights the need for more comprehensive evaluations that
pair innovative draw solutes with specifically designed FO
membranes to fully assess their potential and optimize FO
performance.

The improvement of FO membrane characteristics remains
an active area of research. Strategies to enhance the membrane
performance often involve adjusting the hydrophilicity of
various membrane layers. PES, PSF, and cellulose acetate (CA)
are the primary polymers as the substrate, while PA serves as the
top layer. Various approaches have been implemented to
address these challenges. One promising method is the
support-free preparation of the PA selective layer with a tunable
thickness, combined with a highly porous support, to mitigate
ICP as a major source of flux reduction.***>*” Additionally, the
introduction of interlayers into composite structures has been
proposed to minimize the structural parameter by creating
tortuous paths, thereby reducing ICP. These interlayers include
materials such as alginate hydrogel@MXene,*® cellulose
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nanocrystal (CNC),*** PVA-glutaraldehyde (GA) hydrogel,>
PDA/PEI/UiO-66,"  PDA/GO-Fe**-TA,2  SA/UiO-66-NH,,2
chitosan/tannic acid,*** MoS,@NH,-UiO-66,* alginate/Ca(),>*®
aluminum tetra-(4-carboxyphenyl)porphyrin (Al-MOF),*” and
polydopamine/GO.>*® These materials enhance the membrane
performance by reducing ICP and improving overall flux and
solute rejection. By continuously refining these strategies and
developing new materials, the efficiency and effectiveness of FO
membranes can be significantly improved, paving the way for
more practical and scalable applications.

The addition of hydrophilic nanostructures to the
membrane support or the active layer such as sulfonated gra-
phene oxide (SGO),>** CuBTC MOF,** MAX phase (TizAlC,),>**
NH,-GOQDs,*** PAM-grafted Zn0O,** ZnO,*** poly(sulfobetaine
methacrylate)  (PSBMA)-cellulose  nanofibers  (CNFs),**®
NCQDs,>**?%” MIL-53(Fe),**® covalent organic frameworks (COF)
modified with TA,** polyoxometalate-LDH,*”® APTMS-TiO,,”"*
PAMAM-MNPs,>** and PEL:rGO/PDA,*** is proposed to obtain
high water flux and retention rate. ICP reduction is also targeted
by the integration of hydrophilic fillers such as Ag@NH,-UiO-
66,””> MIL-53(Fe)@7v-Al,03,>”* and WS,-Cys-MOF nano-sheets*”*
by introducing water specific channels and antibacterial prop-
erty into the molecular structure of the selective layer matrix.
Antifouling and anti-biofouling characteristics comprise
another approach, which can be achieved by the addition of
photocatalytic nanostructures such as MoS,/PDIsm hetero-
structured photo-catalysts,*”> anatase TiO,,*”® MoS,-Ag,*” and
MoS,@zeolite X*”®* to the selective layer. Surfactant-induced
intervention in interfacial polymerization using hexadecyl-
trimethylammonium toluene-p-sulphonate (CTAT) and the
amine aqueous solution®” is also implemented to obtain highly
permeable TFC membranes with promising selectivity. One
promising approach to enhance water treatment performance is
reported by Sun et al.,”®® where a TFN PA layer was coated over
the ceramic substrate using in situ-grown Zr-MOF (UiO-66-NH,)
as the interlayer (Fig. 9). The results revealed that the interlayer
decreased the film thickness, improved the cross-linking
degree, enhanced the surface roughness, and resulted in an
improved water flux (27.38 L m~> h™") with less reverse salt flux
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Fig. 9 PA/Zr-MOF (UiO-66-NH,)/ceramic-based FO membrane
(reprinted with permission from ref. 280, Elsevier 2024).
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Table 4 Top FO membranes with the most promising salt and heavy metal removal%

DI water flux

Solution water flux Reverse salt flux

FO membrane material Draw solute Lm?h™h (L m™? h™")/specific salt flux (g L) (gm>h™) Ref.
CTA and CA FO Nacl — 1464.21-1627.12 164.79-870.44 281
Chitosan nanofibers/PA NaCl — 95 ~7 282

107.53 ~28

125 ~37

131.13 ~42
PES-PA aquaporin TFC FO Zinc sulfate 6.5 6.5 4 283
(A/S, Denmark) 6.5 11.5 4.5 283
8.2 8.1 4.6 283
8.2 14 5 283
8.8 8.8 5.8 283
8.8 21.5 6.6 283
MWCNT10-PVA/PA NacCl — ~14 ~3 245
MWCNT20-PVA/PA ~10.3 ~2.5 245
MWCNT30-PVA/PA ~8.5 ~2.7 245
PCNT5-PVA/PA ~21 ~4 245
PCNT10-PVA/PA ~15.7 ~2.5 245
pCNT20-PVA/PA ~13 ~2.3 245
PCNT30-PVA/PA ~10.5 ~2.2 245
PVA1pCNT3-PA ~22.5 ~6.75 245
PVA1pCNT5-PA ~21.5 ~7.3 245
PVA1pCNT10-PA ~16 ~4 245
PVA0.25pCNT3-PA 22.57 (0.45) 10.12 245
PVAO0.25pCNT3-PA 30.16 (0.3) 9.34 245
PVA0.25pCNT3-PA 55.53 (0.46) 25.37 245
PVAO0.5pCNT3-PA ~27 ~6.5 245
PVA2pCNT3-PA 17.47 ~7.2 245

(3.45 g m > h™ ). Besides, promising ion rejection (>94%) was
observed using the as-prepared membranes.

Although salt rejection and removal efficiency are crucial
parameters for evaluating FO membranes, many studies have
prioritized reporting high water flux and low reverse solute flux.
High water flux indicates the efficiency of the membrane in
permeating water, enhancing throughput and reducing costs.
Low reverse solute flux, however, is crucial to prevent contam-
ination and maintain the osmotic pressure gradient, ensuring
the process efficiency and cost-effectiveness. Given these
considerations, the top-performing membranes are selected
based on their higher water flux and lower reverse solute flux
and summarized in Table 4.

3.5. Energy requirement

Using osmotic pressure gradients to transport water across
a semi-permeable membrane, FO offers potentially more energy
efficiency than RO, which relies on high pressures.®*?*
However, understanding the energy dynamics of FO, particu-
larly the draw solution regeneration requirement to recover
fresh water, is crucial for evaluating its feasibility and scalability
within the integrated systems.**
gradient eliminates the need for external pressure application,
the energy-intensive draw solution regeneration step can offset
these savings if not optimized. The reports indicated that FO
can operate with energy requirements of almost 0.25 kW hm ™3,
significantly lower than the typical 5 kW h m™* required for
RO.”#7?® This represents an energy reduction of up to 80% for

While the osmotic pressure

© 2025 The Author(s). Published by the Royal Society of Chemistry

the separation. Comparatively, thermal desalination processes
such as multi-stage flash (MSF) demand even higher energy
inputs, often exceeding 10 kW h m ™3, making FO particularly
attractive in scenarios where energy is expensive.”®”

However, the energy profile of FO must also account for the
method and efficiency of draw solution regeneration. The
regeneration of draw solutions can be achieved through various
methods including RO, NF, or thermal processes, each with
distinct energy profiles. For instance, studies highlight that
energy consumption in FO coupled with membrane distillation
or NF ranges between 0.6 and 2.5 kW h m ™ of produced water,
depending on the feedwater salinity and operational condi-
tions.”***** These values often place FO systems competitive
with RO, particularly for brackish water desalination, where FO
benefits from reduced fouling and maintenance demands. For
example, NH; and CO, (ref. 292-294)-based draw solutions are
thermally regenerated, demanding ~2-3 kW h m~>. This brings
the total energy consumption closer to 3-5 kW h m 3,
depending on operational parameters and specific system
designs.**?*” In contrast, magnetic nanoparticle-based draw
solutions, which can be regenerated using external magnetic
fields, show promise for reducing energy costs, although their
scalability is challenging.?*®

Studies have demonstrated that advanced draw solutes, such
as multi-functional ones can also optimize regeneration energy,
achieving osmotic pressures >3000 mOsm per kg with
manageable recovery requirements.>*® The FO process inherent
energy efficiency is further amplified in hybrid systems
combining FO and RO. In such configurations, FO is used for
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feed-water pre-concentrate, reducing the osmotic pressure gap
the RO system must overcome. Hybrid FO-RO systems have
demonstrated energy reductions of up to 25% compared to
standalone RO, with the overall consumption decline of ~1.5
kW h m 2% This approach not only optimizes energy
consumption but also mitigates the fouling and scaling issues
that typically plague high-pressure systems, enhancing long-
term operational efficiency and reducing maintenance
costs.”” Unlike pressure-driven processes, FO benefits from
reversible fouling behavior due to the absence of significant
hydraulic forces on the membrane surface. This reduces the
frequency and cost of membrane cleaning and replacement,
further improving its lifecycle cost-effectiveness. Various struc-
tures of FO, TFC or double-skinned membranes have also
demonstrated enhanced performance, achieving water flux
rates of 10-20 L m~> h™" under typical conditions, depending
on the draw solution and feedwater salinity.>****

3.6. Hybrid organic-inorganic membranes

Hybrid organic-inorganic membranes represent a promising
advancement in the field of desalination and heavy metal
removal. By synergistically integrating the advantageous prop-
erties of both organic polymers and inorganic materials, these
membranes deliver superior performance, enhanced stability,
and resistance to fouling. It is suggested that hybrid adsorptive
membranes outperform conventional polymer membranes in
removing pollutants from aqueous media. These advanced
membranes facilitate rapid solute transport by replacing
molecular diffusion mechanisms with high filtration rate
systems, thereby improving the overall performance in water
purification applications.**" In terms of FO system, studies have
confirmed that organic-inorganic hybrid nanocomposite
membranes exhibit substantially higher water flux, mechanical
strength, chemical stability, selectivity, and hydrophilicity than
the conventional polymeric FO membranes.**> The incorpora-
tion of inorganic nanomaterials into FO membranes aims to
optimize the membrane structure, reduce ICP, mitigate fouling,
and overcome performance trade-offs. Enhanced membrane
performance results from the interactions between nano-
materials and polymer molecular linkers, along with the func-
tional groups present on the nanomaterial surfaces.>” In Song
et al's study,® high-performance double-skinned FO
membranes were developed with promising solute rejection via
the incorporation of polydopamine and CNTs through interfa-
cial polymerization in the active layer. The results underscored
the significant influence of CNTs on the membrane character-
istics and the hybrid membranes exhibited a higher FO water
flux and remarkable antifouling capacity compared to the
conventional membranes. In 2017, Sun et al?*** reviewed the
organic-inorganic nanocomposite FO membranes fabricated
using CNTs, GO, halloysite nanotubes, as well as TiO,, silica,
and Ag nanoparticles. Besides, the effect of modification
methods on the FO performance was studied. Studies revealed
that although there have been notable improvements in
performance, achieving practical applications and commer-
cialization remains a challenge owing to the high cost of
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nanomaterials, non-homogeneous dispersion by aggregation,
weak bonds between membrane matrix and the nanoparticle,
long-term stability, etc. Despite the diverse research focus in
this area, there remains a noticeable scarcity of comprehensive
review papers that systematically analyze and consolidate the
advancements in hybrid materials for water treatment.

The long-term stability and cost-effectiveness of hybrid
membranes are pivotal in the advancement of desalination
technologies. Hybrid membranes integrating materials such as
mesoporous silica and organo-silica as common samples have
demonstrated promising results in terms of durability, opera-
tional stability, and economic viability. For example, a study
evaluating silica-P123 membranes for brackish water desalina-
tion highlighted their excellent robustness and salt rejection,
achieving >99% rejection while maintaining structural integrity
over prolonged utilization.*” The hybrid organo-silica species,
in particular, displayed superior hydrostability due to reduced
silanol content, a critical factor in maintaining membrane
performance under harsh conditions.**® Similarly, the integra-
tion of UF and NF in hybrid systems for brackish water treat-
ment, as tested in remote Australian national parks,
underscores the viability of hybrid membranes in resource-
limited environments. These systems effectively managed
high turbidity and salinity levels, ensuring water quality while
operating under variable energy inputs such as solar power.
Specific energy consumption was maintained below 5 W h L™,
showcasing their efficiency.*” Large-scale implementations of
hybrid systems further illustrate their cost-effectiveness. In
regions such as the Middle East, where water scarcity is acute,
hybrid RO-multistage flash (MSF) systems have been success-
fully deployed, achieving significant reductions in freshwater
production costs. These systems optimize energy use and
enhance water recovery rates, addressing key limitations of
standalone membrane or thermal technologies.***3*

The integration of organic and inorganic materials in hybrid
membranes offers a balance between performance and cost,
with substantial cost reductions compared to pure inorganic
membranes. Organic membranes, primarily polymeric, are
known for their flexibility, cost-effectiveness, and ease of
fabrication.®® In contrast, inorganic membranes, particularly
ceramic-based ones, exhibit exceptional mechanical, thermal,
and chemical stability, albeit at significantly higher costs,
ranging from 500 to 3000 $ per m” (ref. 311 and 312) compared
to 20-200 $ per m* for polymeric membranes.*'**** Hybrid
membranes achieve cost-effectiveness by addressing the limi-
tations of individual components. For instance, ceramic
membranes fabricated from natural minerals or industrial
waste materials can reduce material costs to 2-130 $ per m>.>°
By combining these with polymeric materials, hybrid
membranes can achieve enhanced performance at a fraction of
the cost associated with pure ceramic membranes. For example,
hybrid membranes such as those combining a low-cost Daramic
framework (31.52 $ per m*) with Nafion resin achieved a cost of
<50% of pure Nafion membranes. However, it is important to
note that not all reported studies have considered the price of
the membranes or conducted a detailed techno-economic

analysis.*'®

© 2025 The Author(s). Published by the Royal Society of Chemistry
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The most recent organic-inorganic hybrid membranes are
summarized in Table S5.f Among them, Table 5 highlights the
membranes that outperform others in terms of high salt and
heavy metal removal percentages. The analysis of these tables
reveals a predominant focus on the use of hybrid organic-
inorganic membranes for heavy metal removal compared to salt
removal in recent studies. This trend probably reflects the
specific affinity and effectiveness of hybrid membranes in
capturing heavy metal ions through tailored surface function-
alization and enhanced adsorption mechanisms.

One of the most critical hurdles lies in achieving the uniform
dispersion of inorganic fillers within the polymeric matrix. Poor
dispersion often leads to nanoparticle aggregation, resulting in
non-uniform material distribution that adverse impacts the
mechanical strength and functional performance of the
membranes. Mendes-Felipe et al.** emphasized that ensuring
compatibility between the polymeric matrix and the inorganic
nanoparticles, such as TiO, or MOFs, frequently requires
surface modification of the fillers to improve interfacial
bonding. For instance, MXenes, characterized by high surface
area, tunable functional groups, and exceptional electrical
conductivity, are prone to restacking or oxidation under
ambient conditions, diminishing the availability of active sites
which compromise mechanical flexibility.****** To address these
issues, researchers have employed surface engineering tech-
niques such as functionalization of MXenes by hydrophilic/
phobic groups or intercalating molecules to prevent restack-
ing. These modifications enhance chemical interactions
between MXenes and polymer matrices, resulting in more
stable and efficient hybrid membranes.***3%*

Similarly, nanocellulose-based hybrid membranes offer an
environmentally sustainable alternative by enhancing the
renewable and biodegradable properties of cellulose nano-
materials. Cellulose nanocrystals (CNCs) and cellulose nano-
fibers (CNFs) provide exceptional mechanical strength and
hydrophilicity, significantly enhancing the antifouling proper-
ties and water flux of hybrid membranes. However, the inher-
ently hydrophilic nature poses integration challenges when
combined with hydrophobic polymer matrices, often leading to
phase separation or compromised structural integrity.**® To
address this, surface modifications such as acetylation or the
grafting by functional groups have been implemented to
improve the compatibility of nanocelluloses with the polymeric
33333 These strategies not only facilitate uniform
dispersion but also enable the development of membranes with

matrix.

tailored functionalities, such as enhanced selectivity or anti-
microbial properties.

Another innovative direction involves the incorporation of
metallic or photocatalytic nanoparticles, such as Ag and ZnO,
into hybrid membranes, providing antimicrobial activity and
photocatalytic degradation of pollutants. For example, Ag
nanoparticles have been widely utilized to impart antibacterial
properties to ref. 335, while TiO, nanoparticles induce photo-
catalytic activity under UV.**®* However, challenges such as
nanoparticle leaching, secondary contamination, and limited
stability under harsh operational conditions must be addressed
to ensure long-term effectiveness and environmental safety.’**
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Recent advancements in fabrication techniques have also
been instrumental in overcoming the challenges. Approaches
such as interfacial polymerization, electrospinning, and phase
inversion have enabled precise control over membrane struc-
ture and the distribution of additives within the matrix. Inter-
facial polymerization, for example, has been employed to
fabricate TFC membranes characterized by exceptional unifor-
mity and functional integration. Similarly, electrospinning has
facilitated the fabrication of membranes with hierarchical pore
structures, significantly enhancing permeability and selectivity.
Additionally, layer-by-layer assembly has emerged as a prom-
ising method for designing hybrid membranes with tailored
functionalities such as pH-responsive or stimuli-sensitive
separation features.?****

Another challenge lies in maintaining the structural integrity
and mechanical robustness of hybrid membranes, especially in
higher-filler-content condition. High filler loads, although
beneficial for improving catalytic or adsorptive properties, often
compromise the flexibility and durability of the membrane. The
development of novel polymeric matrices such as PES or PVDF,
known for their inherent mechanical strength and thermal
stability, has shown promise in overcoming these limitations.
In this context, researchers have suggested strategies such as
cross-linking or blending different polymers to achieve an
optimal balance between flexibility and rigidity.**”

Scalability is another hurdle in the commercialization of
hybrid membranes. While laboratory-scale studies have
demonstrated their potential, scaling up to industrial produc-
tion often encounters issues such as reproducibility, cost-
effectiveness, and material stability. For instance, the fabrica-
tion of MXene-based membranes involves intricate etching and
intercalation processes not easily adaptable for large-scale
manufacturing. Similarly, the use of high-cost precursors,
such as noble metal nanoparticles, poses economic challenges
limiting widespread adoption. Addressing these issues requires
innovations in synthesis methods, such as greener and more
cost-effective fabrication routes, as well as the development of
robust and scalable production systems.**%%**

4. Comparison and discussion

The application of membrane-based technologies in water
treatment has gained substantial traction due to their efficiency
in removing contaminants such as salts and heavy metals.
These technologies have revolutionized water purification
processes, providing high selectivity and permeability.
However, despite their widespread use and established benefits,
significant challenges and gaps persist within each type of
membrane that must be addressed to further enhance their
performance and broaden their applicability.

4.1. Removal efficiency

Traditional RO and FO membrane technologies have under-
gone extensive evaluation for eliminating trace contaminants
from wastewater.**® The significantly low content of pollutants
necessitates high pressure in RO processes for an effective
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removal, rendering such operations economically unfeasible in
many regions. Furthermore, FO membranes with low opera-
tional pressure requirement demonstrate limited efficacy in
rejecting small neutral organics.**® Biomimetic membranes
present a more cost-effective solution for eliminating trace
organic contaminants due to their ability to enhance freshwater
permeability and accommodate low-pressure operations. In
terms of aquaporin-based biomimetic membranes as prom-
ising candidates in this category, the main challenge would be
the extraction of aquaporin and fabrication of related biomi-
metic membrane, offering durability and long-term stability
against saline water and cleaning procedure. Besides, the
upscaling of these membranes is a challenge due to not
commercially available aquaporin, difficult production proce-
dure, and compatibility requirement of the host membrane
with the protein, which limits the options.?****

4.2. Permeability

The substrate plays a crucial role in membrane permeability. An
optimal substrate should exhibit hydrophilicity to ensure high
water flux. However, excessively high substrate hydrophilicity
can diminish adhesion between the active layer and the
substrate. Besides, substrates with significant variations in pore
size may lead to uneven active layer thickness due to preferen-
tial penetration of the polymer solution into larger pores
compared to smaller ones.**>*** The selection of the right
substrate involves ensuring high flux, compatibility for unifor-
mity and defect-free performance, and strong adhesion within
the active layer. As expected, the incorporation of nanomaterials
in various membranes systems, whether in RO or FO systems,
has significantly improved water permeability and desalination
rates. Among a range of nanomaterials, carbon-based ones, in
particular, have been extensively researched. However, these
materials are not optimal for commercial use since their
expensive manufacturing processes hinder large-scale produc-
tion and economic feasibility in desalination. There is often
a trade-off between membrane permeability and selectivity,
with improvements in one typically resulting in compromises in
the other. However, membranes incorporating nanostructured
materials such as mixed-matrix nanocomposite membranes
(MMNMs) and TFN have shown exceptional properties. These
nanostructured membranes offer synergistic benefits, including
enhanced permeability, elevated rejection rates, high thermal
and mechanical stability, and antifouling/biofouling charac-
teristics, making them highly effective for water treatment
applications. However, the primary challenge in this context lies
in uniformly dispersing inorganic nanoparticles within the
polymer matrix. Aggregation is a frequent issue, which
obstructs the consistent distribution of nanomaterials
throughout the polymer structure.*** Selecting the best filler for
nanocomposite membranes is a challenge due to improving
specific membrane features while negatively affecting others.
Therefore, based on the desired characteristics of the outflow,
and considering the stability, durability, and cost of the
membrane, the optimal nanocomposite can be selected to
improve desired properties without compromising the overall

© 2025 The Author(s). Published by the Royal Society of Chemistry
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membrane performance. In spite of significant progress in
developing nanocomposite membranes for water treatment,
further gaps still need to be addressed. The fabrication of
nanocomposite membranes is a complex and meticulous
process. Researchers have primarily adopted two different
approaches for this purpose,**3*” such as (i) entrapment of
nanoparticles into the polymer matrix during the fabrication
process using the phase inversion method and (ii) applying
a nanoparticle coating to the surface of the membrane. Future
research should focus on refining the fabrication techniques to
improve the performance and stability of nanocomposite
membranes. Additionally, investigating new types of nano-
particles and their interactions with various polymer matrices
could yield better fouling resistance, higher selectivity, and
increased mechanical strength.

The permeability of the selected TFN, TC, and biomimetic
membranes is summarized in Fig. 10. As depicted in the figure,
with the exception of one biomimetic membrane (GSNA**)
exhibiting the highest permeability of 2900 Lm~>h™" bar ', the
average permeability of TFN membranes surpasses that of TC
and biomimetic membranes. The enhanced permeability of
TFN membranes can be attributed to (i) the hydrophilicity of the
membrane matrix caused by the incorporation of nanoparticles,
facilitating water transport and permeation through the
membrane, (ii) more porous and interconnected structure
compared to TC and biomimetic membranes, and (iii)

View Article Online
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increased surface roughness due to the presence of nano-
particles, which can also contribute to improved fouling resis-
tance. Reduced fouling can maintain the membrane's
permeability over extended periods of operation, as the accu-
mulation of foulants on the membrane surface is minimized.
Moreover, to improve the performance of FO system, a diverse
array of draw solutes have been explored, including organic and
inorganic solutions, functional nanoparticles, ILs, thermolytic
solutions, switchable polarity solvents, thermo-responsive draw
solutes, hydrogels, dendrimers, and fertilizers. Despite these
advancements, identifying an optimal draw solute that is cost-
effective while generating sufficient osmotic pressure remains
a significant challenge.”*

4.3. Economic viability

The economic feasibility of advanced membrane technologies
plays a critical role in their adoption and scalability across water
treatment applications. Costs associated with different
membrane types vary significantly, reflecting differences in
material composition, fabrication processes, and operational
requirements. Among these, ceramic membranes, while having
higher upfront costs, ranging from 500 to 3000 $ per m?>
compared to 20-400 $ per m> for polymeric membranes, offer
unparalleled long-term advantages. Their lifespan of 15-20
years, compared to 5-8 years for polymeric membranes, reduces
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Permeability of the selected membranes obtained through literature survey and screening in the present study.
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the frequency of replacements and lowers overall capital
expenditures.®*®**35>  Nanostone Water Inc. conducted
a comprehensive 10 years study comparing ceramic and poly-
meric membranes, revealing that ceramic membranes can
achieve ~55% reduction in overall system costs.**® Moreover,
their robust structure, resistance to fouling, and compatibility
with aggressive cleaning agents result in lower maintenance
costs and increased operational reliability.’**3%>3%43% Ceramic
membranes also demonstrate superior operational efficiency,
with flux capacities exceeding 200 L m > h™" and reaching up to
381 L m > h™! in some cases, substantially higher than the
typical 68 L m > h™' of polymeric membranes.?*%235 This
enhanced throughput capacity translates to fewer membranes
required per system, reducing the footprint and infrastructure
costs. These benefits are especially pronounced in challenging
water treatment scenarios, such as the treatment of saline
water, where ceramic membranes outperform polymeric alter-
natives in both efficiency and durability.?**35133235¢

In comparison, other advanced membrane technologies
such as FO, TFC, and nanocomposite membranes also exhibit
distinct cost and performance profiles. FO membranes, for
instance, consume less energy due to their low-pressure oper-
ation but may incur higher overall costs due to the need for
draw solution regeneration and susceptibility to fouling.** TFC
membranes, which pair an affordable support layer with a thin
PA selective layer, offer a balance between cost and perfor-
mance. However, issues related to fouling and material stability
persist, prompting the ongoing research into improved formu-
lations and coatings."” Additionally, real-world case studies
have shown that advanced TFC membranes reduce energy
consumption by 15-45% and require smaller infrastructure
footprints due to high water permeability and selectivity.*****”
The scalability of TFC membranes is also evidenced by their
successful integration into existing manufacturing lines,
enabling adaptation to industrial processes.” For instance,
Low et al*® demonstrated the feasibility of large-scale
manufacturing by scaling up the fabrication of PES hollow
fibers and the TFC coating process from the laboratory to the
industrial scale. Furthermore, pilot-scale implementations,
such as those employing 4- and 8-inch TFC membrane modules,
have further validated their scalability and operational viability
in real-world settings. These implementations not only show-
case consistent salt rejection rates >97% but also achieve power
densities of up to 5 W m™? in pressure-retarded osmosis
applications, underscoring their practical viability.>*® Addi-
tionally, advancements in TFC manufacturing techniques have
enabled promising integration into large-scale desalination
systems, with modules featuring diameters of up to 8-inch and
capacities reaching 24 m® per day, demonstrating operational
feasibility in real-world industrial setups.**%°

Nanocomposite membranes, while offering enhanced
selectivity and permeability, are associated with higher costs
due to the expense of nanomaterials and the precise fabrication
techniques required.*”*** Biomimetic membranes, designed to
mimic natural biological processes, exhibit remarkable effi-
ciency but remain prohibitively expensive due to their complex
fabrication and reliance on sophisticated biological
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materials.’” Traditional water treatment methods such as
coagulation, sedimentation, and sand filtration may have lower
initial capital costs but often involve higher operational
expenditures due to significant chemical inputs, frequent
media replacement, and extensive sludge management. In
contrast, ceramic membranes, especially when integrated with
advanced processes such as oxidation or electrochemical
treatments, deliver superior contaminant removal efficiencies
with reduced post-treatment requirements.>'***"** This
combination of high performance and lower long-term costs
positions ceramic membranes as competitive alternatives for
industrial and municipal water treatment.**“**>%%* From
a sustainability standpoint, ceramic membranes present clear
environmental advantages. Their extended lifespan minimizes
waste from replacements, and their resistance to fouling
reduces the need for intensive cleaning chemicals, thereby
lowering environmental impact. These attributes align with
global efforts to enhance resource efficiency and adopt
sustainable water treatment practices.’***"** Lifecycle cost
analyses have shown that ceramic membranes can achieve a net
cost benefit of 7-15% over polymeric membranes when
considering their extended lifespan, higher flux capacity, and
reduced maintenance requirements.*>%*

4.4. Fouling

Fouling of membranes arises from the accumulation or
adsorption of solutes/solvents on both the membrane surface
and within its pore structure.*** RO membrane fouling remains
a significant challenge, prompting extensive research into
nanotechnology for developing fouling-resistant TFN-RO
membranes. Despite promising advancements, concerns
persist over the high costs, scalability issues, and health and
safety implications associated with nanoparticle additives.
Further exploration of surface modification techniques is
essential to confirm their efficacy in prolonged operational
scenarios. Future research should prioritize long-term fouling
tests to assess the durability of modified RO membranes.
Additionally, optimizing the balance between membrane
transport properties and antifouling capabilities is crucial for
enhancing membrane performance.** One significant limita-
tion of currently developed nanomaterial-based desalination
membranes is their susceptibility to biofouling. Biofouling
occurs when biological materials, such as bacteria, algae, and
other microorganisms, accumulate on the membrane surface,
leading to a decline in performance and an increase in main-
tenance costs. To address this challenge, researchers have
suggested the application of nanomaterials with antimicrobial
properties, such as Ag and Cu, as coatings on desalination
membranes. These nanomaterials can inhibit the growth and
adhesion of microorganisms on the membrane surface, thereby
enhancing the membrane's longevity and efficiency. The inte-
gration of Ag- and Cu-based nanomaterials as antimicrobial
coatings offers a promising solution to mitigate biofouling,
ensuring more sustainable and effective desalination
processes.**® Bioinspired approaches used for fouling mitiga-
tion offer promising research directions, particularly by
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incorporating biological molecules that have evolved to resist
severe fouling. For example, lysozyme, a natural and inexpen-
sive source of r-arginine, can be grafted onto the polyamide
surface via chemical reactions, demonstrating excellent anti-
fouling properties. However, common modification approaches
may increase membrane resistance or deteriorate the cross-
linking structure of the PA layer. Additionally, the integration of
biological materials with synthetic components is still in its
early stages, primarily involving simple biological molecules
and proteins within basic polymers. Recent discoveries of new
proteins with unique functions and detailed atomic structures
present opportunities for the fabrication of advanced
membrane systems. Future research should focus on opti-
mizing these bioinspired modifications to balance antifouling
capabilities with membrane transport properties and
stability.**”**® To decrease the fouling of the membranes,
studies have used either a wide variety of materials, including
dopamine,*® Mxene,*® layered double hydroxides (LDH)
nanosheets,’”* graphene quantum dots (GQDs),*”? and chitosan/
graphene oxide,*”® or physical/chemical cleaning approaches.

Besides, enhancing the efficiency of desalination processes
can be achieved through the design of suitable pretreatment
methods, making the overall process
Membrane-based pretreatment stands out as a competitive
technological alternative to conventional methods, particularly
in RO desalination, which can reduce the production cost of
produced water. Ceramic filters are particularly advantageous
due to their durability, ease of use, and resistance against
operational pressure. Moreover, pretreatment methods can be
effectively combined with conventional pretreatment tech-
niques to enhance the overall system performance. Addition-
ally, integrating renewable energy sources can further reduce
energy costs, making membrane-based desalination technolo-
gies more cost-effective. Future research should explore various
pretreatment design configurations such as combining
conventional processes with MF, UF, FO, RO, membrane
distillation (MD), etc., to optimize the efficiency and economic
viability of desalination system.*”*

Conventional strategies such as membrane pretreatment,
careful selection of membrane materials, and maintaining
optimal operating conditions have proven insufficient to fully
resolve this issue. Hence, antifouling techniques have emerged
as essential solutions to address fouling by targeting membrane
properties such as pore size, hydrophilicity, and porosity.’”®
Antifouling approaches can be broadly categorized into passive
antifouling, active antifouling, and surface modification tech-
niques.’”* Among these, surface modification has garnered
significant attention due to its cost-effectiveness and ability to
alter membrane surface characteristics to substantially enhance
performance. By reducing foulant adhesion and deposition,
surface modifications not only improve operational efficiency
but also extend membrane lifespan, thereby lowering overall
maintenance costs.”’”” These modifications also minimize
protein and particle adsorption on the membrane surface,
a critical factor in maintaining consistent filtration perfor-
mance.*”® Surface modification techniques are further divided
into physical, chemical, and hybrid (combined) methods, each

more economic.
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offering unique advantages. Physical modifications involve
techniques such as blending, coating, and adsorption, while
chemical modifications include advanced approaches such as
grafting and plasma treatments. Hybrid methods combine
elements of both physical and chemical modifications,
enabling tailored solutions for specific fouling challenges.*””

A comprehensive analysis of contemporary approaches
reveals considerable progress in the use of nanomaterials,
polymeric modifications, and bioinspired designs. Nano-
materials have become pivotal in antifouling research due to
their unique surface properties, scalability, and multi-
functionality. GO and CNTs are among the most explored
materials for improving hydrophilicity and fouling resistance.’”®
GO, with their abundant functional groups such as hydroxyl,
carboxyl, and epoxy, enhances membrane hydrophilicity and
provides antimicrobial properties.’® These features reduce
foulant adhesion and biofilm formation while improving
permeability. Similarly, CNTs, when incorporated into polymer
matrices, enhance mechanical robustness and provide
a smooth surface that reduces the accumulation of biofoulants.
Studies have demonstrated that CNT-modified membranes
show significant reductions in biofouling while maintaining
high separation performance.’®*-**> MOFs contribute to anti-
fouling by enhancing surface charge, hydrophilicity, and
selective rejection properties, particularly for heavy metals such
as lead and cadmium. Nanodiamonds, with their superior
hydrophilic characteristics, not only mitigate biofouling but
also improve the flux recovery ratio after fouling, making them
highly effective for sustainable operations.?**3%*

Another area of innovation lies in zwitterionic and biomi-
metic surfaces. Zwitterionic polymers mimic the antifouling
mechanisms of natural membranes by creating a hydration
layer that resists the adhesion of organic and biological
foulants.**=**” This approach is particularly effective against
protein fouling, a common issue in desalination membranes.
Biomimetic surfaces inspired by natural antifouling systems,
such as fish scales and marine organisms, are gaining traction,
utilizing hierarchical micro- and nano-structures to physically
prevent the attachment of foulants while maintaining high
permeability.38%38°

Functionalized surface modifications further expand the
scope of antifouling strategies. By grafting hydrophilic polymers
or embedding antimicrobial agents onto the membrane
surface, researchers have achieved membranes that exhibit dual
antifouling and antibacterial properties. Functionalized GO, for
instance, has been used to improve fouling resistance and
microbial inhibition by incorporating active sites that disrupt
microbial adhesion and growth.***** Similarly, carboxylated
nanodiamonds enhance hydrophilicity and reduce interactions
with biofoulants.*®* Photocatalytic coatings offer an active
mechanism to mitigate fouling. Materials such as TiO, are
incorporated into membranes to provide self-cleaning capabil-
ities under UV light. These coatings actively degrade organic
contaminants and biofilms, reducing the need for chemical
cleaning and prolonging membrane life. Emerging research on
photocatalytic membranes focuses on enhancing their effi-
ciency under visible light, broadening their applicability in
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diverse water treatment settings.****** Despite these advance-
ments, challenges remain in translating laboratory-scale inno-
vations to large-scale applications.

Scalability, cost, and long-term stability of these antifouling
strategies are critical concerns. Additionally, the environmental
impact of certain nanomaterials necessitates the development
of greener, more sustainable alternatives.*®" Future research
must prioritize the synthesis of multifunctional coatings that
address not only fouling resistance but also mechanical dura-
bility and compatibility with existing membrane production
processes.**® Moreover, the integration of smart materials
capable of real-time fouling detection and self-cleaning mech-
anisms could revolutionize the field.>”

4.5. Comparison across different types of membranes

Based on the literature review performed, Table 6 summarizes
the key performance metrics for widely recognized membranes
used in water/wastewater treatment. While direct comparative
analysis across all membrane types is challenging due to vari-
ability in operating conditions, feedwater characteristics, and
test protocols reported in the literature, this table documents
the available data and findings to provide an overall perspective.
RO and NF are highly effective for salt and heavy metal removal
but are hindered due to low permeability and high fouling
potential. FO represents a versatile option with moderate
removal% and permeability while highly influenced by the draw
solution. Furthermore, UF and MF are indispensable as
pretreatment techniques, offering high permeability and
fouling resistance but limited selectivity for dissolved solutes.
Fouling resistance varies significantly among the membranes.
FO membranes generally exhibit moderate fouling due to the
low operational pressure. RO membranes, while highly selec-
tive, are prone to scaling and biofouling, necessitating rigorous
pretreatment stages. NF membranes demonstrate a moderate
fouling tendency, particularly from organic and biological
fouling. In contrast, UF and MF membranes offer the highest
fouling resistance, as their larger pore sizes allow easy back-
washing and cleaning to restore performance.

4.6. Environmental impact and sustainability consideration

The environmental sustainability of membrane technologies
spans the entire lifecycle, from fabrication to operational
implementation and eventual disposal. While membranes play
a pivotal role in water purification systems, their production
processes often rely on energy-intensive methods and fossil-
derived materials, raising concerns about carbon emissions
and resource depletion.****** Similarly, end-of-life management
poses challenges, as many membranes are non-biodegradable
and require innovative disposal or recycling strategies to miti-
gate environmental harm. Addressing these issues is critical to
aligning membrane technologies with global sustainability
goals, ensuring their continued contribution to water security
without compromising ecological integrity.

4.6.1 Environmental footprint. The production of
membranes predominantly relies on polymeric or ceramic
materials, each with distinct environmental implications.

550 | Environ. Sci.: Adv,, 2025, 4, 530-570

View Article Online

Tutorial Review

—
)
E g w
El E =
) —
> 523
& g Ea
&
© S &g
= X © v
o S 0.2
7] ) T = =
E = g8
o 7] N =g
& g gE2
3 S 3
= D“q.)""'“s
© .2‘5?8?‘0
2 2o fST i
X S
ol 2 i2888m3
| & TwO=®<ES
X
<)
T
Qe
.. 02
g g
= .8 E
) 2T R
o 1o} "UC:GJ
doNy x AE
o ® 2 olo‘—<|35®ru
I © Q=95 =
~ A A DA RS
k=l
g e
L3
-C»Q
X E
S 0
L?Q
o0
= E
=
o Q
g3 g
. £2¢
n 0T v
o
= =y TLSEBEER
= rsY 3 s Y8 =87
zZ| Vv A Aea=2& a8
St
9]
&
«
=
o N
o S oo
l & £
a .A.g
R, g
° g
D =) o«
% 389 22
-
= = L?T'Jb:oxg
< =] N1 oo 2
9 =) v ISR
L
c
9
= —
© 'S
8 £ .=
) =
" O\’E"‘
0] WUE?:D
= cﬁ;—qﬁ.'—"‘
© e 223
g B oond S
: HY
= =
€ O @ b3
=0 8 =5
o 800":"'%453
R = o L2589 gt
= = s =992 3898 a
S V V ASP>KAOT0 N
(¢}
O
o _‘,‘q
(0] -
< N 3] =} o0
z = 2 8 g
5 E 8 o7 5
c g = = o <
o) 5] = T~ [
2 >< = S 2 o ©
© = %) g g 9 =
o | & o= 0 Eq £ 9
IS < Cog=EmE2 8%
E 1 @n o = n o
(e} uzgoﬁb&-a..—‘
@) L S ~ o0 =2 3T
§| $0C s8¢ E &
=
o | 5] §,e05g5wz8
o | 2 oMgmgw‘lE’m.Eog
S| E| Egs s E 8RR
© 2 OZ.ZM‘UEEO [
Cl S| 285 daceel

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4va00378k

Open Access Article. Published on 17 Januar 2025. Downloaded on 30.01.2026 00:25:36.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Tutorial Review

Polymeric membranes, such as those fabricated from PVDF,
PSF, or CA, are synthesized through energy-intensive processes
involving organic solvents and non-renewable petrochemical
feedstocks. The widespread use of volatile organic compounds
(VOCs) during fabrication not only elevates the carbon footprint
but also poses risks to air quality and human health if
improperly managed.**>**® Ceramic membranes, often derived
from metal oxides or carbon-based materials, involve high-
temperature sintering processes that result in elevated energy
consumption and greenhouse gas (GHG) emissions. However,
their longer operational lifespan and durability offset these
initial environmental costs in long-term applications.?3*454%7
For example, modern seawater reverse osmosis (SWRO) plants
typically exhibit energy consumption rates in the range of 3-4
kW h m™3, corresponding to net CO, emissions of 0.4-1.8 kg
m 33 Recent advancements such as incorporating nano-
structured materials including graphenes or MOFs have
enhanced the separation performance and fouling resistance,
potentially reducing the need for frequent replacements and
chemical cleaning.**®** Bio-based membranes are emerging as
green alternatives, utilizing renewable feedstocks such as
nanocellulose or chitosan. These materials exhibit low envi-
ronmental footprints during fabrication and biodegradability.
However, achieving scalability while maintaining performance
is still a challenge.******

Desalination technologies generate substantial volumes of
brine, characterized by elevated total dissolved solids (TDS). For
instance, the Ashkelon desalination plant, one of the largest
facilities globally and the most prominent in the Levant Basin,
processes ~315 million m®> (MCM) of seawater annually. The
plant discharges brine with a TDS concentration of 7.35%,
~1.86 times higher than that of seawater, at a rate of 160 MCM
per year.*" Brine reject often contains residues of pretreatment
and cleaning chemicals employed to mitigate biofouling, sus-
pended solids, foaming, and corrosion. Additionally, side
reactions between these chemicals can result in the formation
of halogenated organics and trace heavy metals from corrosion
processes. These contaminants, albeit typically at low concen-
trations, are continuously discharged into the marine environ-
ments.*** Of particular concern is the release of toxic
antifoulants and anti-scalants. For instance, 10-25% of the Cl,
used as antifoulant during desalination is residual, posing
a significant hazard to aquatic ecosystems. Furthermore,
cleaning chemicals and their additives such as dodecylbenzene
sulfonate and sodium perborate can adversely affect marine life
in case of untreated discharge. The environmental implications
of such chemical discharge underscore the need for more
sustainable and ecologically responsible brine management
practices.****?

4.6.2 Lifecycle assessments. Operational energy consump-
tion is a critical factor in the environmental impact of
membrane separation technologies, particularly for energy-
intensive processes such as RO desalination. TFC membranes,
widely used for RO, require substantial energy inputs to main-
tain high operational pressures due to the high flux and salt
rejection. While these systems have improved energy efficiency
through innovations such as energy recovery devices and

© 2025 The Author(s). Published by the Royal Society of Chemistry
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pressure exchangers, the energy demands remain high.*%*4413
Fouling, a common operational challenge, exacerbates envi-
ronmental impacts by necessitating frequent cleaning with
harsh chemicals which shortens membrane lifespan and
generates secondary pollutants.**® Advances in surface modifi-
cation techniques such as grafting hydrophilic or nano-
composite layers have shown promise in mitigating fouling and
extending operational stability.**”*** Nanocellulose-based
membranes are a notable breakthrough, offering biodegrad-
ability, mechanical robustness, and enhanced hydrophilicity.
These membranes operate with minimal chemical additives,
making them environmentally friendly. However, concerns on
biofouling limit their broader adoption.**

4.6.3 Sustainable disposal and recycling pathways. The
disposal of membranes, particularly polymeric ones, poses
substantial environmental challenges. These materials are
often non-biodegradable, contributing to persistent waste when
disposed in landfills. Incineration, while capable of energy
recovery, emits CO, and other pollutants, further aggravating
environmental concerns.**® Recycling polymeric membranes is
difficult due to their complex compositions, complicating
material separation and reuse.** Ceramic membranes offer
a more sustainable end-of-life trajectory. Their inert nature
allows for repurposing into construction materials or recycling
via pyrolysis to recover the embedded components. Hybrid
membranes containing nanomaterials such as GO may also
benefit from advanced recovery methods, although all remain
in early development stages.**

4.6.4 Toward sustainable membrane systems. Achieving
sustainability in membrane technologies necessitates a shift
toward circular economy principles. This includes adopting
greener fabrication techniques, such as water-based solvents
or bio-based precursors, and designing membranes with
extended operational lifespans. Lifecycle assessment (LCA)
frameworks should guide the development of new membranes
to ensure environmental impacts to be minimized in all
stages.*” Emerging innovations including biodegradable
membranes and low-energy fabrication processes highlight
the potential for reducing the environmental footprint of
membrane separation systems. Integrating renewable energy
sources with hybrid systems and promoting fouling-resistant
technologies can further contribute to sustainability. By
addressing the full lifecycle, from raw materials to disposal,
membrane technologies can evolve into environmentally
responsible solutions for water purification and resource
management.*****

5. Artificial intelligence (Al) and
machine learning (ML)

Membrane-based desalination technologies have made signifi-
cant advancements, while fouling, high energy consumption,
and operational inefficiencies continue to impede the effec-
tiveness and scalability, stemming from the complex, nonlinear
interactions between operational parameters, membrane

properties, and  environmental factors.  Traditional
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experimental approaches, while valuable, are constrained in
their ability to comprehensively model these dynamic
processes. Consequently, they often fail to predict long-term
system behavior or optimize performance across varying oper-
ational conditions, particularly in large-scale applications
where real-world variability plays a crucial role.

The incorporation of artificial intelligence (AI) and machine
learning (ML) into membrane-based technologies is trans-
forming the field, offering innovative solutions to key chal-
lenges such as fouling mitigation, energy efficiency, and system
optimization.*** These computational tools excel in analyzing
complex, nonlinear interactions inherent to desalination
systems, enabling accurate predictions, efficient designs, and
real-time adjustments, surpassing traditional modeling tech-
niques. A critical contribution of Al lies in the prediction and
management of fouling, a persistent challenge in desalination
processes. Advanced algorithms such as artificial neural
networks (ANNSs), fuzzy logic (FL), and genetic programming
(GP) effectively model nonlinear relationships between opera-
tional parameters such as transmembrane pressure, permeate
flux, and feedwater characteristics. ANNs have achieved
prediction accuracies >95%, enabling the anticipation of
fouling events and the implementation of proactive strategies to
maintain membrane performance and extend operational
lifespan.***~*** Deep learning models and hybrid systems have
further advanced fouling control, dynamically adapting opera-
tional parameters such as feed flow rates and pressure, which
has been shown to reduce fouling rates by up to 25%.**>*>* AL
and ML also play a transformative role in optimizing energy
efficiency and operational parameters. Algorithms such as
particle swarm optimization (PSO) and genetic algorithms (GA)
analyze large datasets to identify optimal feed pressure,
recovery rates, and energy consumption strategies, resulting in
a 20% reduction in energy demand for RO systems.****¢42%
Hybrid models that combine empirical data with AI algorithms
enhance adaptability, enabling real-time adjustments to sustain
system efficiency under varying conditions. These methods not
only lower energy requirements but also reduce operational
costs, aligning with sustainability goals in the desalination
industry.*****

In addition to operational optimization, Al has contributed
to the design of next-generation membranes. By integrating
convolutional neural networks (CNNs) with molecular
dynamics simulations, researchers have developed nanoporous
membranes with superior ion selectivity and water flux,
achieving up to a 30% performance improvement compared to
conventional membranes.*******” These advancements high-
light the potential of Al-driven tools in advancing material
science for desalination applications. Real-time monitoring and
control of desalination systems have also been revolutionized
by Al-powered sensors and reinforcement learning algorithms.
These systems dynamically adjust feed flow rates, pressures,
and operational strategies, reducing response times and mini-
mizing maintenance needs. Such improvements have been
instrumental in achieving sustainable operation, with hybrid
models reducing prediction errors to <5%, compared to 12% for
traditional mathematical models.****>* Moreover, Al has been
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increasingly integrated into renewable energy-driven desalina-
tion systems, optimizing both energy input and water produc-
tion to create economically viable solutions for large-scale
applications. These systems demonstrate Al potential in both
addressing technical challenges and promoting environmen-
tally friendly desalination practices.**»**” Despite the significant
progress, challenges remain in scaling AI applications for
large desalination plants and improving the interpretability
of complex models.*****° Future efforts are expected to focus on
hybrid systems that combine multiple ML techniques with
mechanistic models, offering enhanced robustness and scal-
ability. Additionally, as AI evolves, its role in automating real-
time operations and developing next-generation membranes
is likely to revolutionize the desalination industry further,
making it more efficient, cost-effective, and sustainable.

6. Future perspective

Material innovations hold immense promise in overcoming
current challenges in membrane performance and durability.
The integration of nanomaterials such as TiO, has demon-
strated promising improvements in water flux and salt rejection
due to their hydrophilicity, mechanical stability, and anti-
fouling properties, creating a conducive environment for
extensive hydrogen bonding with membrane polymers,
enhancing permeability and selectivity.*** Future work could
explore alternative metal oxides, graphene derivatives, or hybrid
nanostructures to further optimize the membrane proper-
ties.**>»*3* Polymeric membranes, while cost-effective and widely
used, face challenges such as fouling and limited chemical
resistance. Advanced materials such as GO, nanocomposites,
and hybrid polymer-ceramic membranes offer promising
solutions. GO, for instance, has shown potential in enhancing
membrane hydrophilicity and anti-fouling properties, thereby
improving performance and durability.*** Similarly, research
into ceramic membranes should focus on reducing production
costs and improving scalability, as these membranes provide
superior thermal and chemical resistance, making them suit-
able for harsh feedwater conditions.

Additionally, natural polymers such as CA, when combined
with nanomaterials, provide a sustainable and efficient pathway
for FO membrane development. These materials not only
enhance the hydrophilic characteristics but also offer scalable
fabrication potential through phase inversion and other nano-
composite techniques.****** Developing modular and scalable
FO systems using membranes optimized with innovative
materials will allow for comprehensive performance evalua-
tions under real-world conditions. Pilot studies should address
key parameters such as flux stability, fouling resistance, and
energy efficiency to validate their feasibility in wastewater
treatment and desalination processes.*****® Moreover, testing
FO systems with diverse feed solutions, ranging from industrial
wastewater to brackish water, will help determine the robust-
ness of these technologies across various applications. Incor-
porating modeling techniques such as response surface
methodology (RSM) could also guide the optimization of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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process conditions and reduce experimental overheads during
scale-up.*7*%°

In terms of biomimetic membranes, emerging materials
such as aquaporins, aligned CNTs, graphene-based
membranes, and MOFs present promising opportunities to
enhance membrane performance.**>**° Self-assembled block
copolymers and nanofabrication techniques could enable the
precise customization of membrane properties, creating
modular designs tailored for specific applications.**"*** Addi-
tionally, the development of renewable polymers and the
adoption of environmentally benign solvents in membrane
fabrication will help align with sustainability goals, reducing
environmental impacts during production and disposal.**® To
translate laboratory-scale successes into practical solutions,
pilot-scale studies are essential. These efforts should validate
the scalability and robustness of novel membranes under
diverse operational conditions. For example, ultrathin PA
membranes require further exploration of substrate-induced
limitations and defect-free fabrication processes to realize
their full potential in achieving high water permeance and
selective ion transport.**®

Sustainability considerations are also critical for future
advancements in membrane technology. Lifecycle analysis of
membrane modules including strategies for recycling and
reuse must be prioritized to ensure long-term environmental
benefits.

7. Conclusion

Water treatment is of paramount importance for ensuring
access to clean and safe water, as a critical resource for public
health, agriculture, and industry. The present study systemati-
cally reviewed and screened recent literature, both review
papers and experimental research, on desalination and heavy
metal removal using various advanced membrane technologies,
including nanocomposites, thin-film composites, biomimetic
materials, forward osmosis, and hybrid membranes. The
screening process revealed a significant number of studies
being published annually, highlighting the rapid advancements
and the necessity for continuous updates to previous reviews.
This review has consolidated the most recent findings, identi-
fying the top 10 membranes with the highest removal efficiency
as the primary criterion from each category. An updated
assessment of the state-of-the-art membrane technologies for
water treatment is provided. The performance of each
membrane type is discussed, emphasizing the need for further
research to address existing challenges and optimizing the
trade-offs between different determining factors including
economic viability, permeability, removal efficiency, fouling,
comparison across different types of membranes, and envi-
ronmental impact and sustainability consideration. The incor-
poration of artificial intelligence (AI) and machine learning
(ML) into membrane-based desalination technologies has also
been studied. Future advancements in materials science,
fabrication techniques, and long-term testing will be crucial for
developing next-generation membranes that are more efficient,
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cost-effective, and sustainable for large-scale water treatment
applications.
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