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Active nematics in corrugated channels

Jaideep P. Vaidya,a Tyler N. Shendruk b and Sumesh P. Thampi *a

Active nematic fluids exhibit complex dynamics in both bulk and in simple confining geometries.

However, complex confining geometries could have substantial impact on active spontaneous flows.

Using multiparticle collision dynamics simulations adapted for active nematic particles, we study the

dynamic behaviour of an active nematic fluid confined in a corrugated channel. The transition from a

quiescent state to a spontaneous flow state occurs from a weak swirling flow to a strong coherent flow

due to the presence of curved-wall induced active flows. We show that the active nematic fluid flows in

corrugated channels can be understood in two different ways: (i) as the result of an early or delayed

flow transition when compared with that in a flat-walled channel of appropriate width and (ii) boundary-

induced active flows in the corrugations providing an effective slip velocity to the coherent flows in the

bulk. Thus, our work illustrates the crucial role of corrugations of the confining boundary in dictating the

flow transition and flow states of active fluids.

1 Introduction

Active and living systems are out of equilibrium due to conti-
nuous influx of energy at microscopic scales. Common examples
of these systems are suspensions of cytoskeletal filaments powered
by molecular motors,1–4 bacterial suspensions,5,6 cellular layers7–9

and Janus catalysts.10–12 Continuous energy injection not only
leads to the motion of individual active particles but also results
in a rather exciting phenomenon of collective motion. Collective
dynamics in dense suspensions of active particles usually consist
of jets and circulations – a state commonly called active
turbulence.13–15 Several experimental realizations of active turbu-
lence have been demonstrated in the literature.2,5,16–19

Active nematics are model fluids that capture the dynamics
of some of the above mentioned systems.13,20–22 By incorporat-
ing the active stress generated by microscopic active entities,
active nematics build upon the theory of passive nematic liquid
crystals.23–25 Hence, mechanisms such as generation and
dynamics of topological defects that sustain active turbulence,
are inherent features of active nematic fluids.13,26–29 Active
stress generates hydrodynamic instabilities overcoming the
elastic, viscous and frictional forces in the active fluid. In a
confined active nematic fluid, the competition between activity
and the opposing forces gives rise to a spontaneous flow
transition at a critical activity.3,21,30–32

Confinements play a major role in dictating the dynamic
state of active systems, much different from those of driven
systems. For example, when active nematics are confined in
microchannels of square cross section, they exhibit a multitude
of states, such as a state of no fluid flow, streaming states like
unidirectional, oscillatory or double helix flows and swirling
states including vortex lattices or turbulent flows. All these
depend on varying a single parameter, namely the ratio of the
channel width to the active length scale.21,33,34 Despite the
crucial importance of boundaries in dictating the dynamics of
active fluids, most investigations so far have considered only
channels with flat walls,3,31,32,35–38 cylindrical channels,39

or annular rings.33,40–42 The effect of non-uniformity of the
channel walls on the dynamics of active fluids has not been
addressed in the literature yet.

However, some of the previous investigations have hinted at
the effect of non-uniform boundary walls on the dynamics of
active nematic fluids. In the experiments of Wu et al.,33 asym-
metric corrugations of the channel walls were used to direct
streaming flows generated by mixtures of microtubule bundles
and kinesin molecular motors. When the active suspension was
confined in a toroid of square cross section it produced a
streaming flow in the channel, with equal probability of
streaming in clockwise and counter clockwise directions. On
the other hand, when the channel walls of the toroid were
modified by providing saw-tooth like notches, it was possible to
control the directionality of the streaming flows. Such a control
on the directionality of active fluid flows is essential for any
future engineering applications. While the exact mechanism
that leads to directionality is not clear, it was shown that the
directionality of the flow in the toroid was accompanied by
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swirls in the undulated sections of the channel wall. Being at
low Reynolds number, the presence of swirling flows in the
undulations of the channel is also intriguing. Asymmetric
structures driving directionality have also been demonstrated
in other active systems.43 Another feature the curved bound-
aries provide is their capability to drive active fluid flows. The
boundary curvature driven flows arise since active entities
preferentially orient at the solid wall, as demonstrated using
theoretical,44,45 computational46 and experimental47 tools.
However, the role of these boundary-induced active flows in
dictating the flow transition, the directionality of flow or the
flow state itself has not yet been analyzed.

In this work, we computationally investigate the flow gen-
erated by active nematic fluids when confined in corrugated
channels. Since the spontaneous flow transition in an active
nematic fluid is well studied theoretically,30 experimentally3,32

and numerically,13,21 we primarily focus on the effect of corru-
gations on the flow transition from a no-flow state to a flow
state of an active nematic fluid. The resulting flow state
immediately after the transition is, typically, a streaming flow
state and analysis of this flow further allows us to isolate the
role of corrugations and boundary-induced active flows. The
investigation is performed using a numerical framework based
on multiparticle collision dynamics.48

In Section 2, we discuss the system and the multiparticle
collision dynamics algorithm for active nematic fluids. We first
demonstrate the validity of the algorithm illustrating the spon-
taneous flow transition in flat-walled channels (Section 3). This
is followed by an analysis of flow states generated in corrugated
channels and contrasted with those in a flat-walled channel.
Further, the role of geometry in establishing the flow transition
and streaming-flow state is characterised and generalised.
Finally, we provide a slip-based mechanism to understand
the spontaneous flow transition in a corrugated channel and
conclude the work (Section 4).

2 Methodology
2.1 Active nematic multiparticle collision dynamics (AN-MPCD)

The active nematic fluid confined in a corrugated channel is
simulated using the active-nematic multiparticle collision
dynamics (AN-MPCD) algorithm. The AN-MPCD algorithm is
a particle based, mesoscopic algorithm proven to be useful to
simulate various soft matter systems. By assigning a nematic
stress to the particles, the AN-MPCD algorithm simulates
the dynamics of active nematic fluids.48–51 The AN-MPCD
algorithm discretizes the continuum into N point-like particles,
each with mass m, position ri, velocity vi and orientation ui. The
algorithm comprises two steps: streaming and collision. During
streaming, each particle moves ballistically for a time dt to a
new position

ri(t + dt) = ri(t) + vi(t)dt. (1)

The collisions are accomplished by partitioning the domain
into cubic cells. These collisions are governed by mesoscopic

collision operator Ni, which is stochastic and ensures the
conservation of momentum within each cell. This momen-
tum transfer among particles thereby updates the velocities
according to

vi(t + dt) = v(t) + Ni (2)

where v(t) = hvii is the center of mass velocity of the cell,
calculated at position r in the cell. Since all particles in the
cell are assumed to have identical mass m, the center of mass
velocity of the particles in the cell remains unchanged during
the collision process. Further, the conservation of energy
and angular momentum is also achieved by the constrained
stochastic exchange of particle velocities. The hydrodynamic
velocity field can be obtained as the average velocity v(t) at
position r in the cell.

The collision operator injects energy into the system, corres-
ponding to an extensile or contractile force dipole density. This
is achieved by incorporating the local active stress proportional
to the nematic tensor order parameter Q, such that the force
dipole coaligns with the local director field n of the cell. Thus,
the collision operator is a linear combination of passive and
active contributions:

Ni ¼ NN
i þ adt

ki � kj
� �

m

� �
n (3)

where NN
i is a nematic multi-particle collision operator (see

Appendix A) which corresponds to the passive contribution48,52

arising from the orientational order of nematic particles. The
active contribution comprises two terms: (i) individual
impulses (per unit mass) (adt/m)kin for each particle i, repre-
senting the active force driving a change in momentum at each
time step, and (ii) a term to ensure local conservation of
momentum �(adt/m)hkjin, which is averaged over a cell. The
first term (adt/m)kin is composed of three factors: (i) a, which
represents the local active dipole strength in the cell given by
a = Ñ � a, where a is the activity of each particle and Ñ is the
number of particles in a cell, (ii) kin = �n, sets the direction of
the active force acting on the particle i, and (iii) dt/m, ensures
that a has units of force. As stated above, a is directly propor-
tional to the number of local active agents in the cell, and
positive (negative) particle activity a leads to extensile (contractile)
active nematics. The factor ki is a parallel/antiparallel coefficient.
For particles that are above the plane defined by the center of mass
r and the director field n, ki = +1, indicating that the particle is
driven ‘‘forward’’, and particles below the plane are kicked ‘‘back-
ward’’ (ki = �1).

The collision operator also updates particle orientation ui,
thus computing the dynamics of the nematic tensor order
parameter, defined as Q = h2uiui � 1̂i. Here 1̂ denotes the
identity matrix. The tensor order parameter Q quantifies the
extent and direction of orientational order through its largest
eigenvalue S and the corresponding eigenvector n in the cell.
The orientations are updated based on the local equilibrium
distribution of the orientation field

ui(t + dt) = n(t) + gi (4)
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where the noise gi is drawn from the Maier–Saupe distribution
Bexp((US/kBT)[ui�n]2). The mean-field interaction constant U
and inverse thermal energy 1/kBT govern the width of the
distribution around n(t). Consequently, when US/kBT is small,
all orientations are equally probable, leading to an isotropic
phase. For large US/kBT, the distribution sharply centers about
n resulting in a nematic phase. The gradients in velocity are
coupled to shear alignment through discretised Jeffery’s equa-
tion (see Appendix A) of a slender rod with tumbling parameter
l.52 The value of the tumbling parameter sets the nematic fluid
in either the shear-aligning or flow-tumbling regimes. Previous
investigations48,52 have shown that when lo 1 the nematogens
tumble with the flow. A relaxation parameter, w, allowing
averaging of Jeffery’s equation over a small number of time
steps, and a viscous rotation coefficient, gR, are incorporated in
NN

i (see Appendix A) for the coupling of the velocity field to
director dynamics. The coupling in necessary to address the
backflow effects produced due to the torques on the MPCD
particles. Thus, the fluid velocity and orientation of the nematic
fluid are two-way coupled to produce active nematohydro-
dynamics.

2.2 Simulation details

We consider flow aligning nematics with extensile activity
(a 4 0) confined in a corrugated channel.53 A schematic of
the corrugated channel used for the simulations is shown in
Fig. 1. Cartesian coordinates are adopted � x along the length
of the channel and y in the perpendicular direction, i.e., across
the channel, and the channel centerline is at y = 0. The profile
of the corrugated walls in the channel is represented by cosine
functions and the equations describing the top and bottom wall
are ytop(x) = (W/2) + A cos(2px/L) and ybottom(x) = (�W/2) �
A cos(2px/L), respectively. Here, W is the mean width of the
channel and A and L are the amplitude and wavelength of
the corrugations respectively. Since the width varies along the
channel, the minimum width, Wmin, is defined as the distance
between the trough of the top wall, W/2 � A, and the crest of the

bottom wall, �W/2 + A, i.e., Wmin = W � 2A. Similarly the
maximum width in the corrugated channel is Wmax = W + 2A.

As discussed in Section 2.1, the total activity of the fluid in
the channel is proportional to the number of active particles in
the system. Therefore, for a fair comparison, (i) it is necessary
for the volume of the fluid in the corrugated and flat channel to
be identical and (ii) the fluid is of the same density and
viscosity in both the cases. In this work, two-dimensional
simulations are considered; therefore, the area of the corru-
gated channel occupied by the active fluid (volume per unit
length) is given by

Area ¼
ðL
0

ytopðxÞ � ybottomðxÞ
� �

dx ¼W � L (5)

which is equal to the area of the flat-walled channel. This
equivalence ensures that the number of active particles used
to discretize the continuum in both flat and corrugated chan-
nels are equal. Secondly, the density and viscosity of the fluid in
the AN-MPCD algorithm are determined by the average particle
density of the cell.54 Therefore, the average particle density of
the cell is set to hNi = 20 in both cases, to ensure the same fluid
properties in all channel geometries.

The results are reported in MPCD units of cell size l = 1,
particle mass m = 1 and thermal energy kBT = 1, which leads to

units of time t ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=kBT

p
¼ 1. The AN-MPCD particles are

initialised with random velocities and oriented along the y axis.
In the simulations, the mean-field interaction constant U = 10
is set to achieve the nematic phase.48 The tumbling parameter
l = 2 is chosen for the active nematic fluid to be in the shear-
aligning regime.48 The heuristic coupling coefficient w is fixed
at 0.5 and the viscous rotation coefficient is fixed at gR = 0.01.
The time step is set to dt = 0.1 and simulations are run for a
total of 6 � 105 time steps which includes a warm-up phase of
3 � 105 time steps. The channels investigated are of the
following dimensions: (i) a flat-walled channel (A = 0) with
length L = 100 and width W = 20 and (ii) a corrugated channel
with wavelength L = 20, amplitude A = 3 and the same length
and width as in (i) unless specified otherwise. Periodic bound-
ary conditions are imposed along the x direction for the flow
velocity and orientation tensor (see Appendix B.3.1). The walls
of the channel are impermeable with no-slip boundary condi-
tions using phantom particles (see Appendix B.3.2). A strong
homeotropic boundary condition is enforced for the director
field ensuring that the director field is oriented perpendicular
to the channel walls (see Appendix B.2).

2.3 Corrugated channel boundaries

The boundary conditions that simulate the active nematic fluid
in a corrugated channel as shown in Fig. 1 comprise two parts:
(i) the wall surface and (ii) the boundary rules for the transfor-
mation of the velocity during the collision event. The channel
walls are sinusoid functions as described in Appendix B. The
rules for velocity transformation during the collision event with
a wall are bounce-back. The transformation of the orientation
of the particle involves multiple operations to obtain the desired

Fig. 1 Schematic diagram of the corrugated channel used in the simula-
tions: A and L are the amplitude and wavelength of the corrugations,
respectively, L is the length, W is the mean width, Wmin is the minimum
width and Wmax is the maximum width of the channel. The boxed
equations in the figure describe the geometry of the top and bottom wall
of the channel.
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anchoring on the curved wall. The details of implementation of
these boundary conditions are provided in Appendix B.3, and is
closely adapted from Wamsler et al.53

3 Results and discussion

We now present the results of two dimensional simulations of
an active nematic fluid confined in flat and corrugated chan-
nels. We first investigate the active nematic fluid flow in a flat-
walled channel by systematically varying the activity a and
channel width W. The results confirm that AN-MPCD simula-
tions are in agreement with previous studies30,34,55 (Sections 3.1
and 3.2). Subsequently, by replacing the flat walls with corru-
gated walls, we identify the differences in the fluid flow
behaviour and the underlying physical mechanisms involved
(Sections 3.3 and 3.4). The amplitude, A, and the wavelength, L,
of the corrugations are altered to understand the effect of
geometrical parameters. Lastly, the influence of circulations
trapped in the corrugations is discussed along with the results
of a linear stability analysis where the effect of the swirls
trapped in the corrugations of the channel is interpreted as
an effective slip velocity (Section 3.5).

3.1 Spontaneous flow transition in a flat-walled channel

Theoretical30,34,55 and experimental32 investigations have
shown that a confined active nematic fluid undergoes a spon-
taneous flow transition at a threshold critical activity,30 herein
denoted as ac. This flow transition can be characterised by a
non-flowing state when a o ac and a spontaneous flow state
when a 4 ac. To test this, using the AN-MPCD algorithm, we
simulate an active nematic fluid confined in a flat-walled
channel with systematic increments in the value of activity.
Both unidirectional and bidirectional flows have been discussed in
the literature following a spontaneous flow transition;13,30,32,34,55–57

however, in this manuscript, we focus on unidirectional flows
and the scaling30,55 relationships that connect the strength of
the flow, activity and confinement length scale. The flow in the
channel is characterized by the root-mean-squared velocity,

Vrms ¼
ffiffiffiffiffiffiffiffi
v2h i

pD E
t
, where v is the fluid velocity in the cell. The

calculation of Vrms is a multi-step process; first the squared
fluid velocity v2 is computed within each cell and spatially
averaged to obtain hv2i(t). Subsequently, a steady-state is iden-

tified and the time average of
ffiffiffiffiffiffiffiffi
v2h i

p
is computed. It is evident

that a no-flow state (negligible Vrms) is observed for ao ac and a
flow state is observed for a 4 ac (Fig. 2(a)). Above ac, Vrms

Fig. 2 Spontaneous flow transition in a flat-walled channel characterized by change in root-mean-squared (RMS) velocity Vrms as a function of (a)
activity a for W = 20 and (b) channel width W for various activities. (c) The critical width Wc plotted as a function of activity for a flat-walled channel.
(d) Plot of Vrms/a

1/2 as a function of the reduced distance from the critical point (W�Wc)/Wc for various activities, collapsing the data reported in (b) into a
single curve.
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continues to increase as a function of activity. The sudden
change in Vrms is indicative of phase transition-like behavior.
We determine the critical activity by curve fitting the Vrms data
of both no-flow and flow states to the mathematical form
Vrms /

ffiffiffi
a
p

(dashed curves in Fig. 2(a)). The critical activity ac

of the system is identified from the intersection point (dia-
mond in Fig. 2(a)) of the fitted curves.

The critical activity for spontaneous flow transition of con-
fined active nematics can be calculated from a linear stability
analysis of the governing continuum equations55 to be of
the form

âc ¼
8p2mg�1K

W2Sð2þ l̂Þ
(6)

where, g is the rotational viscosity, K is Frank’s elasticity
constant, m is the fluid viscosity and l̂ is the flow aligning
parameter. We use âc and l̂ for critical activity and flow aligning
parameter in continuum theory to differentiate the parameters
from their AN-MPCD counterparts. From eqn (6), it is apparent
that apart from the fluid properties, critical activity is also a
function of the channel width, W. This indicates that the
presence of a critical width Wc, is also a function of activity.

To quantify spontaneous flow transition using Wc, we sys-
tematically increase the width of the channel for various
activities (Fig. 2(b)), where Vrms is plotted as a function of
channel width W. The active nematic fluid undergoes the transi-
tion from no-flow to spontaneous flow as the channel width is
increased beyond Wc for a specified activity. The critical width is
computed using a similar methodology to determining critical
activity by curve fitting the data using Vrms /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W �Wc

p
and

extracting Wc. The critical width Wc decreases as activity
increases (Fig. 2(c)). This analysis confirms that for a flat-

walled channel, the critical width scales as Wc �
1ffiffiffi
a
p , consistent

with eqn (6) and previous investigations.30

Further, it can be seen that the dependence of Vrms on W is
similar for different activities (Fig. 2(b)). Therefore, we collapse
the data by plotting Vrms/a1/2 as a function of (W � Wc)/Wc

(Fig. 2(d)). This collapse is explained through a scaling analysis
from the linear stability results. At steady state, the active stress
(BaSy) and the viscous stress (Bmv/W) balance

v � aSy
W

m
; (7)

where y is the characteristic angle of the director field. Upon
spontaneous flow transition, we can consider y to have the form

y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W �Wc

Wc

r
: (8)

Thus, the angle scales with the reduced width, which acts as
a non-dimensional function of the channel width akin to a
second order phase transition. Since W E Wc near the transi-
tion, combining eqn (6)–(8) gives the velocity of the active

nematic fluid

v

a1=2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W �Wc

Wc

r
; (9)

explaining the collapse of the simulation results shown in
Fig. 2(d). Therefore, the AN-MPCD simulations of a fluid
confined within a flat-walled channel are in agreement with
the investigations of the existing literature.

3.2 Coherent flows in a flat-walled channel

When confined, an active nematic fluid undergoes a sponta-
neous flow transition, and a coherent flow is usually observed
immediately above the transition point.31,36,58,59 Coherent flow
is characterized by velocity fields that are dominant along the
length of the channel vx E |v|. We now discuss the underlying
physical mechanism associated with flow transition to a coher-
ent flow in a flat-walled channel (Fig. 3). The flow field
is plotted by superimposing streamlines on fluid vorticity,
o = (r � v)z, where the colors represent the clockwise (blue)
and anticlockwise (red) rotation of the fluid elements. The local
director field n is shown by a black dashed line color shaded by
the scalar order parameter, S. Active force, fa, produced by the
nematic fluid is calculated as fa pr�Q and is shown with black
arrows depicting the direction and color shading depicting the
magnitude of the force produced.

For a lower activity (a o ac), in a flat-walled channel a no-
flow state is observed in the flow domain (Fig. 3(a)), with the
director field aligned in the nematic phase (Fig. 3(b)). The
active forcing produced by the fluid is insignificant (Fig. 3(c)).
However, at a higher activity (a 4 ac), a bend-like deformation
of the director field is observed as shown in Fig. 3(h), in which
the thick dashed line is a visual representation of the bend
deformation and the arrow represents the direction of fluid
flow. The active force produced by the fluid corresponding to
the bend deformation is maximum at the center of the channel
and is oriented along the x axis (Fig. 3(i)). Thus, the active force
drives the flow along the length of the channel producing
coherent flows (Fig. 3(g)).

3.3 Coherent flows in a corrugated channel

In the case of a corrugated channel, when the activity a is lower
than a critical value ac, swirling flows constituted by closed
streamlines are observed. This is illustrated in Fig. 3(d) for an
amplitude of A = 3 and wavelength L = 20, demonstrating
a significant difference from the no-flow state observed in a flat-
walled channel when a o ac.

The origin of swirling flows can be explained by observing
the director field (Fig. 3(e)). Due to the strong homeotropic
anchoring boundary condition, the director field aligns perpen-
dicular to the wall. However, due to the reflection symmetry
about the channel centerline, the director field within the bulk
of the channel remains oriented perpendicular to the center-
line. Therefore, the nematic elasticity induces a bend-like
deformation close to the channel wall which is visually depicted
by thick dashed lines in Fig. 4(a). As a consequence of this
bend, the fluid experiences an active force near the walls
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(Fig. 3(f)), where the magnitude of force is maximum at the
bends. This active force drives the flow towards the centre of
the corrugation, as indicated by the arrows in Fig. 4(a). Since
the corrugation is symmetric with respect to the y-axis, two
bends are observed near the wall, facing each other. As a
consequence, the flow converges at the center of the corruga-
tions and is subsequently driven towards the bulk of the
channel. This dynamics leads to the formation of counter-
rotating swirls. Due to the symmetry of the channel, a pair of
bends are observed at both the top and bottom walls, resulting
in four swirls within the fluid (Fig. 3(d)). The swirling flows
prior to spontaneous flow transitions have been analyzed
by Zumdieck et al.44 Calculations in the limit A/L { 1 and

W { Wc { L showed that the velocity of the swirls depends on

the geometry of the channel as � A

L4
.

At higher activities (a 4 ac) in the corrugated channels,
coherent fluid flow is obtained alongside the swirls near the
walls (Fig. 3(j)). From Fig. 3(k) we observe that a bend like
deformation can be noticed in the bulk of the channel
(Fig. 4(b)), which results in coherent flow in the channel. This
is in contrast to lower activities (Fig. 4(a)). The combination of
strong anchoring boundary condition and nematic elasticity
induces a bend-like deformation in the director field close to
the channel wall with opposite polarity to the bend in the bulk
(Fig. 4(b)). The bend in the director field close to the wall
generates an active force, driving the fluid towards the centre of
undulation and then towards the bulk of the fluid resulting in
swirling flows. From Fig. 3(l), it is evident that the active force
corresponding to the bend in the director field close to the wall
is pronounced compared to the bulk of the channel. It is these
regions of high bend and strong active forcing that drive and
sustain the swirling flow alongside the bulk coherent flow. The
swirls generated remain trapped inside the corrugations and
coexist along with coherent fluid flow along the center of the
channel (Fig. 3(j)). It is interesting to note that in a flat-walled
channel, for a 4 ac, the fluid at the centerline of the channel
experiences a large active force (Fig. 3(i)). In this case, although
the active force near the walls is of comparable strength but
opposite polarity, it is the active force along the centerline of

Fig. 4 An enlarged view of the director field in the corrugated channel: (a)
below critical value ao ac from Fig. 3(e) and (b) above the critical value a4
ac from Fig. 3(k). The red dashed lines represent the bend like deformation
and the blue arrows point in the direction of the active forcing and the
subsequent fluid flow.

Fig. 3 Snapshots of the flow field (left column), director field (middle column) and active forcing (right column) in flat and corrugated channels at lower
(a o ac) and higher (a 4 ac) activity. In the left column, the flow field is shown, which is represented by streamlines superimposed on the vorticity of the
fluid. The colorbar is shown at the bottom with blue and red representing clockwise and anticlockwise rotation respectively. In the middle column, the
director field is shown by a black dashed line color shaded by the scalar order parameter. In the right column, the active force is illustrated by black arrows
which are color coded by the magnitude of the force. Figures (a)–(f) correspond to low activity and figures (g)–(l) correspond to higher activity at which
coherent flows prevail. All channels have a width of W = 20 and corrugated channels have an amplitude of A = 3 and wavelength L = 20. For the
flat-walled channel, ac = 0.015; the cases of low and high activity correspond to a = 0.009 and a = 0.017 respectively. For the corrugated channel,
ac = 0.019; the cases of low and high activity correspond to a = 0.017 and a = 0.023 respectively.
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the channel that dictates the direction of the coherent flow.
Similarly, in the corrugated channel the active force is large
around the centerline and drives the coherent flow along the
length of the channel (Fig. 3(l)). However, the active force
experienced by the fluid close to the walls has a higher intensity
but with an opposite polarity.

The existence of coherent flows with swirls aligns with the
experimental observations reported by Wu et al.33 When the
active nematic fluid (suspension of microtubule and motor
protein mixture) is confined in a ratchet like geometry, coher-
ent flows were produced but were accompanied by swirls
trapped in the corrugations. This observation also emphasizes
that the channel geometry can influence the flow dynamics and
behavior of an active nematic fluid confined within it.

3.4 Effect of changing the amplitude and wavelength of the
corrugations

In a flat-walled channel, the active nematic fluid undergoes a
flow transition from a state of no-flow to a state of coherent
flow. In contrast, corrugated channels exhibit counter rotating
swirls prior to the flow transition. Therefore, we now investi-
gate the effects of change in the corrugation geometry on the

spontaneous flow transition of an active nematic fluid to a
coherent flow state. This is achieved by varying the amplitude,
A, and wavelength, L, of the corrugations of the channel.

The results of change in amplitude are shown in Fig. 5(a),
where root-mean-squared velocity, Vrms, of the fluid is plotted
as a function of activity a for various amplitudes. The active
nematic fluid undergoes a flow transition at all amplitudes.
However, above the critical activity, the velocity of the fluid
decreases with the increase in amplitude. Further, it is also
observed that larger amplitudes shift the critical activity at
higher values. Note that all simulations have been carried out
at a fixed mean width W, and therefore, an increase in the
amplitude A reduces the minimum width, Wmin, of the channel.
Therefore, the active fluid encounters a stronger geometric
constriction with the increase in the amplitude of the corruga-
tion, and thus causing the shift of the flow transition to higher
activities.

To determine the critical activity of the active nematic fluid
in the corrugated channel, the corrugated channel is split into
two domains: region I represents the center of the channel,
|y| o (Wmin/2), and region II represents the fluid trapped in the
corrugations, (Wmin/2) o |y| o (W/2 + A) (see the schematic in

Fig. 5 Effect of channel geometry on spontaneous flow transition to a coherent flow state in corrugated channels. Variation in Vrms with respect to
activity for corrugations of (a) different amplitudes A but fixed wavelength L = 20 and (d) different wavelengths L but fixed amplitude A = 2. In both cases,
the mean width is fixed at W = 20. The channel length is chosen as L = 100 in (a) and L = 200 in (d). Figures (b) and (c) illustrate the variation in Vrms as a
function of a for a fluid within the bulk (region I) and corrugations (region II) of the channel, respectively. Figures (e) and (f) depict the change in critical
activity in the corrugated channel as a function of amplitude and wavelength normalised by the mean width W of the channel, respectively.
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Fig. 7(a)). The root-mean-squared velocity of the fluid calcu-
lated in the central region I, VI

rms, and in region II within the
corrugations, VII

rms, is shown as a function of activity in Fig. 5(b)
and (c) respectively. As in a flat channel, VI

rms remains small
below the critical activity but increases rapidly as �

ffiffiffi
a
p

beyond
the flow transition. The critical activity ac corresponding to the
corrugated wall is determined from Fig. 5(b). On the other
hand, the fluid velocity in the corrugations, VII

rms, continues to
gradually increase with increasing activity without a discernible
indication of the spontaneous flow transition (Fig. 5(c)). The
velocity of the fluid trapped in the corrugations VII

rms increases
with the increase in the amplitude of the corrugations. A larger
amplitude results in a stronger bend in the director field that
generates a stronger flow in the corrugations. The critical
activity required for flow transition determined from Fig. 5(a)
is shown in Fig. 5(e) as a function of amplitude A of the
corrugations. The increase in critical activity with amplitude
appears to show a quadratic dependence.

To study the effect of the wavelength of the corrugations L
on the active nematic fluid flow, we vary L for a fixed amplitude
and mean width of the channel. A comparison of the root-
mean-squared velocity Vrms of the fluid as a function of activity
a for various wavelengths (Fig. 5(d)) with Vrms as a function of
amplitude (Fig. 5(a)) demonstrates that the influence of wave-
length in the investigated range is weaker. Changing the
wavelength of the corrugations affects the velocity of the
coherent flow of the active nematic fluid, with larger wave-
lengths resulting in larger velocity. Further, increasing the
wavelength of the channel reduces ac, the critical activity
required for the spontaneous flow transition (Fig. 5(f)). The
critical activity decreases with wavelength, showing a strong
power law decay.

A corrugated channel can be perceived as a geometry in
between two flat-walled channels of different width, as sche-
matically illustrated in Fig. 6. The two limiting cases L- 0 and
L - N both approach the geometry of flat-walled channels
with W E Wmin and W E Wmax respectively (see Fig. 6). In the

simulations analyzed above L/W E 1 as indicated by the
illustration in panel (c) in Fig. 6. Reducing L/W leads to a
denser packing of corrugations (panel (b)). The limiting case L/
W - 0 (panel (a)) corresponds to a flat-walled channel of width
Wmin. On the other hand, an increase in L/W leads to a channel
geometry shown in panel (d) with limiting case L/W - N

(panel (e)), that again corresponds to a flat-walled channel but
now of width Wmax. Therefore, to first order, any corrugated
channel can be thought of as a construction intermediate
between the limits of two flat-walled channels of width Wmin

and Wmax. As a consequence, the critical activity required for
spontaneous flow transition of an active nematic confined
in a corrugated channel falls between the critical activity of
two flat-walled channels of width Wmin and Wmax. This was also
evident in Fig. 5(b) where the root-mean-squared velocity data
were plotted against activity for various wavelengths.

Since critical activity is inversely proportional to the square of
channel width, critical activity required for spontaneous flow
transition in a flat-walled channel of width Wmin is larger than that
in a channel of width Wmax. Therefore, the critical activity required
for the spontaneous flow transition in intermediate configurations
will be smaller than that of a flat-walled channel of width Wmin but
greater than that of a flat-walled channel of width Wmax.

Yet another way to perceive the coherent flows in corrugated
channels when wavelength is increased from that corres-
ponding to Wmin to Wmax is the reduction in the number of
geometrical constrictions or correspondingly the increase in
the volume occupied by the fluid between the crests, where
swirls are present. Hence the reduction in critical activity with
the increase in wavelength can also be thought of as providing
an effective slip to the fluid in the bulk.

3.5 Effect of swirls on the coherent flow of active nematics in
corrugated channels

We have seen that coherent flows in the center of a corrugated
channel are accompanied by swirls trapped in the corrugations
(Fig. 3(j)). The presence of swirls in region II (Fig. 7(a)) uniquely

Fig. 6 Schematic illustrating the corrugated channel of mean width W as an intermediate construction between a flat-walled channel of width Wmin =
W � 2A and one of larger width Wmax = W + 2A. The corrugated channel approaches the flat-walled channel of width Wmin and Wmax when L/W - 0 and
L/W - N respectively. The green arrow at the top shows the increase in critical activity for a corrugated channel of wavelength L when compared
to that of a channel of width Wmax. The yellow arrow at the bottom shows the decrease in critical activity for a corrugated channel when compared to
that of a flat-walled channel of width Wmin.
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differentiates the coherent flows in corrugated channels com-
pared to flat-walled channels. To elucidate the role of swirls in
supporting coherent flows, we interpret the swirls as a mecha-
nism to provide a slip velocity to coherent flows in the center of
the channel (region I; Fig. 7(a)).

We model the effect of swirling fluid in the corrugations
(region II) on the flow in the central region (in region I) as
providing a slip at the interface of two regions, y = �Wmin/2. This
model is schematically illustrated in Fig. 7(a). The extent of slip is
characterised by a slip velocity vs and the corresponding slip length
b. The slip length corresponds to a fictitious distance at which the
fluid velocity in region II decays to zero if the velocity gradient very
close to the boundary in region I is linearly extrapolated as

vsðxÞ ¼ b
dv

dy

				
y¼�Wmin

: (10)

The above equation assumes that viscous stress dominates
the interface between region I and region II and hence utilises

the Newtonian constitutive relation in evaluating the slip
length b. Due to the variation in the geometry along the
channel length, slip length is not a constant. The function
b(x) accounts for the effect of the fluid that is present in the
corrugations on the coherent flow in the center of the channel.

An example of the slip length b(x) extracted from eqn (10) for
a coherent flow state in a corrugated channel is shown in
Fig. 7(b). The horizontal dashed blue line demarcates region I
from region II. The dashed red lines connecting the symbols
indicate the slip length b(x) from the boundary y = �Wmin. As
expected the slip length goes to zero at the constriction, where
the interface separating region I and II coincides with the rigid
boundary. The slip length is a periodic function but not mirror
symmetric with respect to its zero value due to the asymmetry
of the swirls in region II (Fig. 3(j)). The slip length is positive on
the left hand side and negative on the right hand side of the
corrugation when the coherent flow is from left to right, as
shown in Fig. 7(b). The positive slip length indicates a support
in maintaining the coherent flow. The negative slip length

Fig. 7 (a) Schematic illustrating the demarcation of the active nematic fluid domain into two regions and the definition of slip length. Region I when |y| o
(Wmin/2) where the bulk of the fluid is located and region II when (Wmin/2) o |y| o (Wmax/2) where the swirls are present. The fluid in region I experiences
a slip velocity due to the presence of fluid in region II. (b) Slip length calculated at the boundary of regions I and II. The boundary at y = �Wmin/2 is
indicated by blue dashed lines, while the boundary accounting for slip length, i.e., y(x) = �Wmin/2 � b(x), is shown by the red continuous line connecting
the symbols. The circular arrows indicate the sense of rotation of the vorticity associated with the flow in the corrugations. (c) Variation in slip length b(x)
for various channel wall amplitudes with L = 20 and (ii) average slip length hbi for corresponding amplitudes. (d) Variation in slip length b(x) for various
wavelengths with A = 2 (x-axis is normalised by L) and hbi as a function of wavelength.
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indicates the resistance offered by the swirls towards the
coherent flow on the right hand side of the corrugation, which
occurs due to the presence of the counter clockwise rotating
swirls in this case. However, as evident from Fig. 7(b), the
extent of positive slip on the left side is more than that on the
right side, indicating that the fluid in region I experiences a net
positive slip due to the presence of fluid in region II. Thus, the
overall effect of active nematic fluid entrapped in the corru-
gations is to endow a positive slip to the coherent flow in the
center of the channel.

Since the amount of fluid contained in the corrugations
varies with the amplitude and wavelength which changes the
behaviour of swirls in corrugations, the slip length b(x)/A is
plotted for various amplitudes and wavelengths of the corruga-
tions in Fig. 7(c) and (d). In Fig. 7c and d(i), the abscissa is
normalised with L for comparison between various cases. It is
clear that the slip length increases with amplitude.

The variation with wavelength is more intricate (Fig. 7d(i)).
To better understand how the effective slip length calculated
from eqn (10) varies with wavelength, we average the slip length

over an integer number of wave, hbi ¼
ÐL
0
bðxÞdx=L. The average

slip length is plotted separately as a function of amplitude and
wavelength in Fig. 7c and d(ii). Increasing the amplitude
increases the average slip length monotonically. However,
increasing the wavelength seems to show two distinct beha-
viours: when the wavelength is small (L/W o 1), slip length
increases with the increase in wavelength, but it becomes
independent of wavelength for large wavelength (L/W 4 1).

To understand the implications of these variations we
analyze the flow transition in corrugated channels through an
analytical approach. Since the fluid in the center of the channel
(region I) exhibits a flow transition similar to that in a
flat-walled channel, the role of the slip in the spontaneous
flow transition may be analyzed using a linear stability analysis

(see Appendix C for detailed calculations). We consider an
active nematic fluid contained in a flat-walled channel of width
W. The channel walls are characterised by a slip length b,
resulting in a slip velocity at the channel boundary. A quasi
1D channel geometry is assumed, i.e., flow occurs only along
the channel length but neither the flow nor director field
exhibits any variations along the channel length. As described
above we assume that viscous stresses dominate the boundary
and hence eqn (10) based on the Newtonian constitutive
relation is used as a boundary condition on the channel walls.
Following ref. 30 and 55, the linearised governing equations for
the director field y(y) and the stream-wise velocity field vx(y) are

@ty ¼ g�1K@y2y�
@yvx
4
ð2� l̂ cos 2yÞ (11)

rqtvx = qy(mqyvx + âS sin 2y). (12)

Subjected to the slip boundary conditions vx ðy ¼ 0 and y ¼

WÞ ¼ b
dv

dy
and strong homeotropic anchoring y ðy ¼ 0 and

y ¼WÞ ¼ p
2

, we seek stationary solutions of eqn (11) and

(12). The condition for the existence of flow for a nonzero
activity is found to be

1 � cos TW + bT sin TW = 0, (13)

where T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
âð2þ l̂ÞS
2mg�1K

s
(see Appendix C) is an inverse length

scale. Together, TW represents a dimensionless activity number
that represents the competition between confinement and
active nematicity. The solution of eqn (13) prescribes the critical
activity âc,s required for spontaneous flow transition in a flat-
walled channel endowed with slip boundary conditions.

Fig. 8 Reduction in the critical activity for spontaneous flow transition in a corrugated channel of minimum width Wmin compared to a flat walled
channel of width W = Wmin. Vrms is plotted as a function of a for (a) a corrugated channel of Wmin = 16 and A = 2 in comparison with a flat-walled channel
of W = 16 and (b) a corrugated channel of Wmin = 12 and A = 4 in comparison with a flat-walled channel of W = 12. (c) Results from the linear stability
analysis – the critical activity in a flat-walled channel with slip boundary conditions, ac,s, normalised with that in a channel with no-slip boundary
conditions, ac,0, is plotted against the slip length as a continuous line (full solution given by eqn (13)). The approximate solution given by eqn (14) is shown
as the dashed line. Critical activity for the corrugated channel, ac, is normalised with that of a flat-walled channel ac,0, obtained from AN-MPCD
simulations, and is plotted against the normalised average slip length, hbi/Wmin which are shown by the markers in the figure.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
4 

Se
pt

em
be

r 
20

24
. D

ow
nl

oa
de

d 
on

 1
4.

11
.2

02
4 

14
:0

1:
17

. 
View Article Online

https://doi.org/10.1039/d4sm00760c


8240 |  Soft Matter, 2024, 20, 8230–8245 This journal is © The Royal Society of Chemistry 2024

An explicit expression for critical activity cannot be written
down due to the non-linearity of eqn (13), and must be found
numerically. However, for small slip lengths (b/W - 0),
eqn (13) can be further simplified to obtain an explicit expres-
sion for critical activity

âc;s ¼ âc;0 1� 2
b
W

� �
þ 4

b
W

� �2
" #2

; (14)

where âc,0 is the critical activity required for spontaneous flow
transition in a flat-walled channel with no-slip boundary con-
ditions (eqn (6)). Clearly, eqn (14) recovers the correct limit of
âc,s - âc,0 when the slip length b = 0. Further, the critical
activity is reduced in a channel with slip boundary conditions
compared to that with no-slip boundary conditions, and
the reduction is proportional to square of the slip length at
leading order.

We now compare the results of the linear stability analysis
with that from AN-MPCD simulations in Fig. 8. Firstly, the root-
mean-square velocity Vrms is plotted against activity for a
corrugated channel of Wmin = 16 and A = 2 in comparison with
a flat-walled channel of width W = 16 (Fig. 8(a)) and in Fig. 8(b)
Vrms is plotted against activity for a corrugated channel of
Wmin = 12 and A = 4 in comparison with that in a flat-walled
channel of width W = 12. In each figure the fluid in the
corrugated channel undergoes spontaneous flow transition at
a lower activity compared to that of a flat-walled channel. This
reduction is indicated in the figure using yellow arrows. The
reduction in the value of critical activity for the corrugated
channel can be attributed to the slip velocity provided by the
fluid trapped in the corrugations, consistent with the predic-
tions of the linear stability analysis. The fluid in the center of
the channel (region I) is separated from the no-slip walls
because of the presence of region II. On the other hand, in a
flat-walled channel, the fluid is always in contact with the
channel wall and the no-slip boundary condition on the
channel walls mandates a higher activity for a spontaneous
flow transition.

We now compare the prediction of the linear stability
analysis, eqn (13), quantitatively with the results from AN-MPCD
simulations. The critical activity âc,s in a flat-walled channel
endowed with a slip velocity is plotted as a function of slip length
b (Fig. 8(c)). In this plot, the critical activity is normalised by âc,0,
the critical activity in a rigid channel that imposes no-slip
boundary conditions (eqn (6)). The slip length is normalised
with the channel width W. As expected, both the full solution
(eqn (13)) and the approximate solution (eqn (14)) of the critical
activity decrease with increasing slip length. The AN-MPCD data
confirm that the critical activity decreases with slip length. The
significant match between the results from the linear stability
analysis and the AN-MPCD simulations suggests that the effect
of active swirling flows that are generated in the corrugations
due to the distortions in the director field is equivalent to an
effective slip for the active coherent flow that develops in the
center of the corrugated channel.

4 Conclusions

In this work, we have performed numerical simulations using
the active nematic multi-particle collision dynamics (AN-MPCD)
algorithm to study the spontaneous flow transition and the
resulting flow state of an active nematic confined in a corrugated
channel. Active nematics confined between two parallel plates is a
well studied system.34,44,60 At low activities, the active nematic
fluid is stationary with nematic elasticity dominating the system.
At sufficiently high activity, the nematic fluid undergoes a spon-
taneous flow transition. The resulting velocity of the fluid is
proportional to the square root of activity, while the critical
activity is inversely proportional to square of the channel width.
In this work, we first demonstrated these scalings for an AN-
MPCD fluid.

We extended channel-confined active fluids to study the
behaviour of active nematics confined in corrugated channels.
In this study, the wavy walls on the top and bottom of the
corrugated channel are out-of-phase, but qualitatively similar
conclusions are reached in a snaking channel in which the
bottom and top walls are in-phase (Appendix D). We find that
the distinguishing feature of the spontaneous flow transition in
corrugated channels is the transition from a weak flow state to
a strong flow state. This is in contrast to a flat-walled channel
where the transition is from a no-flow state to a flowing state.
The weak flows before the transition originate from distortions
in the director field arising from the preferred anchoring of the
active nematic to the curved boundaries. The critical activity
required for flow depends upon the channel geometry. Increas-
ing the amplitude of the corrugations while keeping the mean
width of the channel fixed increases the constrictions in the
channel and thus increases the critical activity required for flow
transition. On the other hand, changing the wavelength of the
corrugations can be understood by regarding the corrugated
channel as intermediate between two flat-walled channels of
different widths, Wmin and Wmax. The critical activity for the
corrugated channel is smaller than that for a flat-walled chan-
nel of width Wmin and higher than that for a flat-walled channel
of width Wmax. The current study limited itself to the transition
to unidirectional flow. However, it is well-known that bidirec-
tional flow32,56,57 and higher modes frequently occur13,34,55 in
flat channels. Future work should consider how undulations,
slip length or roughness affect the stability of bidirectional flow
states.

At activities above the flow transition, the boundary-induced
swirling flows are confined to the corrugations. These swirls
can be contrasted with Newtonian flows in corrugated micro-
channels: (i) Newtonian fluids at low Reynolds number do not
generate swirls in symmetric corrugated channels due to
reversibility61 and (ii) swirls generated by a Newtonian fluid
at high Reynolds number are driven by the flow in the center of
the channel.62,63 In contrast the swirls observed in the active
nematics in corrugations are generated by the active stress
arising from the distortions in the director field. Our analysis
shows that the effect of these swirls can be modelled as an
effective slip to the coherent fluid flow that occurs in the bulk.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
4 

Se
pt

em
be

r 
20

24
. D

ow
nl

oa
de

d 
on

 1
4.

11
.2

02
4 

14
:0

1:
17

. 
View Article Online

https://doi.org/10.1039/d4sm00760c


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 8230–8245 |  8241

Using this principle, we performed a linear stability analysis to
determine the effect of the slip mechanism on the spontaneous
flow transition, and matched the results from the simulations
of corrugated channels with predictions from the stability
analysis. Our study reveals the physical mechanisms at play
when active nematics are confined in corrugated channels and
further highlights the significant role of the boundaries in
determining the dynamics of confined active systems.

Finally, our studies also suggest the possible mechanism by
which asymmetric notches/teeth on the channel wall can direct
coherent flows of channel confined active nematics, as seen in
experiments.33 Active swirls generated inside the notches due
to deformations in the director field provide a slip to the
coherent flow, and thus, the chirality of the stronger and bigger
swirl of the asymmetric notches dictates the direction of the
flow in the center of the channel. Future studies should focus
on validating this hypothesis and investigating the role of
asymmetry of the channel corrugations in dictating the direction
of coherent flows.
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Appendices
A Nematic multi-particle collision operator

The nematic collision operator NN
i is a version of the Anderson-

thermostatted collision operator52,64

NN
i ¼ nj � nj

� �
þ I�1 � dLvel þ dLorið Þ
� �

� r0i; (15)

where ni is a random velocity drawn from the Maxwell–Boltz-
mann distribution for a thermal energy kBT and hnji is the
average of the random velocities generated for all the particles
within each cell. Subtracting the average velocities ensures
conservation of momentum when all MPCD particles have the
same mass. The instantaneous moment of inertia for a cell is

given as I ¼
P~N
j

mj r
02
j 1̂� r0 jr

0
j


 �
for point particles relative to the

cell’s center of mass rcm, where r0 i ¼ ri � rcm. The third term in
eqn (15) removes spurious angular momentum introduced by

collision operation dLvel ¼
P~N
j

mj r0 j � vj � nj
� �� �

or by the rota-

tion of the nematogens dLori. Including dLori in NN
i ensures

conservation of angular momentum and accounts for the
nematic back flow. The rotation of the nematogens arises from
the stochastic orientational collision operation (eqn (4)) and

from the response of nematogens to velocity gradients, which is
accounted for through Jeffery’s equation

duJ
i = dtw[ui�X + l(ui�E � uiuiui : E)] (16)

where l is a bare tumbling parameter and w is the heuristic
shear coupling coefficient in a flow with shear rate tensor
E = [rv + (rv)]/2 and vorticity tensor X = [�rv � (rv)]/2. The
heuristic shear coupling coefficient w tunes the hydrodynamic
susceptibility of orientation to velocity gradients. MPCD parti-
cles rotated by torques are balanced by applying equal and
opposite torque to fluid by a change in angular momentum

dLoriðtÞ ¼ �gR
P~N
i

uiðtÞ � _ui, where gR is the viscous rotation

coefficient.

B Corrugated boundary implementation

In AN-MPCD, boundary conditions comprise two pieces:
boundary surfaces, which are sinusoids, and the boundary
rules which are applied to fluid particles when they violate
the boundary surfaces. To implement wavy walls we follow
Wamsler et al.53

B.1 Boundary surfaces

The boundaries are represented by surfaces Sb(r) = 0 expressed
in the form

Sb;0ðrÞ ¼ Ab � r� qbð Þ þ Bb cos
2p
Lb

ðr� AbÞ � ẑ
Abk k

� �
; (17)

where b is the index of the surface. The first term is the
equation of a plane, where qb sets the position of the bth
boundary and Ab denotes the plane’s normal vector. The second
term incorporates the corrugations with amplitude Bb and
wavelength Lb. Even though the simulations are in 2D, the
cross product and projection on ẑ inside the cosine are written
for conciseness. More complicated functions are required for
non-planar wavy surfaces in 3D.53

When the ith MPCD particle resides on the bth surface,
Sb(ri) = 0. At all other points, Sb(ri) a 0. Whenever the MPCD
particle is inside the control volume, Sb(ri) 4 0, but whenever
the MPCD particle has impinged on the wall, Sb(ri) o 0. If an
MPCD particle impinges on a wall, its ballistic trajectory is
ray-traced back to the surface and a collision event is initiated.
The collision is represented by a set of boundary rules.

B.2 Boundary rules

The surface boundary defined by eqn (17) exists at Sb(r) = 0.
Therefore for a particle with position ri, if Sb(r) Z 0, then it is
defined as to be inside the channel. Whenever an MPCD
particle is outside a boundary, a set of rules defines how the
position ri(t), velocity vi(t) and orientation ui(t) are transformed.
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The boundary rules are applied in directions that depend on
the local surface normal

nb ¼
rSb

rSbj j

				
ri

(18)

at the collision point.
Upon crossing the boundary b, particle i’s position is

updated to ri - ri + Dbnb, where Db represents a shift in
particle’s position in the normal direction. Periodic boundary
conditions (Section B.3.1) set Db equal to the system size,
whereas impermeable walls set Db = 0.

The particle velocity upon colliding with the boundary b is
updated using parameters Mb,n (normal) and Mb,t (tangential)
and is transformed as vi - Mb,n(nb # nb)�vi + Mb,t(1 � nb #
nb)�vi. Here, (nb # nb) and (1 � nb # nb) are normal and
tangential projection operators. Periodic boundary conditions
do not change a particle’s velocity and so Mb,n = Mb,t = +1. On
the other hand, impermeable no-slip boundaries require
bounce-back rules with Mb,n = Mb,t = �1.

The orientation of the particle also has multiplicative operators
and is transformed to ui - mb,n(nb # nb)b�ui + mb,t(1� nb # nb)�ui,
which is rescaled back to the unit vector. Here, mb,n and mb,t are
normal and tangential orientation parameters used to update
particle orientation upon crossing the boundary. Free anchoring
is implemented through mb,n = mb,t = 1 such that the orientation is
unchanged. Setting mb,t = 0 imposes homeotropic anchoring, while
mb,n = 0 results in planar anchoring. In this study, we consider only
homeotropic channel walls (mb,t = 0).

B.3 Boundary conditions

The system is enclosed by four boundaries. Two of these are the
left periodic boundary condition (PBC) b = 0 and the right PBC
b = 1. The other two are the impermeable no-slip walls at the
bottom b = 2 and top b = 3.

B.3.1 Periodic boundary condition. In this study, the PBCs
are implemented along the x-direction. This PBC is achieved by
updating the particle location by the length of the simulation
domain in the direction normal to the boundary through which
the particle exits. Velocity and orientation remain unchanged.
Therefore, Mb,n = Mb,t = mb,n = mb,t = 1 and Db,n = L, where
L A {100, 200} is the channel length. For the PBC on the left of
the system, A0 = x̂, q0 = 0 and B0 = 0. For the PBC on the right,
A1 = �x̂, q1 = Lx̂ and B1 = 0.

B.3.2 Impermeable, no-slip wavy walls. The bottom wall is
defined by the surface parameters A2 = ŷ and q2 = 0, with
variable corrugation parameters B2 = B and L2 = L. Likewise,
the bottom wall is defined by A3 = �ŷ and q2 = Wŷ (for channel
width W = 20), with the same variable corrugation parameters
B3 = B and L3 = L as the bottom wall.

On these solid walls, the no-slip boundary condition is
applied by enforcing the bounce-back rule Mb,n = Mb,t = �1
for b A {2, 3}. The particle is rewound to the location where it
crossed the boundary so that it streams with update velocity for
rest of the time step. Solid walls do not impose a translational
shift, Db,n = 0. The intersection of boundaries with MPCD cells
results in lower particle density as part of the cell is inaccessible

to MPCD particles, which in turn lowers the local viscosity64

and causes an effective slip. Therefore, to enforce a perfect no-
slip boundary condition on solid walls, ‘phantom’ particles are
added to ensure correct average density in the cell.65,66

Here, the walls are chosen to be homeotropic, so mb,t = 0 for
b A {2, 3} However, for the no-slip boundary condition, the
boundary rules are insufficient for imposing strong anchoring
because the particles that cross the boundary are immediately
mixed with particles that have not.67 To ensure strong anchor-
ing, the particles in the cells intersecting the boundary Sb are
all aligned along nb. Since the intersecting cells are subjected to
anchoring conditions, this results in the generation of strong
anchoring.67

C Linear stability analysis in a flat walled channel with slip
boundary conditions

Neglecting the variation in the channel geometry and slip
length along x, we calculate the critical activity for onset of
spontaneous flow transition in a flat walled channel endowed
with slip boundary conditions.

In addition to the equation for conservation of mass, the
generalised Navier-Stokes equation for the active nematic fluid
is given as

r(qt + v�rv) = r�s (19)

where r is the density of the fluid and r is the total stress tensor
and is given as r = 2mE � Pd + r(e) + âQ. In the definition of the
total stress tensor (r), m corresponds to the fluid viscosity, E is

the strain-rate tensor Eij ¼
1

2
@ivj þ @jvi
� �� �

, P is the pressure

and r(e) is the elastic stress tensor. The elastic stress tensor

is given as r(e)
ij = �l̂SHij + QikHkj � HikQkj, where Hij is the

molecular tensor and l̂ is the flow aligning parameter. The
molecular tensor is given as Hij = �dF/dQij.

In a corrugated channel, coherent flow in region I is pre-
dominantly unidirectional and thus assuming a translationally
invariant flow in the x direction, the flow field is described by
the velocity field vx = vx(y) and vy = 0. The strain-rate tensor E
has only one no-zero component Exy = qyvx, and thus eqn (19) is
reduced to the following form:

rqtvx = qyrxy. (20)

On solving for the total stress tensor rxy and neglecting non-
linear terms and elasticity, the aforementioned equation can be
written as

rqtvx = qy(mqyvx + âS sin 2y). (21)

The hydrodynamic equation for the nematic tensor order
parameter Q can be written in the form

[qt + v�r]Q = l̂SE + Q�X � X�Q + g�1H (22)

where X is the vorticity tensor which is given as Oij ¼
1

2
@ivj � @jvi
� �

. Following ref. 55 and decoupling the equation

for the orientation angle y of the nematogens from that of the
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scalar order parameter S, we obtain

@ty ¼ g�1K@y2y�
@yvx
4
ð2� l̂ cos 2yÞ: (23)

Assuming that the viscous stress dominates at the boundary,
and hence using the Newtonian constitutive relation, the
boundary conditions can be written as

vxðy ¼ 0 and y ¼WÞ ¼ b
dv

dy
(24)

yðy ¼ 0 and y ¼WÞ ¼ p
2

(25)

For the linear stability analysis, we consider j(y,t) = j0 +
ej1(y,t), where j = {y,vx}, j0 = {p/2,0} and e { 1. Substituting y
and vx in eqn (21) and (23) and considering the system at steady
state yields the linearised system of equations:

mqy
2v1 � 2âSqyy1 = 0 (26)

g�1K@y2y1 �
@yv1
4
ð2þ l̂Þ ¼ 0 (27)

Solving the coupled homogeneous differential equations
we obtain

y1 ¼
C1

T
sinTy� C2

T
ð1� cosTyÞ (28)

v1 ¼
4g�1K

2þ l̂
C1ðcosTy� 1Þ þ C2ðsinTyþ bTÞð Þ (29)

where C1 and C2 are constants to be determined and

T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
âð2þ l̂ÞS
2mg�1K

s
: (30)

Applying the boundary conditions we obtain the condition
for the critical activity for spontaneous flow transition:

1� cosTW þ b
W

TW sinTW ¼ 0: (31)

This equation is further simplified by considering e = b/W
as a small parameter, and the critical activity is obtained as

âc;s ¼
8p2mg�1K 1� 2eþ 4e2

� �2
W2Sð2þ l̂Þ

: (32)

D In-phase corrugated channel

Here we present some results of active nematic confined in a
corrugated channel, with the top and bottom walls in-phase,
unlike the out-of-phase channel walls described in the main
manuscript. The boundary conditions are as mentioned in
Section 2.2: homeotropic anchoring for the director field and
no-slip for the velocity field on the walls. The channel walls
have an amplitude A = 1, wavelength = 20 and a mean width of
W = 20.

When the activity a is less than critical activity ac, the
channel with in-phase walls shows a lattice of swirling flow
structures centred on the centreline (Fig. 9(a)). Since the
curvature of the top and bottom channel walls is the same,
the anchoring boundary conditions (namely the geometry) will
result in variations in the director field primarily along the
channel length. The variations are in an anti-symmetric fashion

Fig. 9 Snapshots of the flow field (left column), director field (middle column) and active forcing (right column) in channels with in-phase corrugated
walls. In the left column, the flow field is shown, which is represented by streamlines superimposed on the vorticity of the fluid. The colorbar is shown at
the bottom, with blue and red representing clockwise and anticlockwise rotation respectively. In the middle column, the director field is shown by a black
dashed line color shaded by the scalar order parameter. In the right column, the active force is illustrated by black arrows which are color coded by the
magnitude of the force. Figures (a)–(c) correspond to low activity and figures (d)–(f) correspond to higher activity at which coherent flows prevail.
All channels have a mean width of W = 20, amplitude A = 1 and wavelength L = 20.
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such that the corresponding flow generated will be in opposite
directions. Hence, vortices span the width of the channel
(Fig. 9(a) in contrast to Fig. 3(d)). It is interesting to note that
the structure of the flow is similar to the well-known dancing
flow state in confined active nematics, but now with a major
difference: here, the lattice structure of the flow vortices arises
purely from the geometry without the presence of topological
defects31,35,36,58 (Fig. 9(b)).

Upon spontaneous flow transition, symmetry along the
channel length is broken, and a coherent flow is observed.
The sinusoidal variations in the active force field will follow
the geometry of the channel with in-phase walls as shown in
Fig. 9(f), which is unlike the reflection symmetry in the active
force field observed in the case of channels with out-of-phase
walls (Fig. 3(l)). A comparison of root mean square velocity
of the active nematic fluid as a function of activity is shown
in Fig. 10(a) for both in-phase and out-of-phase channels.
In accordance with the discussion above, the strength of the
flow before the flow transition is different in the two channels,
but the strength of the flow is comparable in the two channels
after the flow transition. Fig. 10(b) shows a comparison of the
slip length as a function of channel length in both types of
channels. It may be seen that the magnitude and variation of
slip length b in both out-of-phase and in-phase channels are
similar. It is clear from the above discussions that the qualita-
tive features and the mechanisms at play in channels with walls
of broken symmetry remain the same.
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