



Cite this: *J. Mater. Chem. A*, 2023, **11**, 13039

DOI: 10.1039/d3ta90009f  
rsc.li/materials-a

## Correction: The role of ion solvation in lithium mediated nitrogen reduction

O. Westhead,<sup>ab</sup> M. Spry,<sup>a</sup> A. Bagger,<sup>cd</sup> Z. Shen,<sup>a</sup> H. Yadegari,<sup>a</sup> S. Favero,<sup>d</sup> R. Tort,<sup>d</sup> M. Titirici,<sup>de</sup> M. P. Ryan,<sup>ae</sup> R. Jervis,<sup>ef</sup> Y. Katayama,<sup>g</sup> A. Aguadero,<sup>aeh</sup> A. Regoutz,<sup>i</sup> A. Grimaud<sup>\*bjk</sup> and I. E. L. Stephens<sup>\*ae</sup>

Correction for 'The role of ion solvation in lithium mediated nitrogen reduction' by O. Westhead *et al.*, *J. Mater. Chem. A*, 2023, <https://doi.org/10.1039/D2TA07686A>.

The authors regret an error in their calculation of the yield rate in Fig. 1b. Due to an error with the unit conversion the peak yield rate at 0.6 M LiClO<sub>4</sub> was incorrectly given as  $60 \pm 3 \text{ nmol cm}^{-2} \text{ s}^{-1}$  ( $n = 3$ ). The corrected yield rate is  $0.53 \pm 0.04 \text{ nmol cm}^{-2} \text{ s}^{-1}$  ( $n = 3$ ) and the corrected version of Fig. 1b is provided herein.

An independent expert reviewed the data provided by the authors and concluded that it does not change the discussion or conclusions presented in the article.

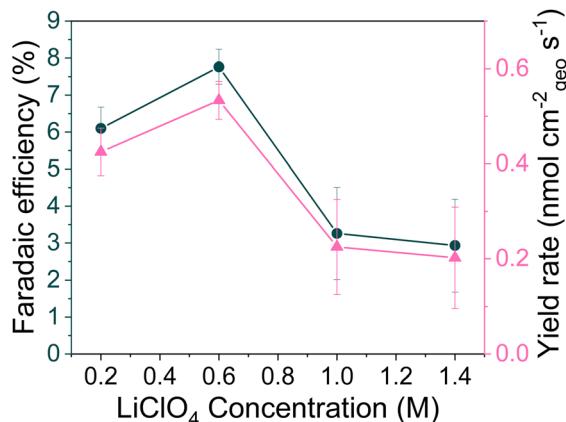



Fig. 1 (b) The change in faradaic efficiency and yield rate with LiClO<sub>4</sub> concentration ( $n = 3$  separate experiments, error bar is standard error in the mean) for a chronopotentiometry experiment at an applied constant current of  $-2 \text{ mA cm}^{-2}$  until  $-10\text{C}$  is passed.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

<sup>a</sup>Department of Materials, Imperial College London, UK. E-mail: i.stephens@imperial.ac.uk

<sup>b</sup>Solid-State Chemistry and Energy Laboratory, UMR8260, CNRS, Collège de France, France. E-mail: alexis.grimaud@bc.edu

<sup>c</sup>Department of Chemistry, University of Copenhagen, Denmark

<sup>d</sup>Department of Chemical Engineering, Imperial College London, UK

<sup>e</sup>The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK

<sup>f</sup>Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, UK

<sup>g</sup>SANKEN, Osaka University, Japan

<sup>h</sup>Instituto de Ciencia de Materiales de Madrid ICMM-CSIC, Spain

<sup>i</sup>Department of Chemistry, University College London, UK

<sup>j</sup>Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 80039 Amiens Cedex 1, France

<sup>k</sup>Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA

