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Hysteresis in memristors produces conduction
inductance and conduction capacitance effects

Juan Bisquert, *a Juan B. Roldán b and Enrique Mirandac

Memristors are devices in which the conductance state can be alternately switched between a high and

a low value by means of a voltage scan. In general, systems involving a chemical inductor mechanism as

solar cells, asymmetric nanopores in electrochemical cells, transistors, and solid state memristive

devices, exhibit a current increase and decrease over time that generates hysteresis. By performing small

signal ac impedance spectroscopy, we show that memristors, or any other system with hysteresis relying

on the conductance modulation effect, display intrinsic dynamic inductor-like and capacitance-like

behaviours in specific input voltage ranges. Both the conduction inductance and the conduction

capacitance originate in the same delayed conduction process linked to the memristor dynamics and

not in electromagnetic or polarization effects. A simple memristor model reproduces the main features

of the transition from capacitive to inductive impedance spectroscopy spectra, which causes a nonzero

crossing of current–voltage curves.

Memristive devices are being widely investigated for different
applications related to non-volatile memory storage, neuro-
morphic computational systems, hardware cryptography and
radio-frequency switches.1–8 Memristors are often defined by
equations of the type9–13

Itot = f (V, l) (1)

dl
dt
¼ h V ; lð Þ (2)

Eqn (1) is a current–voltage Itot–V characteristic that depends
on a state variable l. This variable imparts memory charac-
teristics to the system via relaxation dynamical equation eqn (2).
The adaptation of l is delayed with respect to the changes of the
stimulus of the external voltage. By the delay effect (incremental
form) of eqn (2), memristors always show hysteresis.

Memristors, as described by eqn ((1) and (2)), are usually
associated with the properties of resistive switching,13 often
connected with the formation and partial disruption of a
nonvolatile conduction filament (in the most general case of
filamentary switching) in the insulator layer that separates
metal electrodes. However, a larger class of systems are also
described by these equations. For example, solar cells, protein
channels, and transistors show hysteresis,14–21 while the

resistance memory is not the main functionality, and are
normally not associated with resistive switching. To provide a
more general account of these properties, we have termed a
chemical inductor as any conduction system described by
eqn ((1) and (2)).22 The central paradigm of the chemical
inductor, and historically the original formulation, is given by
the Hodgkin–Huxley equations that describe the temporal
dynamics of action potentials in neurons.23–26

Memristors are usually characterized by a self-crossing
current–voltage curve under a dynamic scan of voltage. This
is because the current raises in one polarity, e.g. at a positive
voltage, which is called a SET process, and in the return RESET
process at negative polarity, the current returns to a low value.
An example of the experimental measurement of rectifying
nanopores in electrochemical cells18,27,28 is shown in Fig. 1.29

In this paper, we discuss the frequency domain response of
memristors and self-crossing chemical inductors, in general, and
we analyze the relationship of such properties with the hysteresis
features. We show here that for a system described by eqn ((1) and
(2)), there are certain regions of operation where one might
interpret a measurement of a memristor to be a capacitor and in
other regions to be an inductor. We emphasize that there is no real
capacitor or inductor (i.e., no sub-components with a Q–V or Flux–I
relationships). Rather, a memristor behaves in ‘‘capacitor-like’’
and ‘‘inductor-like’’ manners. This result is obtained by represent-
ing the small signal ac impedance response of the memristor in
the typical form of an equivalent circuit.30–34

It has been possible to classify the types of hysteresis dis-
played by memristors.35 In a set cycle, where the conductance
changes to a high value, the I–V curve makes a counter
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clockwise loop. The hysteresis is inductive (or inverted), see
Fig. 1a, for positive voltages.36–42 In contrast, in the reset cycle,
the current decreases and the hysteresis is capacitive, making a
clockwise loop, see Fig. 1a at negative voltages. Furthermore, it
has been shown that the small signal ac impedance character-
istics reveal the type of hysteresis inherent to the dynamical
properties of the model.35 The inductive characteristic, repre-
sented by the arc in the fourth quadrant of the complex
impedance plane related to the counter clockwise cycle of the
current–voltage in the positive voltages, is reported in Fig. 1d.
Contrarily, in the negative side, the impedance is fully capaci-
tive and associated with the clockwise reset loop.

The inductive feature of impedance spectroscopy has been
observed in different types of all-solid memristors.42–46 Fig. 2
shows the huge inductive arcs of a halide perovskite memristor.
This is the famous ‘‘negative capacitance’’ of solar cells,47–50

which has been connected to inverted hysteresis36,37,51 that

here we also term inductive hysteresis.35 In Fig. 3, the con-
ductance and susceptance of a TiN/Ti/HfO2/W resistive RAM
memory device are shown.46 It is observed that when the
conductance switches between low (OFF state) and high (ON
state), the susceptance changes respectively between positive
(capacitive) and negative (inductive).

The appearance of a large inductor in systems that do not
contain any internal electromagnetic inductor has been
remarked in many research fields, e.g. in solar cells,47–50 corro-
sion systems,52,53 and proton exchange membrane (PEM) fuel
cells.54–56 Since the early part of the 20th century, people have
modeled many systems (e.g., biological squid axons) and
noticed that they exhibit anomalously large inductance. The
inductive behaviour of the non-magnetic origin in the squid
giant axon was well recognized before 1940 by Cole, based on
impedance spectroscopy measurements,57 but he remarked
that ‘‘The suggestion of an inductive reactance anywhere in
the system was shocking to the point of being unbelievable.’’58

Hodgkin and Huxley23 proposed that the potassium conductance
is proportional to a power of a variable that obeys a first-order
equation, in order to match the very different transient curves: the
delayed increase in depolarization, but a simple exponential decay
in repolarization. Thus, as explained later by Hodgkin,59 ‘‘the
inductance is mainly due to the delayed increase in potassium
conductance which can make the membrane current lag behind
the voltage provided that the internal potential is positive to the
potassium equilibrium potential.’’ The inductive response of the
neuron model has been explained by Chua, based on eqn ((1) and
(2)).60,61 A variety of models with negative chemical inductors have
also been described.62

Recently, we have described in a general fashion the impe-
dance properties exhibited by chemical inductors22,62 including
neurons63,64 and memristors.43,65 As shown in these works,
from eqn ((1) and (2)), it follows that the inductive-like beha-
viour is an inherent property to the system (with no electro-
magnetic induction present), what justifies the name of the
‘‘chemical inductor’’, in reference to the dynamical response of
the system and not to its specific physical or chemical mecha-
nism. In practice, a wide variety of effects are described in this
way and generate an inductor, e.g., the inertia of electrons in
the Drude model.66 There are many processes that can poten-
tially cause the inductive delay, like ionic motion in perovskite
single crystals,42 and sometimes they are not known in
advance. However, the general feature of these systems is that
the inductor relates to a delayed conduction process.

In contrast to these general remarks, the capacitive response
observed in the reset cycle has not been highlighted enough.
The capacitance is an ubiquitous property in any real conduct-
ing system. In previous studies, we included in eqn (1) a
capacitive current

Icap ¼ Cm
dV

dt
(3)

which is always present, e.g., the neuron wall capacitance in the
Hodgkin–Huxley model,23–26 or the geometric capacitance in
semiconductors or dielectric devices. However, a constant

Fig. 1 (a) Current–voltage curve measured at a frequency of Os = 10 Hz
for a multipore membrane in 100 mM KCl solution at a neutral pH. The
inset shows the electrochemical cell with the membrane. (b) The impe-
dance spectra at different reverse voltages, with the corresponding bode
plot of the imaginary part of the impedance in (c). (d) and (e) The
impedance spectra and bode plots at a forward voltage. Adapted from
P. Ramirez, J. Cervera, S. Nasir, M. Ali, W. Ensinger and S. Mafe, Electro-
chemical impedance spectroscopy of membranes with nanofluidic conical
pores, J. Colloid and Interface Sci., 2024, 655, 876–885, with permission
from Elsevier.29
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capacitance related to bulk or surface polarization effects
responds independently of the applied voltage, and the
response current depends only on the signal rate, eqn (3). In
fact, Cm cannot produce the capacitive cycles (e.g., clockwise in
Fig. 1) that are observed in all systems with hysteresis, when the
low conductance state is recovered. In some systems, the state
variable of the memristor produces a polarization component
as well, causing a variable capacitive current dl/dt.67 However,
this mechanism is far from being universal.

Therefore, one may wonder which is the origin of the
measured capacitance obtained in the reversal of memristors
to the low conductance state?

In this paper, we investigate this question in detail. We take
the basic behavioral memristor model developed by Miranda
et al.68–70 which makes no reference to any geometric capaci-
tance and we show how the conduction capacitance associated
with the reset cycle naturally emerges.

The model68 is formulated through the equations:

V = RsItot + u (4)

Itot = [gL + (gH � gL)l]u (5)

dl
dt
¼ 1� l

ts uð Þ
� l
tr uð Þ

(6)

where Rs is an external series resistance, the variable u is the
voltage inside the device, and gL and gH are conductances for the
low and high conductance states of the memristor, respectively.
The relaxation (characteristic) times for set and reset are given by:

ts uð Þ ¼ tke
�u�Vs
nsVm (7)

tr uð Þ ¼ tke
u�Vr
nrVm (8)

with parameters tk, Vs, Vr, Vm, ns, and nr.
The equilibrium condition is obtained from eqn (6)

lss ¼ 1þ ts
tr

� ��1
(9)

which can be explicitly expressed as follows:

lss ¼
1

1þ e
�
u� Vtð Þ
ntVm

(10)

This function is activated at the voltage Vt, defined by the
equations

nt ¼
1

ns
þ 1

nr

� ��1
(11)

Vt ¼
Vs

ns
þ Vr

nr

� �
nt (12)

As shown in Fig. 4a, the current makes a transition from the
low conductance gL to gH as the voltage changes. The activation
process corresponding to the memory variable (change from
0 to 1) is shown in Fig. 4b. Other memristor models,65,71 make
use of a sigmoidal activation function (10). This form corre-
sponds to a Boltzmann open channel probability72,73 that
indicates the fraction of active conducting channels according
to the applied voltage.

Fig. 2 (a) Current–voltage characteristics of the halide perovskite memristor device FTO/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
(PEDOT:PSS)/CH3NH3PbI3/Au at 6 different scan rates starting from 5 V s�1. Arrows indicate the sweep direction. (b)–(e) Complex plane plot
representation of the impedance spectra at different applied dc voltages. (c)–(e) Plots corresponding to a magnification of the scales. M. Berruet,
J. C.Pérez-Martı́nez, B. Romero, C. Gonzales, A. M. Al-Mayouf, A. Guerrero and J. Bisquert, Physical model for the current–voltage hysteresis and
impedance of halide perovskite memristors. ACS Energy Lett., 2022, 7, 1214–1222; licensed under a Creative Commons Attribution (CC BY) license.43
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Under a constant voltage sweep at rate vscan

u = vscant (13)

the relaxation properties produce the hysteretic behaviour
shown in Fig. 5a, conducted by the out-of-equilibrium cycling
of the memory variable l shown in Fig. 5b. Clearly, the hyster-
esis is inductive at the positive voltage side, and capacitive at
the negative side.35 It is observed that the model represents well
the rectifying and hysteresis properties of asymmetrical nano-
pores as those shown in Fig. 1.

To obtain further insight into the dynamical properties of
the model, we calculate the small signal ac impedance response
at the angular frequency o. As usual,34,43 the equations are
expanded to the first order, where the perturbation of variable y
is indicated as ŷ, and the factor functions of each term are
computed under equilibrium conditions. Furthermore, we
transform the small signal equations to the frequency domain

by the Laplace transform, d/dt - s, where s = io. We obtain the
equations

Îtot = [gL + (gH � gL)l]û + (gH � gL)ul̂ (14)

l̂ ¼ ttB
1þ stt

û (15)

here we use the auxiliary functions

tt ¼
1

ts
þ 1

tr

� ��1
(16)

B ¼ 1

Vm

1� l
nsts

þ l
nrtr

� �
(17)

These functions are plotted in Fig. 4c and 6b. The solution of
the impedance obtained from 14 and 15 is

Z sð Þ ¼ û

ĵtot
¼ gb þ

ga

1þ stt

� ��1
(18)

The equivalent circuit corresponding to eqn (18) is shown in
Fig. 6a. In this case, the circuit elements are defined by the
relationships

gb = gL + (gH � gL)l (19)

ga = B(gH � gL)ttu (20)

La ¼
tt
ga

(21)

The behavior of differential conductance is shown in Fig. 6b.
The resulting impedance spectra both at positive and negative
potentials are shown in Fig. 5c and d. In the set side, the
impedance shows an inductor feature, and as it has been
explained in many publications, it is associated with the
inverted (inductive) hysteresis.22,35 In the negative side, the
impedance spectra are purely capacitive, as also observed in the
experimental data of Fig. 1. However, the impedance model of
eqn (18) and Fig. 6a contains solely an inductor but not a
capacitor element. How is the capacitor generated at negative
voltages?

To address this question, we calculate the effective capaci-
tance corresponding to the branch (Ra, La) with impedance Za =
ga
�1 + sLa. This capacitance is given by the expression

Ca ¼
1

sZa
¼ ga

�tto2 þ io
(22)

Therefore

Re Cað Þ ¼ � gatt
1þ tt2o2

(23)

From (23), if ga 4 0, then the system generates the nega-
tive capacitance effect that characterizes the chemical
inductor.44,47,74–81 However, for ga o 0, the model produces a
positive low frequency capacitance. We can see in Fig. 6b that
the change of the sign of ga occurs at V = 0, causing the positive
capacitance at negative voltages as shown in Fig. 6e. We
conclude that the capacitance observed in the reset process

Fig. 3 Conductance (a) and susceptance (b) of the TiN/Ti/HfO2/W resis-
tive RAM memory device measured at 0 volts vs. programming voltage at
three frequencies. An increasing and decreasing voltage steps applied in
the range in which the device switches. Between the steps, the impedance
is measured at zero voltage, applying only the small ac signal to avoid
introducing disturbance. Reproduced by permission from S. Dueñas,
H. Castán, H. Garcı́a, Ó. G. Ossorio, L. A. Domı́nguez, and E. Miranda,
Experimental Observation of Negative Susceptance in HfO2-Based RRAM
Devices, IEEE Electron Device Lett., 2017, 38, 1216–1219.46
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originates in the same delayed conduction process as the
inductor in the set process.

It is also remarked that the inductor element La in Fig. 6d
becomes negative when ga is negative.62 This ensures that the
small perturbation relaxation time tt = gaLa is positive at all
voltages (as required for a stable system62), as shown in Fig. 4c.

While the model described applies to a variety of systems
with specific conduction and memristive mechanisms, it is
worthwhile to discuss the expected value of the conduction
inductor and conduction capacitance, which have produced
doubts of interpretation when measured in some systems, as
remarked before.57 Consider a conductance of 1 nA V�1 for a

single pore82 or a memristor filament, a kinetic time tk is 1 s.
The value of the inductor can be estimated as

La �
tk
gH
¼ 109 H (24)

Even if there are 100 conducting units per cm2, as shown in
Fig. 1, the conduction inductance can reach a very large value of
107 H cm�2. Obviously, for systems with a short relaxation time,
the inductor will be smaller, in the order of mH.46,83 For the
conduction capacitance of a single unit in the same example

Ca = gHtk = 1 nF (25)

Fig. 4 (a) Current–voltage curve. (b) Equilibrium value of the state variable. (c) Relaxation times. Parameters Vs = 0.3, Vr = �0.4, Vm = 0.1, ns = 1.5, nr = 2,
gL = 0.1, gH = 1, and tk = 1.

Fig. 5 Hysteresis at a rate vscan = 10 in (a) current–voltage curves and (b) state variable. The grey lines are the equilibrium curves. (c) and (d) Impedance
spectra at the indicated voltage points. Parameters as in Fig. 4.
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The conduction capacitance is higher than typical geometric
capacitances, but smaller than chemical capacitances.84

In summary, observing large values of inductance and
capacitance is good evidence that a memristor has been mea-
sured and not an L or a C.

It should be noticed that the use of (7) and (8) predict finite
switching times a zero voltage. If required, they can be replaced
by expressions in which the switching times become infinite
(dl/dt - 0) at zero voltages. These modifications have been
suggested in recent publications;69,70 however, the general
mechanism based on eqn (6) for the generation of both
capacitance and induction in the ac response should be the
same, although with more complex analytical expressions.

The model is very useful to explain other phenomena that
have been identified in the research of high-performance
halide perovskite solar cells. This is the transition from capa-
citive to inductive hysteresis, which complicates the assessment of
the power conversion efficiency.36,39,85 In this transformation,
when the bias voltage increases, the low frequency capacitance
becomes an inductor, with the associated transformation of
capacitive to inductive hysteresis. This is illustrated in Fig. 7,
and the same phenomenon is observed in Fig. 2. The transition
has also been remarked in HfO2 resistive RAM memories, as
shown in Fig. 3.46 The transition from capacitive to inductive or
vice versa as the voltage increases produces a non-zero crossing of

the IV curves, which has been recognized well in memristive
systems.66,86–88

To analyze the typical evolution of spectra, we add the
constant capacitor (3) to the impedance model (18), so that
the equivalent circuit of Fig. 8a is obtained. Now, the spectra
display two capacitive arcs in the negative voltages, Fig. 8b. The
high frequency arc close to the origin corresponds to the
geometric capacitance, and the low frequency positive arc
corresponds to the conduction capacitance. When approaching
the transition voltage, the low frequency arc disappears and
becomes an inductor, Fig. 8c, i.e. a negative arc. This is the
experimental trend observed in Fig. 1, 2 and 7. This effect has
been previously described using different models where the low
frequency capacitance is coupled to the memory variable,39,67

as mentioned before. The model of Fig. 8a, based on eqn (6),68

explains well the general tendency of the transformation, with
simpler physical components than those considered in pre-
vious approaches.

In summary, a memristor is described by a set process in
which the memory variable l makes a transition 0 - 1 that
promotes the increase of conductance. The associated impe-
dance response is a conduction inductor that becomes quite
large in some memristors.43 In the reset cycle, the opposite
transition 1 - 0 takes place. We have shown that the impe-
dance feature is a conduction capacitance in this range, and

Fig. 6 (a) Equivalent circuit. Functions determining the impedance response. (b) Differential conductances, gt = gb + ga. (c) B. (d) Inductor. (e) Effective
low frequency capacitance. Parameters as in Fig. 4.
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evolves to an inductor in the set range, explaining the transition
from capacitive to inductive hysteresis that has been observed

in different types of devices. We conjecture that this is a general
property of systems with self-crossing hysteresis loops.

Fig. 7 A. Characteristic current–voltage (I–V) response in the linear scale of the halide perovskite memristor device FTO/poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/CH3NH3PbBr3/Au with varying upper vertex voltages of (a) 0.25 V, (b) 0.75 V, and (c),
1.25 V, with the arrows indicating the scan direction. The corresponding I–V response in the semi-log scale for upper vertex voltages of (d) 0.25 V,
(e) 0.75, and (f) 1.25 V with the arrows and numbers indicating the scan direction and sequence, respectively. Voltage-dependent impedance spectral
evolution measured at (g) 0 V, (h) 0.3 V, and (i) 0.6 V exhibiting a transition from a low frequency capacitive response at low applied voltages to a low
frequency inductive response at high applied voltages. Figure courtesy of Cedric Gonzales. Reproduced by permission from J. Bisquert, Inductive and
capacitive hysteresis of current–voltage curves. A unified structural dynamics in solar energy devices, memristors, ionic transistors and bioelectronics.,
PRX Energy, 2023, 3, 011001,35 licensed under a Creative Commons Attribution (CC BY 4.0) license.

Fig. 8 (a) Equivalent circuits and (b) and (c) impedance spectra at different stationary voltages. Same parameters as in Fig. 4 and Cm = 0.001.
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L. A. Domı́nguez and E. Miranda, Experimental Observation
of Negative Susceptance in HfO2-Based RRAM Devices, IEEE
Electron Device Lett., 2017, 38, 1216–1219.
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