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Enhancing fault detection in wastewater
treatment plants: a multi-scale principal
component analysis approach with the
Kantorovich distance

K. Ramakrishna Kini,a Fouzi Harrou,*b Muddu Madakyaru *c and Ying Sunb

Anomaly detection in wastewater treatment plants (WWTPs) is critical for ensuring their reliable operation

and preventing system failures. This paper proposes an advanced monitoring scheme that integrates

multiscale principal component analysis (PCA) with a Kantorovich distance (KD)-driven monitoring

approach to enhance WWTP monitoring in noisy environments. The combination of wavelet-based

multiscale filtering with PCA effectively denoises the data, while the KD-driven scheme offers a robust

metric for detecting deviations from normal operating conditions. This approach does not require labeled

data and employs the nonparametric Kantorovich distance (KD) test, providing a flexible and practical

solution for anomaly detection. Validation using data from the COST benchmark simulation model (BSM1)

demonstrates the effectiveness of the proposed methods. The study evaluates different sensor faults—bias,

intermittent, and aging—at varying signal-to-noise ratio (SNR) levels and explores the impact of different

wavelet bases and decomposition levels on denoising and detection performance. The results show that

the proposed scheme outperforms traditional PCA and multiscale PCA-based techniques, offering

improved anomaly detection capabilities in the presence of significant noise.

1 Introduction

Wastewater treatment plants (WWTPs) are crucial in
maintaining public health and protecting the environment.
They treat sewage and industrial effluents to remove
contaminants, ensuring that the water released into rivers,
lakes, or seas meets the necessary regulatory standards. The
optimal operation of WWTPs is essential for avoiding the
spread of waterborne diseases, protecting aquatic ecosystems,
and ensuring the availability of clean water for various uses.1

The expanding urbanization and industry demand more

efficient and reliable wastewater treatment.2 Monitoring the
operational characteristics of WWTPs is essential due to
various factors.3 It ensures compliance with environmental
requirements, optimizes the efficiency of the treatment
process, and reduces the likelihood of operational failures.4,5

Regular surveillance facilitates the identification of anomalies
and inefficiencies in the system, hence enabling prompt
interventions to prevent expensive malfunctions and
violations of environmental standards. Additionally, it assists
in preserving equipment and prolonging the lifespan of the
infrastructure by ensuring that all components operate
within their specified limitations.

Traditionally, univariate monitoring charts such as
cumulative sum (CUSUM), exponentially weighted moving
average (EWMA), and generalized likelihood ratio (GLR) tests
have been used for process monitoring. These methods are
effective in detecting shifts and trends in single-variable data.
However, these traditional methods have limitations when
applied to multivariate data.6 They cannot capture the
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Water impact

This research proposes an advanced monitoring system for wastewater treatment plants (WWTPs) that combines multiscale principal component analysis
(PCA) with a Kantorovich distance (KD)-based approach to improve anomaly detection in noisy environments. By using wavelet-based multiscale filtering to
denoise data and a robust KD-driven metric to detect deviations, this data-driven method enhances the monitoring of WWTPs. It ensures continuous
operation, prevents water pollution, protects public health, and supports sustainable development by maintaining optimal plant performance.
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interrelationships between multiple variables, which is
critical in complex systems like WWTPs. This limitation
makes them less effective in environments where the process
is influenced by several correlated factors. To address the
limitations of univariate methods, multivariate monitoring
techniques such as principal component analysis (PCA),
independent component analysis (ICA), and partial least
squares (PLS) have been developed. While these multivariate
methods offer significant advantages in handling complex
data, they also have limitations.7 For instance, PCA assumes
linear relationships and may not perform well with nonlinear
data. ICA requires the components to be statistically
independent, which may not always be the case. PLS, while
powerful, can be computationally intensive and sensitive to
noise in the data.

In ref. 8, various statistical control charts (Shewhart,
CUSUM, EWMA) were evaluated for fault detection in
wastewater treatment. The EWMA chart proved to be the
most effective, particularly for drift faults, with the lowest
false alarm rate and optimal detection time. Monitoring
manipulated variables also reduced missed detections
compared to controlled variables, leading to better fault
detectability and reduced energy consumption. In ref. 9, a
dynamic principal component analysis (PCA)-based method
was proposed for sensor fault isolation in WWTPs,
overcoming the limitations of static methods in dynamic
processes. The method was validated with simulated fault
scenarios, showing superior performance in sensor fault
detection compared to previous approaches. The study in ref.
10 introduced a soft sensor approach combining PCA and
k-nearest neighbor (KNN) to monitor and detect
abnormalities in water resource recovery facilities (WRRFs).
PCA reduces data dimensions and reveals interrelationships,
while KNN effectively detects anomalies and handles high-
dimensional data. Nonparametric thresholds from kernel
density estimation enhance detection accuracy and radial
visualization aids in fault analysis. Tested on real data from a
WRRF in Saudi Arabia, the approach outperforms
conventional PCA-based methods in detecting and
diagnosing influent measurement abnormalities. In ref. 11,
an adaptive process monitoring framework using incremental
principal component analysis (IPCA) was proposed to address
the limitations of conventional PCA in time-varying
processes. The framework updates the PCA eigenspace with
new data at low computational cost and uses complete
decomposition contribution (CDC) for variable contributions.
The empirical best linear unbiased prediction (EBLUP)
method is included for imputing missing values. Simulations
on benchmark model BSM2 demonstrate the framework's
effectiveness in distinguishing time-varying behavior from
faults and accurately isolating small sensor faults. The study
in ref. 12 proposed a distributed fault detection and
diagnosis method using PCA in a whole-plant monitoring
scheme. The plant is divided into multiple blocks, with local
PCA-based fault detection in each block. The results are then
centralized for global fault detection and diagnosis.

Compared to centralized PCA and other distributed PCA
methods, this approach performs better in detecting faults
and reducing communication costs, particularly in a WWTP.
In another study,13 a Bayesian Gaussian latent variable model
(Bay-GPLVM) was proposed for nonlinear process monitoring
and fault diagnosis, addressing the limitations of traditional
probabilistic PCA (PPCA). The Bay-GPLVM enhances
robustness by obtaining posterior distributions for latent
variables, outperforming PPCA-based methods in handling
nonlinear processes, and improving monitoring efficiency. In
ref. 14, a kernel PCA-based fault diagnosis system was
developed for biological reactions in full-scale WWTPs, using
common bio-chemical sensors like ORP and DO. The system
targets the sequencing batch reactor (SBR) process,
distinguishing between normal and abnormal operational
statuses. After data preprocessing, various dimension
reduction techniques (PCA, linear discriminant analysis
(LDA), kernel PCA) were applied, and the combination of
kernel PCA and LDA proved to be effective.14,15 Fusion data
yielded higher fault recognition rates than raw sensor data,
demonstrating the system's superiority in diagnosing faults.
The study in ref. 16 proposed a kernel-based machine
learning method using KPCA and a one-class support vector
machine (OCSVM) to monitor influent conditions in WWTPs,
effectively detecting anomalies in complex, non-linear data.
Applied to a seven-year dataset, this approach outperforms
traditional models, offering accurate anomaly detection with
minimal computational cost and adaptability across different
WWTPs.

Recent studies in WWTPs have explored a range of fault
detection approaches, showcasing diverse strategies and
notable advancements.17 Aguado et al.18 applied adaptive
modeling with Hotelling's T2-statistic and fuzzy c-means
clustering to detect process deviations and isolate faults,
using one-year simulation data from the BSM1_LT prototype.
Harrou et al.19 developed deep belief networks (DBNs) and
one-class support vector machines (OCSVMs) for early
anomaly detection, tested on data from a decentralized
WWTP in Golden, CO, USA. Xu et al.20 proposed a CPSO–
DKPCA method combining dynamic kernel principal
component analysis (DKPCA) with chaotic particle swarm
optimization (CPSO) and Granger causality (GC) analysis for
enhanced fault detection. The approach was evaluated using
BSM1 simulation data and real WWTP data from Sichuan.
Yang et al.21 proposed a Wasserstein distance-based joint
distribution adaptation strategy for improved abnormality
detection, validated using the benchmark simulation model
no. 1 (BSM1) for a WWTP. Marais et al.8 compared statistical
control charts, identifying the EWMA method for its low false
alarm rates and fast detection, validated using BSM1 data.
Cheng et al. (2021)22 proposed a robust adaptive boosted
canonical correlation analysis (Rab-CCA) method to reduce
missed and false alarms in noisy environments, validated
using BSM1 and real full-scale WWTP data. Chang et al.
(2024)23 combined uniform manifold approximation and
projection (UMAP) with support vector data description
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(SVDD) for improved detection and adaptability, validated
using BSM1 simulation data. Lastly, Kini et al. (2024)24

enhanced fault detection using a data-driven PCA approach
integrated with the Kolmogorov–Smirnov (KS) test, achieving
high F1 scores for various sensor fault detections based on
BSM1 simulation data. These studies collectively underscore
the innovative use of statistical, machine learning, and
adaptive modeling techniques to address the complex fault
detection challenges in WWTPs.

Monitoring WWTPs faces significant challenges due to noisy
data, arising from environmental factors, sensor malfunctions,
and operational variances. This noise can obscure critical
information, reducing the effectiveness of traditional and
multivariate monitoring methods such as PCA, ICA, and PLS,
often resulting in false alarms or missed detections. Wavelet-
based multiscale filtering has been proposed as an effective
solution to mitigate this issue. By decomposing signals into
different frequency components, this technique isolates noise
at specific scales, providing cleaner signals and enhancing the
detection of meaningful patterns and anomalies. Effective
anomaly detection in WWTP influents, such as irregularities in
the flow rate, biochemical oxygen demand (BOD), and
pollutant levels, is crucial for maintaining efficient operations
and preventing system failures. Accurate detection ensures
efficient system operation, optimizing resources, reducing
equipment wear, and preventing costly downtime, repairs, and
environmental harm. The contributions of this study are
summarized as follows.

• Firstly, this study presents an effective monitoring
scheme that combines multiscale PCA with Kantorovich
distance (KD)-driven techniques, enhancing anomaly
detection in WWTPs. Specifically, the nonparametric KS test
is applied to evaluate the distribution of residuals produced
by PCA. After PCA is used to model the normal operating
conditions of a system, residuals—representing the
difference between the observed data and the PCA-
reconstructed data—are calculated. In the case of a normally
operating system, these residuals should follow a certain
distribution (e.g., Gaussian distribution). However, when an
anomaly occurs, the residuals deviate from this expected
distribution. The KS test is suitable for this because it is
nonparametric and makes no assumptions about the
underlying data distribution. It compares the empirical
distribution of the residuals against the expected
distribution, quantifying the maximum difference between
the two. If the KS statistic exceeds a predefined threshold, it
indicates that the residual distribution has significantly
deviated, signaling the presence of an anomaly. This
approach allows for flexible and robust detection of
abnormalities without requiring predefined labels or
assumptions about the noise structure, making it particularly
suited for noisy environments like WWTPs.

• Secondly, integrating discrete wavelet transform (DWT)
with PCA significantly enhances anomaly detection in noisy
environments like WWTPs. The ability of DWT to decompose
data into different frequency components across multiple

scales allows for effective noise reduction, as high-frequency
noise can be filtered out while retaining essential low-
frequency signal information. Denoising the data before
applying PCA makes the input cleaner, leading to more
accurate modeling of normal operating conditions and
reducing false positives. Additionally, DWT enhances feature
extraction by allowing PCA to capture global trends and local
variations, improving sensitivity to subtle anomalies that
single-scale methods might miss. This multiscale approach
boosts the robustness of anomaly detection, particularly in
environments with low signal-to-noise ratios (SNRs), where
sensor data are often noisy. As a result, the combined DWT–
PCA method provides a more resilient monitoring system,
ensuring early and reliable fault detection even under
challenging operational conditions.

• Finally, data from the COST benchmark simulation model
(BSM1) are employed to validate the proposed fault detection
method, which is particularly suited for monitoring and
optimizing the operation of wastewater treatment plants
(WWTPs). The BSM1 model offers a realistic simulation
environment, enabling comprehensive evaluation of the
approach under various sensor fault conditions. In this study,
different types of sensor faults—such as bias, drift,
intermittent, freezing, and precision degradation—are
simulated to assess the robustness and accuracy of the
detection scheme. Each fault represents a common failure
mode that can occur in WWTP sensors, impacting the accuracy
and reliability of the data collected for operational monitoring.
These faults are difficult to detect in real time, especially under
noisy conditions, which makes the ability to identify them early
critical for maintaining the efficiency and safety of WWTP
operations. Four key metrics are adopted to evaluate the
performance of the proposed fault detection method: true
positive rate (TPR), false positive rate (FPR), precision, and F1-
score. The results from the study demonstrate that the
proposed approach—combining discrete wavelet transform
(DWT) for denoising with PCA and a Kantorovich distance-
driven detection scheme—outperforms traditional PCA-based
techniques. The integration of multiscale filtering and
advanced residual analysis not only improves fault detection
sensitivity, particularly for subtle or intermittent anomalies,
but also reduces the occurrence of false positives. This leads to
more reliable and efficient monitoring of WWTPs, ensuring
timely identification and mitigation of sensor faults, even
under significant noise conditions.

The remaining sections are organized as follows. Section 2
presents the foundational concepts, including an overview of
PCA and its application in anomaly detection, the key
principles of wavelet-based multiscale filtering, the
Kantorovich distance (KD) and its role in anomaly detection,
and the proposed MSPCA-KD-based fault detection approach.
Section 3 discusses the dataset used in this study and
evaluates the performance of the proposed method under
various scenarios, including bias, drift, and intermittent
sensor faults in noisy environments. Finally, section 4
concludes the study.
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2 Methodology
2.1 Principal component analysis (PCA)

Principal component analysis (PCA) transforms correlated
variables into uncorrelated principal components,
capturing maximum variance and reducing dimensionality
while preserving the data's essential structure.25,26 This
makes it a vital tool for analyzing complex, high-
dimensional processes such as wastewater treatment
monitoring. The method begins with data standardization
to zero mean and unit variance. The covariance matrix is
then computed, followed by eigenvalue decomposition to
derive eigenvalues λi and eigenvectors pi, which define the
principal components:

P
P = PΛ, (1)

where P contains eigenvectors, and Λ is the diagonal matrix
of eigenvalues ranked by variance explained. The cumulative
percent variance (CPV) criterion selects the optimal number
of components.27 Data are projected onto these components
to form the score matrix:

T = XstdPk, (2)

where Pk contains eigenvectors for the top k eigenvalues. The
original data can be approximately reconstructed as:

X̂ ¼ TPT
k : (3)

PCA is widely used in fault detection through two key
indicators: Hotelling's T2 statistic, which evaluates an
observation's distance from the model center, and the
squared prediction error (SPE), measuring deviation from the
model in the residual subspace.28 These indicators effectively
identify deviations from normal behavior, making PCA a
robust tool for process monitoring.

2.2 Wavelet-based multi-scale filtering

Wavelet-based multiscale filtering effectively handles the
time–frequency characteristics of WWTP data, capturing
dynamics across multiple scales such as daily fluctuations
and long-term biological activities. Wavelets provide
compact signal representations in the time–frequency
domain, enabling decomposition into distinct frequency
components for selective noise reduction while preserving
critical features.29,30

Mathematically, a wavelet is represented as:

ψed tð Þ ¼ 1ffiffiffi
e

p ψ
t − d
e

� �
; (4)

where ψ(t) is the mother wavelet, and e and d are the dilation
and translation parameters. The continuous wavelet
transform projects data x(t) onto wavelet basis functions:

x; ψe;d

� � ¼ 1ffiffiffi
e

p
ð∞

−∞
x tð Þψ* t − d

e

� �
dt; (5)

where * denotes the complex conjugate. Signal
decomposition results in scaled coefficients and detail
coefficients at different scales, represented as:31

x(t) = SP(t) + DP(t), (6)

where SP(t) and DP(t) are the scaled and detail components,
with P as the scale, and aed and sed as the scaling and wavelet
coefficients.

2.3 Kantorovich distance (KD) and its application in anomaly
detection

The Kantorovich distance (KD), also known as the
Wasserstein distance or earth mover's distance (EMD),
measures the distance between two probability
distributions.32 It is widely used in anomaly detection,
optimal transport, and machine learning for quantifying
distributional dissimilarity.33 The KD captures the minimal
cost of transporting mass between distributions,
considering both distance and mass.34 Recent studies
highlighted the KD's effectiveness in fault detection.
Sanjula and Li35 used the KD for change point detection in
industrial processes, leveraging PCA-based residuals. Arifin
et al.36 applied the KD to detect pipeline leaks by
monitoring residual mass flow rates. Kini37 employed the
KD with non-Gaussian ICA for fault detection in chemical
processes. Zongyu et al.38 combined the KD with Bayesian
inference and multiblock variational autoencoders to
enhance detection accuracy. Li39 used a KD-based approach
for detecting sensor attacks, while Wang et al.40 integrated
the KD with neighborhood preserving embedding for
dynamic multivariate processes.

Mathematically, the KD is defined for two distributions μ

and ν on a metric space (X, d) as

Wp μ; νð Þ ¼ inf
γ∈Π μ;νð Þ

ð
X×X

d x; yð Þpdγ x; yð Þ
� �1

p

; (7)

where Wp is the Wasserstein distance of order p, d(x, y) is the
distance between points x and y, and Π(μ, ν) is the set of
joint distributions (couplings) with marginals μ and ν. For p
= 1, it simplifies to:

W1 μ; νð Þ ¼ inf
γ∈Π μ;νð Þ

ð
X×X

d x; yð Þdγ x; yð Þ: (8)

In anomaly detection, the KD compares a new data
distribution to a reference normal distribution, detecting
deviations that indicate anomalies.37

2.4 Proposed MSPCA-KD-based fault detection approach

Noise in WWTPs complicates fault detection and can mask
critical features, leading to missed detections and increasing
the risk of false alarms. When important signal components
are obscured by noise, it becomes more difficult to identify
abnormal behavior, resulting in delayed or missed fault
identification. Additionally, excessive noise may cause the
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system to misinterpret normal fluctuations as faults, thus
raising false alarms. This makes it essential to adopt a fault
detection strategy that can accurately separate signals from
noise, reducing both missed detections and false positives.
Wavelet transforms have proven to be highly effective in
signal processing, as they can filter out noise across both
time and frequency domains. In this work, we introduce a
method that leverages the combined strengths of wavelet-
based multiscale filtering and PCA to enhance fault
detection in noisy environments. Wavelet-based filtering
excels at decomposing data into different frequency
components, allowing the separation of noise from valuable
signal features across multiple scales. This multiscale
decomposition ensures that even subtle and localized signal
changes—often masked by noise—are preserved, improving
the detection of faults that might otherwise go overlooked.
Additionally, we incorporate the KD, which is highly
effective for measuring differences between probability
distributions. Integrating the KD into the fault detection
framework enhances the system's ability to handle various
fault types, improving detection accuracy and robustness.
This approach, referred to as the multiscale PCA-KD
(MSPCA-KD), capitalizes on the noise-filtering capabilities of
wavelets and the fault detection strengths of the KD,
resulting in a highly effective strategy for identifying faults
under noisy conditions. The proposed approach, depicted in
the flowchart in Fig. 1, consists of both offline and online
stages, ensuring efficient fault detection while maintaining
a robust model based on historical data.

The offline or training stage involves the following key
steps:

• Multiscale filtering: the data are decomposed into
various levels using wavelet functions, allowing effective
noise reduction through multiscale denoising.

• Data preprocessing: the de-noised data are standardized
to have zero mean and unit variance, ensuring uniform
scaling across variables.

• PCA model development: a PCA model is then built
using the denoised and standardized data. The optimal
number of principal components (PCs) is selected based on
the cumulative percent variance (CPV) technique, ensuring
that the most informative components are retained.

• Residual generation: the residuals (Tr_Re) are calculated
based on the difference between the original data (X) and the
reconstructed data (X̂) from the PCA model. The expression
used is:

Tr Re ¼ X −X̂ ¼ X −XPpPT
p (9)

where Pp represents the eigenvectors corresponding to the
dominant p principal components.

• Threshold computation: KDE is applied to estimate the
probability density function (PDF) of the Kantorovich
distance (KD) based on the residuals from the training data.
The process of threshold determination using KDE consists
of the following steps:

1. KDE application: KDE is used to estimate the PDF of the
KD statistic computed from the residuals. The density
estimation is given by:41

f ̂ wð Þ ¼ 1
nh

Xn
i¼1

K
w −wi

h

� �
; (10)

where K represents the kernel function (e.g., Gaussian), h is the
bandwidth, and n is the number of residual samples.

2. Threshold selection: the fault detection threshold is
defined as the (1 − α)th quantile of the estimated distribution of
the KD statistic obtained via Kernel density estimation (KDE),
where α corresponds to a given probability of false alarms. In
this study, α is fixed a priori at 0.05, ensuring that 95% of the
KD statistics under normal conditions fall below this
threshold.42 Mathematically, the threshold is expressed as:42

Fig. 1 Flowchart of the proposed MSPCA-KD fault detection strategy.
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T = f̂ −1(1 − α) (11)

where f̂ −1 is the inverse cumulative distribution function
derived from KDE.

By using KDE to determine the threshold, the method
becomes adaptable to different distributions and effectively
reduces the chances of false alarms and missed detections in
noisy environments.

The testing stage in the proposed FD based strategy
consists of the following steps:

• Multi-scale filtering: the testing data are decomposed to
different decomposition levels using wavelet functions to
have de-noised data.

• Data pre-processing: the filtered data are pre-processed
by subtracting the mean of the training data and dividing by
the standard deviation of the training data to ensure
consistency in the scale.

• Residual generation: similar to the training stage,
residuals Te_Re are generated for the standardized data using
eqn (9).

• KD statistic computation: the residuals Tr_Re and Te_Re
undergo sample-wise comparison in a moving window of
fixed length to generate the KD statistic.

• Final decision: the KD statistic is compared to the
detection threshold. If the KD statistic exceeds the threshold,
a fault is indicated; otherwise, normal operation is assumed.

3 Results and discussion

This section describes the WWTP data and evaluates the
detection performance of the proposed MSPCA-KD strategy
for identifying various sensor faults under noisy conditions.
To quantify performance, four statistical metrics are used:
fault detection rate (FDR), false alarm rate (FAR), precision,
and F1-score. Detailed descriptions of these metrics can be
found in ref. 24.

3.1 Data description

This study evaluates the multiscale PCA-based Kantorovich
distance anomaly detection method under different noisy
conditions. We use data from the benchmark simulation

model no. 1 (BSM1), a comprehensive wastewater treatment
model developed by the European COST initiative. The BSM1
features a five-compartment activated sludge reactor with two
anoxic and three aerobic tanks, designed for biological
nitrogen removal (Fig. 2). Additionally, the model includes a
secondary clarifier with a ten-layer non-reactive unit. The
main objectives of the plant are to control dissolved oxygen
and nitrate levels by adjusting the oxygen transfer coefficient
and internal recycling flow rate. We assess the predictive
performance of the anomaly detection method in this
context.

Fig. 2 shows the schematic diagram of WWTP process,
with external reflux from the settler and internal reflux from
the last aerated tank. Following the COST BSM1 benchmark,
the simulation includes dry, storm, and rainy weather
conditions.43 This study focuses on 14 days of dry weather
data. The considered influent variables are listed in Table 1.

Table 2 provides descriptive statistics for various variables.
The distributions of most variables show varying degrees of
skewness and kurtosis, indicating differences in the shape
and spread of the data. Variables like SS, SND, and SNH exhibit
positive skewness and leptokurtic distributions, suggesting a
tendency for higher values and heavier tails. In contrast,
variables like XB,H and XND show near-symmetrical
distributions with platykurtic characteristics, indicating more
normal-like distributions with lighter tails. The variable Qi

also shows a moderate positive skew and a flatter peak
compared to the normal distribution. Variables vary in
skewness, with some right-skewed and others near-
symmetrical.

Fig. 3 shows the heatmap of the correlation matrix of the
data under dry conditions. The correlation analysis of
influent variables under dry weather conditions reveals
several important relationships that shed light on the
dynamics of the WWTP system. Firstly, a perfect correlation
(1.00) between soluble biodegradable organic nitrogen (SND)
and the readily biodegradable substrate (SS) suggests a direct
interdependence between the availability of organic
substrates and the concentration of soluble nitrogen. This is
likely because both variables are closely tied to microbial
nutrient processing within the system. As readily

Fig. 2 A schematic of the BSM1 WWTP.
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biodegradable substrates are consumed by microorganisms,
the presence of soluble nitrogen is also affected, leading to
their strong linear relationship.

Another notable perfect correlation (1.00) exists between
particulate biodegradable organic nitrogen (XND) and active
heterotrophic biomass (XB,H), indicating that nitrogenous
particulate matter is highly associated with the microbial
biomass responsible for organic matter decomposition. This
strong link emphasizes the role of heterotrophic bacteria in
processing particulate organic nitrogen, a key component of
the nitrogen cycle in the WWTP.

In addition, the strong correlation (0.95) between the
readily biodegradable substrate (SS) and ammonium nitrogen
(SNH) reflects the interconnected nature of organic substrate
availability and nitrogen levels in the influent. As organic
matter degrades, nitrogen compounds such as ammonium
are released, explaining their close relationship.

Furthermore, examining the correlations between the
influent flow rate (Qi) and various variables under dry
conditions reveals how flow impacts the system. A strong
correlation (0.83) between Qi and the readily biodegradable
substrate (SS) suggests that as flow increases, more organic
material enters the system, likely from stable wastewater
sources. Similarly, the high correlation (0.92) between Qi and
particulate inert organic matter (XI) indicates a consistent
influx of suspended solids with increasing flow, highlighting
the presence of non-biodegradable particles in the influent
stream. The moderate correlation between Qi and the slowly
biodegradable substrate (XS) (0.69) implies that the influent
is more concentrated with readily biodegradable materials,
while the correlation with heterotrophic biomass (XB,H) (0.78)
shows how flow influences microbial activity.

Finally, the strong correlations between Qi and both
soluble biodegradable nitrogen (SND) (0.83) and particulate

biodegradable nitrogen (XND) (0.78) suggest that nitrogenous
compounds in both soluble and particulate forms increase as
the flow rate rises, even under dry conditions. This pattern
reflects the regular nitrogen load managed by the WWTP
during normal operational states, illustrating the plant's
capability to handle fluctuations in influent composition
efficiently. Together, these correlations not only highlight the
interplay between various chemical and biological processes
in the treatment system but also emphasize the system's
resilience under dry conditions. The interdependencies
among influent variables suggest that the plant can maintain
effective treatment performance by relying on the established
relationships between organic matter, nitrogen compounds,
and microbial biomass.

3.2 Monitoring results

The dataset used in this study comprises 1340 sampling
instances across 8 variables, evenly divided into training and
testing sets. The training data are essential for building data-
driven reference models, which are then used to detect
anomalies in the testing data. Both PCA and MSPCA models
were developed using the training set. To determine the
optimal number of principal components (PCs), the CPV
criterion was employed, resulting in the selection of three
PCs that captured the majority of the data variance. A moving
window of size 40 was applied to calculate the KD-based fault
indicator, which tracks system dynamics and identifies
deviations from normal operation. For the MSPCA model, the
optimal decomposition depths were determined to be 3, 3,
and 4 for signal-to-noise ratio (SNR) levels of 20, 10, and 5,
respectively. These varying depths reflect the model's ability
to adapt to different noise levels, balancing denoising
efficiency and anomaly detection sensitivity.

The proposed MSPCA-KD strategy is compared with
several conventional fault detection approaches, including
PCA-T2, PCA-SPE, PCA-KD, MSPCA-T2, and MSPCA-SPE. These
established methods serve as benchmarks to highlight the
superior detection capabilities of the MSPCA-KD approach.
The fault indicators' result plots display the fault indicator's
time evolution using distinct color coding: the non-faulty
region is marked in blue, the faulty region is in red, and the
fault detection threshold is in black. This clear and intuitive
visual representation effectively demonstrates the accuracy of
each method in distinguishing between normal and faulty

Table 1 The considered WWTP influent data

Symbol Definition Unit

SS Readily biodegradable substrate g COD m−3

XI Particulate inert organic matter g COD m−3

XS Slowly biodegradable substrate g COD m−3

XB,H Active heterotrophic biomass g COD m−3

SNH NH4
+ + NH3 nitrogen g N m−3

SND Soluble biodegradable organic nitrogen g N m−3

XND Particulate biodegradable organic nitrogen g N m−3

Qi Flow into the anoxic section m3 d−1

Table 2 Descriptive statistics for each variable

Variable Mean Std dev Min Q1 Median Q3 Max Skewness Kurtosis

SS 65.24 18.45 40.00 54.27 64.00 72.22 120.01 0.80 3.85
XI 45.60 21.79 14.84 25.62 45.30 59.93 109.83 0.43 2.53
XS 192.72 50.19 96.95 147.37 202.55 227.34 293.81 −0.22 2.01
XB,H 26.48 7.81 13.35 19.51 27.56 31.59 42.74 −0.09 2.03
SNH 30.14 7.01 20.00 26.41 29.80 34.46 50.00 0.64 3.42
SND 6.52 1.84 4.00 5.43 6.40 7.22 12.00 0.80 3.85
XND 9.95 2.93 5.02 7.33 10.36 11.88 16.07 −0.09 2.03
Qi 18 448.59 5134.66 10 000.00 13 610.75 18 264.00 22 081.00 32 180.00 0.40 2.57
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conditions over time, allowing for a straightforward
assessment of their detection performance.

In this section, the monitoring performance for three
distinct types of faults—bias, intermittent, and drift—is
evaluated under three different noise scenarios: low noise
level (SNR = 20), medium noise level (SNR = 10), and high
noise level (SNR = 5). Each fault type represents a common
failure mode in sensor systems, with unique characteristics
that can significantly affect data quality and the accuracy of
operational monitoring in WWTPs.

• Bias faults: these occur when a sensor systematically
deviates from the true value, consistently over- or
underestimating the measured variable. This can lead to
persistent inaccuracies in the collected data, potentially
causing long-term inefficiencies or suboptimal process
control in the WWTP.

• Intermittent faults: these faults arise sporadically,
causing sudden and temporary disruptions in sensor
readings. The challenge with intermittent faults is that they
can be difficult to detect due to their transient nature. If left
unchecked, these faults can lead to misleading data
interpretation during short intervals, affecting real-time
monitoring.

• Drift Faults: drift faults occur when a sensor's readings
gradually shift over time, either due to sensor aging,
environmental conditions, or other factors. This slow,
progressive deviation can accumulate and result in
significant errors in long-term monitoring, impacting the
reliability of predictive maintenance and control actions in
the WWTP.

The three noise scenarios—low, medium, and high—
represent different levels of external disturbances or
measurement errors that can further degrade the quality of
sensor data. Low noise (SNR = 20) suggests minimal

interference, whereas high noise (SNR = 5) reflects
substantial disturbance, making fault detection more
challenging. Noise impacts the ability of fault detection
algorithms to distinguish between normal variations in the
data and actual faults. Therefore, it is crucial to evaluate the
robustness of each fault detection method across different
noise levels to ensure reliable performance under real-world
conditions, where noise is often unavoidable.

For the three scenarios, the faults have been considered in
the Qi as well as SNH variable of the WWTP set-up as follows:

• The bias fault which is equal to 3% of the total variation
is introduced in the Qi variable between sampling time
instants 250 and end of the testing data.

• An intermittent fault which is equal to 3% of the total
variation is introduced in the Qi variable between sampling
time instants [130 230] and [450 500] of the testing data.

• A drift fault with a slope of 0.2 is introduced in the SNH
variable after sampling time instants 250 and end of the
testing data.

In this study, the fault detection strategies are tested
under these varying noise conditions to assess their ability to
maintain accuracy and sensitivity to faults in the presence of
noise. This analysis is critical for designing monitoring
systems that are resilient to sensor errors and capable of
effectively detecting anomalies in noisy environments typical
of industrial settings like wastewater treatment plants.

3.2.1 Fault monitoring at the high SNR level (SNR = 20).
The monitoring of the three faults using the proposed
MSPCA-KD approach for the case of SNR = 20 (a low-noise
scenario) is presented below.

• Bias fault: the performance of PCA and MSPCA-based
strategies in detecting the bias fault is shown in Fig. 4.
Traditional strategies such as PCA-T2, PCA-SPE, MSPCA-T2,
and MSPCA-SPE fail to detect the fault effectively. While

Fig. 3 Heatmap of the correlation matrix of the data under dry conditions.
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multi-scale filtering improves detection slightly in the
MSPCA-T2 and MSPCA-SPE methods, as seen in
Fig. 4(d) and (e), the results remain suboptimal. Due to the
lower noise level in this scenario, both PCA-KD and MSPCA-
KD strategies successfully detect the bias fault. However, the
proposed MSPCA-KD method has a distinct advantage: it
detects the fault more quickly than the other FD schemes,
providing a faster response in identifying abnormalities.

• Intermittent fault: the monitoring performance for the
intermittent fault is evaluated next. Fig. 5 illustrates the
effectiveness of both PCA and MSPCA-based strategies in
detecting this type of fault. In Fig. 5(a) and (d), it is evident
that the T2 indicator is unable to detect the fault effectively.
Conversely, as shown in Fig. 5(e), the MSPCA-SPE strategy
outperforms the PCA-SPE strategy depicted in Fig. 5(b) in
detecting the intermittent fault. The KD-based methods

Fig. 4 Comparison of fault detection results under a bias fault scenario for SNR = 20. The performance of various fault detection methods is
presented, including (a) PCA-T2, (b) PCA-SPE, (c) PCA-KD, (d) MSPCA-T2, (e) MSPCA-SPE, and (f) MSPCA-KD.

Fig. 5 Comparison of fault detection results for intermittent faults under the low noise scenario (SNR = 20). The performance of various detection
methods is illustrated: (a) PCA-T2, (b) PCA-SPE, (c) PCA-KD, (d) MSPCA-T2, (e) MSPCA-SPE, and (f) MSPCA-KD.
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demonstrate superior fault detection capabilities compared
to the traditional T2 and SPE methods. Notably, the proposed
MSPCA-KD strategy has a distinct advantage: it identifies
faults more rapidly than the other fault detection schemes,
allowing for a quicker response to anomalies in the system.

• Drift fault: Fig. 6 illustrates the performance of PCA and
MSPCA-based fault detection schemes in monitoring a drift
fault. The result plots indicate that all methods successfully
detect the fault. However, the T2-based indicator exhibits a
delay in detection, while the SPE and KD-based indicators
demonstrate improved fault detection capabilities. Overall,
the MSPCA-KD strategy outperforms the other approaches,
demonstrating the best detection of drift faults.

Table 3 presents a comprehensive comparison of various
fault indicators used for monitoring bias, drift, and
intermittent faults, employing different detection metrics.
The MSPCA-KD-based fault detection method exhibits a
notably high F1-score, primarily due to its high FDR and zero
FAR across different fault scenarios. The superior FDR
achieved by the proposed MSPCA-KD approach, in contrast to
traditional fault detection methods, highlights its
effectiveness and underscores its advantages in accurately
identifying faults while minimizing erroneous detections.

The proposed MSPCA-KD fault detection approach
demonstrates superior performance under low noise
conditions (SNR = 20), achieving the highest F1-score and
precision while maintaining a zero false alarm rate across
various fault types, including bias, intermittent, and drift
faults. Its effectiveness can be attributed to the integration of
MSPCA with the KD, which enhances the model's ability to
capture complex data patterns while effectively tracking
dynamic changes in the system. This results in improved

sensitivity and specificity, enabling timely and accurate fault
detection.

3.2.2 Fault monitoring at the medium SNR level (SNR =
10). In this section, the monitoring performance of the
MSPCA-KD approach for SNR = 10 (medium noise level) is
presented, focusing on three types of faults: bias,
intermittent, and drift.

• Bias fault: the monitoring of the bias fault is evaluated.
As shown in Fig. 7(a) and (d), the PCA-T2 and MSPCA-T2

strategies are ineffective in detecting the fault. Similarly, the
PCA-SPE fault detection strategy also fails, while the
MSPCA-SPE strategy exhibits slightly improved performance,
as observed in Fig. 7(e). The PCA-KD successfully detects
the fault but with some missed detections, evident in
Fig. 7(c). In contrast, the proposed MSPCA-KD strategy
clearly outperforms all the other methods, providing
accurate fault detection as depicted in Fig. 7(f). This
enhanced performance can be attributed to the advantages
of multi-scale filtering, which allows the MSPCA-KD
approach to adapt more effectively to the complexities
introduced by medium noise levels.

• Intermittent fault: this section examines the monitoring
of an intermittent fault. As illustrated in Fig. 8(a) and (d),
both the PCA-T2 and MSPCA-T2 strategies are unable to
detect the fault. The MSPCA-SPE fault detection strategy
performs better than the PCA-SPE strategy, as shown in
Fig. 8(b) and (e). The PCA-KD strategy detects the fault more
effectively than the conventional indicators but still has a few
missed detections within the fault region, as seen in Fig. 8(c).
Despite the noise present in the data, the MSPCA-KD strategy
utilizes multi-scale filtering to achieve clear fault detection,
as demonstrated in Fig. 8(f).

Fig. 6 Comparison of fault detection results for drift faults under the low noise scenario (SNR = 20). The performance of various detection
methods is illustrated: (a) PCA-T2, (b) PCA-SPE, (c) PCA-KD, (d) MSPCA-T2, (e) MSPCA-SPE, and (f) MSPCA-KD.
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• Drift fault: the performance of PCA and MSPCA-based
strategies in detecting the drift fault under medium noise
conditions (SNR = 10) is illustrated in Fig. 9. The statistical
plots clearly show that both PCA and MSPCA-based fault
detection strategies successfully identify the drift fault.
However, the MSPCA-based approaches demonstrate
superior performance compared to the PCA-based methods,
primarily due to the noise present in the data. Notably, the
MSPCA-KD strategy has a distinct advantage, as it detects
the fault more quickly and with fewer missed detections
than the other approaches.

Table 4 presents a comparison of various fault detection
(FD) strategies evaluated through detection metrics. The
results clearly demonstrate that the MSPCA-based FD
methods outperform their PCA counterparts, showcasing
superior detection performance attributed to the multi-scale
filtering enabled by wavelet functions. Notably, the proposed

MSPCA-KD approach excels compared to the other methods,
achieving a significantly high F1-score, thus highlighting its
effectiveness in fault detection.

In summary, the monitoring performance of the proposed
MSPCA-KD approach for fault detection at SNR = 10
demonstrates superior effectiveness in identifying bias,
intermittent, and drift faults compared to traditional PCA
methods. Integrating multi-scale filtering significantly
enhances detection accuracy and responsiveness, resulting in
high F1-scores across various fault scenarios. These findings
underscore the advantages of employing MSPCA-KD for
robust fault detection in sensor systems, particularly under
medium-noise conditions.

3.2.3 Monitoring of faults for the low SNR level (SNR = 5).
This section examines the performance of the MSPCA-KD
approach in detecting various faults at a low SNR level (SNR
= 5), where the data are heavily affected by noise. The

Table 3 Monitoring performance of PCA and MSPCA-based methods at an SNR of 20. The table compares various fault indicators for bias, intermittent,
and drift faults, highlighting the effectiveness of each method

Fault Index PCA-T2 PCA-SPE PCA-KD MSPCA-T2 MSPCA-SPE MSPCA-KD

Bias FDR 16.67 47.67 97.62 28.38 63.29 99.05
FAR 6.80 5.60 0.00 5.20 0.50 0.00
Precision 80.45 93.02 98.79 90.22 99.53 100.00
F1-score 27.85 62.89 98.33 43.40 77.29 99.52

Intermittent FDR 24.50 60.00 97.50 32.50 80.50 100.00
FAR 6.52 5.96 6.00 5.82 1.77 0.00
Precision 62.02 81.08 100.00 70.65 95.26 100.00
F1-score 35.34 69.00 98.73 45.02 87.63 100.00

Drift FDR 73.62 90.62 92.85 78.81 93.89 97.23
FAR 9.20 4.60 0.00 7.80 2.80 0.00
Precision 93.07 97.06 100.00 94.85 98.25 100.00
F1-score 82.21 93.75 96.29 86.08 96.02 98.59

Fig. 7 Detection results of (a) PCA-T2, (b) PCA-SPE, (c) PCA-KD, (d) MSPCA-T2, (e) MSPCA-SPE, and (f) MSPCA-KD in the presence of bias faults
for SNR = 10.
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detection results for a bias fault are shown in Fig. 10. Due to
the high noise, PCA-T2 and PCA-SPE methods fail to detect
the fault, and even MSPCA-T2, MSPCA-SPE, and PCA-KD
approaches struggle to clearly identify it. However, the
proposed MSPCA-KD strategy successfully detects the bias
fault after time instant 250, owing to the multi-scale filtering
applied via wavelets. Similarly, for the intermittent fault
(Fig. 11), most methods, including PCA-T2, PCA-SPE, PCA-KD,

and MSPCA-T2, fail to detect the fault. In contrast, the
MSPCA-KD method, enhanced by wavelet-based de-noising,
accurately identifies the fault.

The results of monitoring a drift fault in the presence of
high noise levels are shown in Fig. 12. Due to the significant
noise, both PCA-T2 and PCA-SPE perform slightly worse in
detecting the drift fault than MSPCA-T2 and MSPCA-KD.
While the MSPCA-T2 and MSPCA-KD strategies successfully

Fig. 8 Detection results of (a) PCA-T2, (b) PCA-SPE, (c) PCA-KD, (d) MSPCA-T2, (e) MSPCA-SPE, and (f) MSPCA-KD in the presence of intermittent
faults for SNR = 10.

Fig. 9 Detection results of (a) PCA-T2, (b) PCA-SPE, (c) PCA-KD, (d) MSPCA-T2, (e) MSPCA-SPE, and (f) MSPCA-KD in the presence of drift faults
for SNR = 10.
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identify the fault, there is a small detection delay. The KD-
based metric stands out for its ability to accurately pinpoint
the fault. Notably, the MSPCA-KD approach detects the fault
faster than the PCA-KD method, providing a clear advantage.
Table 5 compares the performance of different methods
using key detection metrics. Due to the benefits of multi-
scale wavelet filtering, MSPCA methods outperform PCA
approaches under noisy conditions. The MSPCA-KD strategy
demonstrates superior performance, achieving F1-scores of
97.48%, 97.98%, and 96.77% across different faults.

Overall, at a low SNR level of 5, the fault detection (FD)
performance of PCA and MSPCA-based methods is
significantly affected by the high noise present in the data.
PCA-based approaches, including T2 and SPE, struggle to
accurately detect bias, intermittent, and drift faults, often
failing entirely or detecting with delay. MSPCA-based
methods, on the other hand, perform better due to the

advantages of multi-scale filtering offered by wavelets,
particularly in the MSPCA-KD approach. Despite the noise,
the MSPCA-KD strategy consistently outperforms the other
methods, with higher fault detection rates and fewer missed
detections. It achieves the best results with high F1-scores,
demonstrating its robustness and effectiveness even under
challenging noise conditions.

3.2.4 Assessment of multi-scale PCA methods for different
decomposition depths. In this section, we assess the
performance of multi-scale PCA approaches for different
decomposition depths under the scenario where SNR = 5, i.e.,
when the data contain a significant amount of noise. For the
analyses presented in Tables 3–5, a decomposition depth of 4
was used for all the multi-scale PCA methods under the SNR
= 5 scenario. The choice of decomposition depth is critical
during the modeling phase for wavelet-based multi-scale
methods. If the decomposition depth is too shallow, it can

Table 4 Comparison of fault detection performance for PCA and MSPCA-based methods under medium noise conditions (SNR = 10)

Fault Index PCA-T2 PCA-SPE PCA-KD MSPCA-T2 MSPCA-SPE MSPCA-KD

Bias FDR 15.71 32.52 91.67 21.29 54.58 96.00
FAR 7.25 6.00 0.00 6.40 0.40 0.00
Precision 77.38 90.10 100.00 84.76 99.62 100.00
F1-score 26.14 47.84 95.65 34.04 70.16 97.95

Intermittent FDR 23.50 32.45 82.50 29.00 44.50 99.25
FAR 6.35 3.41 1.20 6.08 1.15 1.50
Precision 61.84 80.24 100.00 67.44 94.17 97.08
F1-score 34.60 46.35 92.18 40.56 60.30 98.32

Drift FDR 71.90 89.32 90.48 77.12 91.67 96.02
FAR 9.50 8.40 0.00 8.20 1.80 0.00
Precision 92.53 94.73 100.00 93.91 98.84 100.00
F1-score 80.76 86.08 95.00 84.69 95.12 97.96

Fig. 10 Detection results of (a) PCA-T2, (b) PCA-SPE, (c) PCA-KD, (d) MSPCA-T2, (e) MSPCA-SPE, and (f) MSPCA-KD in the presence of bias faults
for SNR = 5.
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result in insufficient noise removal, leading to poor fault
detection performance. Conversely, selecting an overly deep
decomposition may lead to over-smoothing, which could
obscure essential details and result in the loss of critical
information from the data. To investigate the effect of the
decomposition depth on the monitoring performance, a
study was conducted where MSPCA-based methods were
evaluated at decomposition depths of 2, 3, and 4,

respectively. Table 6 provides a detailed comparison of the
detection metrics (FDR, FAR, precision, and F1-score) for
MSPCA methods applied to the three faults across different
decomposition depths with SNR = 5. The following inferences
can be drawn from the results presented in Table 6:

• Given the high level of noise in the data, a slightly larger
decomposition depth facilitates more effective feature
extraction and noise reduction, thus enhancing fault

Fig. 11 Detection results of (a) PCA-T2, (b) PCA-SPE, (c) PCA-KD, (d) MSPCA-T2, (e) MSPCA-SPE, and (f) MSPCA-KD in the presence of intermittent
faults for SNR = 5.

Fig. 12 Detection results of (a) PCA-T2, (b) PCA-SPE, (c) PCA-KD, (d) MSPCA-T2, (e) MSPCA-SPE, and (f) MSPCA-KD in the presence of drift faults
for SNR = 5.
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detection in the wastewater treatment plant. As observed, the
F1-score values for the MSPCA-based fault detection
strategies improve with a decomposition depth of 4,
compared to depths of 2 or 3.

• Across all three fault types and decomposition depths,
the MSPCA-KD fault detection (FD) strategy consistently
outperforms the MSPCA-T2 and MSPCA-SPE based strategies,
showing superior F1-score values. The KD indicator leverages
sample-by-sample comparisons between the residuals of
training and testing datasets, which improves detection
performance relative to conventional FD methods. When the
KD indicator is integrated with multi-scale wavelet filtering,
its detection capabilities are further enhanced, especially in
the presence of noise.

• For a decomposition depth of 2, the proposed MSPCA-
KD FD strategy achieved F1-scores of 69.44%, 82.00%, and
94.93% for the three fault scenarios. With a decomposition
depth of 3, the F1-scores improved to 97.10%, 94.75%, and
95.76%. Finally, at a decomposition depth of 4, the MSPCA-
KD FD strategy exhibited F1-scores of 98.22%, 97.98%, and
96.77% for the three faults. These results indicate that a
decomposition depth of 4 provides the best detection
performance for bias, intermittent, and drift faults in the
wastewater treatment process.

3.2.5 Assessment of multi-scale PCA methods for different
wavelet functions. Selecting the appropriate family of
wavelets is crucial for fault monitoring tasks that utilize
multi-scale filtering. The choice of wavelet can significantly

enhance the detection performance of fault detection
strategies. Numerous wavelets are available in the literature,
and the selection of a specific family depends largely on the
characteristics of the data being analyzed. In this study, we
focused on the Daubechies wavelet to evaluate the
performance of multi-scale PCA-based methods in
monitoring various faults in the WWTP setup. The
Daubechies wavelet is widely regarded as a preferred choice
in applications involving multi-scale filtering.44 To assess the
impact of the wavelet type on the monitoring performance of
the MSPCA-T2, MSPCA-SPE, and MSPCA-KD methods, we
conducted a comparative study involving three wavelet
families: Haar, Symlet, and Daubechies. Each wavelet family
exhibits distinct characteristics that influence the
performance of the fault detection strategies under various
noise conditions. The Haar wavelet, known for its simplicity
and fast computation, struggles with smooth data and
provides poor frequency localization. The Symlet wavelet
improves symmetry and orthogonality, offering better
handling of smooth data and reducing signal distortion,
though it is more computationally intensive. The Daubechies
wavelet delivers excellent frequency localization, which is
suitable for detecting both smooth and irregular features, but
its asymmetry can cause minor phase shifts. Table 7
summarizes the performance metrics of the MSPCA-T2,
MSPCA-SPE, and MSPCA-KD methods in fault monitoring
using these three different types of wavelets, specifically for
data contaminated with noise corresponding to an SNR of

Table 5 Performance comparison of PCA and MSPCA-based fault detection methods at a low SNR (SNR = 5)

Fault Index PCA-T2 PCA-SPE PCA-KD MSPCA-T2 MSPCA-SPE MSPCA-KD

Bias FDR 10.29 16.97 41.48 13.42 38.58 95.52
FAR 8.00 5.80 0.00 5.80 1.20 0.00
Precision 68.25 78.02 100.00 79.43 97.88 100.00
F1-score 17.96 27.87 58.63 22.92 55.34 97.48

Intermittent FDR 14.50 17.00 25.50 16.50 30.50 96.05
FAR 5.11 7.41 0.00 3.83 0.95 0.00
Precision 55.76 50.00 100.00 81.16 96.85 100.00
F1-score 23.01 25.37 40.63 27.61 46.52 97.98

Drift FDR 67.38 85.67 88.81 76.52 89.52 93.75
FAR 10.20 6.00 0.00 5.20 1.20 0.00
Precision 91.21 96.00 100.00 96.00 98.94 100.00
F1-score 77.50 90.54 94.06 85.20 94.00 96.77

Table 6 Detection metrics for different optimum decomposition depths

Fault Method

Depth = 2 Depth = 3 Depth = 4

FDR FAR Prec F1-sc FDR FAR Prec F1-sc FDR FAR Prec F1-sc

Bias MSPCA-T2 9.95 3.85 82.14 17.82 12.19 4.00 83.60 21.23 13.42 5.80 79.43 22.92
MSPCA-SPE 20.00 1.00 97.10 33.17 30.61 0.80 98.06 46.53 38.58 1.20 97.88 55.34
MSPCA-KD 53.19 0.00 100.00 69.44 94.38 0.00 100.00 97.10 95.52 0.00 100.00 97.48

Intermittent MSPCA-T2 13.50 3.19 64.28 22.54 14.50 2.70 68.07 23.92 16.50 3.83 81.16 27.61
MSPCA-SPE 25.50 0.45 95.32 37.39 27.75 0.25 82.83 41.04 30.50 0.95 96.85 46.52
MSPCA-KD 69.50 0.00 100.00 82.00 90.00 0.00 100.00 94.75 96.05 0.00 100.00 97.98

Drift MSPCA-T2 73.72 3.90 97.19 83.84 75.01 2.27 98.13 84.59 76.52 5.20 96.00 85.20
MSPCA-SPE 86.69 0.80 94.79 90.56 87.88 0.48 92.14 89.96 89.52 1.20 98.74 94.00
MSPCA-KD 89.45 0.00 100.00 94.43 91.88 0.00 100.00 95.76 93.75 0.00 100.00 96.77
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10. From Table 7, we can draw several important
observations:

• The detection results for the MSPCA-T2, MSPCA-SPE,
and MSPCA-KD methods demonstrate significant
improvement when utilizing the Daubechies wavelet for
multi-scale filtering, compared to the Haar and Symlet
wavelets. The Daubechies wavelet exhibits superior scale and
shift invariance properties, providing a distinct advantage in
fault detection.

• The MSPCA-KD-based fault detection strategy
outperforms the conventional MSPCA-T2 and MSPCA-SPE
strategies, achieving higher F1-score values across all three
fault scenarios. Regardless of the wavelet type used—Haar,
Symlet, or Daubechies—the KD statistic consistently
demonstrates better performance than the traditional
indicators based on T2 and SPE. This superiority is attributed
to the KD statistic's sample-by-sample comparison of
residuals from both training and testing datasets, enhancing
detection performance.

• The MSPCA-KD-based FD strategy yields F1-scores of
93.00%, 82.35%, and 96.07% for the three faults when
employing the Haar wavelet for multi-scale filtering. When
using the Symlet wavelet, the F1-scores increase to 96.03%,
97.75%, and 96.84%. Remarkably, with the Daubechies
wavelet, the F1-scores reach 97.75%, 98.32%, and 97.97%.
These results unequivocally highlight the superiority of the
Daubechies wavelet, which significantly enhances the
performance of the MSPCA-KD-based FD strategy.

In summary, the results highlight that leveraging the
appropriate wavelet family can significantly enhance the
effectiveness of fault detection strategies, paving the way for
more reliable monitoring solutions in WWTPs.

4 Conclusion

The impact of measurement noise on fault detection
approaches in WWTPs can lead to significant degradation in
performance. To address this issue, this study proposed a
noise-filtering fault detection approach that integrates PCA
with wavelet functions. The PCA-based data-driven strategy
was utilized as the modeling framework, while wavelet
functions facilitated multi-scale filtering, resulting in the
development of the MSPCA-based FD approach. A novel

indicator based on the KD was also introduced to enhance
fault detection, culminating in the MSPCA-KD strategy. This
strategy assessed the residuals between training and testing
data for fault detection and employed a non-parametric KDE
scheme to compute the decision threshold.

The performance of the proposed FD approach was
rigorously evaluated by monitoring three types of faults in
the WWTP setup. The results demonstrated the superiority of
the multi-scale methods to conventional techniques,
particularly in detecting bias, intermittent, and drift faults.
The KD statistic's effectiveness in evaluating model residuals
enabled the MSPCA-KD strategy to outperform all other
methods in identifying different faults. Furthermore, an
additional study examined the impact of varying
decomposition depths on the performance. It was found that
as noise levels in the data increased, larger decomposition
depths facilitated effective de-noising at multiple levels,
resulting in improved fault detection. Additionally, the study
highlighted that utilizing the advantages of Daubechies
wavelets for multi-scale filtering proved to be significantly
more effective in de-noising than Haar and Symlet wavelets.
Overall, this study underscores the importance of
incorporating advanced noise filtering techniques and
wavelet-based methodologies to enhance fault detection in
complex environments like wastewater treatment plants,
ultimately contributing to improved operational reliability
and efficiency.

Future research could explore the synergy between the
MSPCA-KD approach and advanced machine learning
algorithms specifically for fault diagnosis and classification.
This could involve applying techniques such as ensemble
learning or deep learning to leverage the strengths of the
MSPCA-KD method. By integrating these approaches,
researchers could enhance fault classification accuracy and
prediction capabilities, ultimately leading to improved
detection rates and enabling proactive maintenance
strategies.

Data availability

In the proposed research work, we have used the publicly
available dataset for wastewater treatment plants (WWTPs).
The data from the COST benchmark simulation model

Table 7 Fault detection performance using various wavelet functions

Fault Method

Haar Symlet Daubechies

FDR FAR Prec F1-sc FDR FAR Prec F1-sc FDR FAR Prec F1-sc

Bias MSPCA-T2 14.71 7.21 77.50 24.78 17.21 8.00 78.26 28.05 15.71 7.25 77.38 26.14
MSPCA-SPE 28.57 0.00 100.00 44.44 30.61 3.60 93.41 46.13 32.52 6.00 90.10 47.84
MSPCA-KD 86.90 0.00 100.00 93.00 92.38 0.00 100.00 96.03 95.52 0.00 100.00 97.95

Intermittent MSPCA-T2 20.00 5.32 61.53 30.19 21.30 2.06 80.76 33.58 29.00 6.08 67.44 40.56
MSPCA-SPE 24.50 0.00 100.00 39.35 43.00 1.25 93.47 58.67 44.50 1.15 94.17 60.30
MSPCA-KD 70.00 0.00 100.00 82.35 99.00 1.65 96.27 97.75 99.25 1.5 97.08 98.32

Drift MSPCA-T2 76.12 5.20 96.50 85.41 80.45 6.67 95.93 88.20 77.12 8.20 93.91 84.70
MSPCA-SPE 83.29 3.80 97.87 90.07 90.48 1.48 99.05 94.85 91.67 1.80 98.84 95.12
MSPCA-KD 92.45 0.00 100.00 96.07 93.88 0.00 100.00 96.84 96.02 0.00 100.00 97.97
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(BSM1) are employed to validate the proposed fault detection.
The details of data generation can be found in the following
paper. Copp J. B. The COST simulation benchmark:
description and simulator manual: office for official
publications of the European community. Luxembourg: ISBN
92-894-1658-0; 2002.
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