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lonic shape memory polymer gels as multifunctional
sensors

A novel self-powered wearable sensor was fabricated using
an ionic shape memory polymer (SMP) gel and the shape
memory effect and sensor performance were investigated.
It was found that the ionic SMP gel had potential as a
wearable shape memory multifunctional sensor capable

of generating electric charge and voltage in response to
bending velocity and displacement, respectively.
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Novel ionic shape memory polymer (SMP) gels were fabricated using SMPs and ionic liquids (ILs) of
1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyllimide (EMI-TFSI) at different weight ratios (W),).
The shape memory effect and sensor performance of the ionic SMP gels were investigated by means of
thermomechanical and mechanoelectrical analyses. It was found that the ionic SMP gel at W, = 25 wt%
showed a shape memory effect with the shape fixing ratio (Ry) and shape recovery ratio (R,) of 72.7% and
72.9%, respectively. Upon bending, the ionic SMP gel sensors with PEDOT:PSS electrodes generated an
open circuit voltage of 3.3 mV and a charge of 1.6 nC which linearly increased with increasing bending
displacement and velocity, respectively. Furthermore, the wearable shape memory multifunctional
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1 Introduction

The ‘Internet of Things (I0T)’ is a system that connects between
people and things and between things through the Internet, such
as health monitoring using heart rate sensors, remote control of
home appliances using wearable devices, and gait measurement
using sole sensors."™ Herein, low-cost, lightweight, and flexible
organic electronics™” are a key technology for the IoT applications
such as wearable sensors. In general, traditional wearable sensors
can be divided into two types. One is piezoresistive sensors that
detect changes in resistance of conductors such as graphenes,®
carbon nanotubes (CNTs),” conductive polymers,® and metal
nanowires’ under stretching or bending. However, high power
consumption, in which electric current always flows through the
conductors, is a technical issue for the practical use.'® The other
is piezocapacitive sensors that detect changes in capacitance
of dielectrics such as polydimethylsiloxane (PDMS)"" and polyur-
ethane under compression measured with an amplifier, but
difficult to recognize the deformation direction, which is not
suitable for motion sensors. In the era of IoT, we will live
surrounded by a huge number of sensors, so-called ‘trillion
sensors’, where power supply to all sensors and amplifiers is a
serious problem. Therefore, self-powered sensors such as
poly(vinylidene fluoride) (PVDF)'*"? are typical ferroelectric poly-
mers with a large dipole moment and have been intensively
studied as flexible piezoelectric sensors generating voltages by
bending deformation. Moreover, triboelectric sensors,'*'* capable
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sensor array was demonstrated as a self-powered motion sensor for loT applications.

of transforming applied mechanical force into electricity, have
been paid considerable attention as an energy harvesting and self-
powered sensor. However, the output of both piezoelectric and
triboelectric sensors is spike-like voltage signals in response to the
mechanical deformation, which are hard to detect slow human
motions and steady states as human-machine interfaces.

On the other hand, ionic polymers are also available as self-
powered sensors.'® Asaka and coworkers reported on ionic
polymer-metal composite (IPMC) sensors using a Nafion film
plated with gold electrodes, in which a voltage of less than 1 mV
was generated by bending.'”” Kamamichi et al.'® found that a
bucky gel cantilever generated a voltage of ca. 0.1 mV even
under a large bending displacement. The mechanism of ionic
polymer sensors can be explained in terms of the ‘piezoionic
effect’’® where polarization due to the movement of ions
induced by deformation is responsible for generating the
voltage. Although the ionic polymer sensors are self-powered
systems without power supplies and amplifiers, the generated
voltages are quite low (<1 mvV), limiting their applications to
the IoT. In this study, a novel self-powered wearable sensor was
fabricated using an ionic shape memory polymer (SMP) gel and
investigated the shape memory effect and sensor performance. It
was found that the ionic SMP gel had the potential as a wearable
shape memory multifunctional sensor capable of generating a
voltage as high as 3.3 mV.

2 Experimental section
2.1 Materials

The polyurethane-based shape memory polymer (SMP, MM-
6520) with a nominal glass transition temperature (T) of 65 °C
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was purchased from SMP Technologies Inc.”° The ionic liquid (IL)
of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
(EMI-TFSI) was purchased from Kanto Chemical Industry and
used as received. The PEDOT:PSS water dispersion with a solid
content of ca. 2.4 wt% used as electrodes was synthesized in
our laboratory by oxidative polymerization of EDOT (Aldrich)
monomers in the presence of PSS (M,, = 75000 g mol ') as
previously reported.>"** Ethylene glycol (EG, Kanto Chemical) as
a secondary dopant to improve the electrical conductivity of the
PEDOT:PSS,*”* ammonia solution (1M, Kanto Chemical) as a
neutralizer, and N,N-dimethylacetamide (DMAc, Kanto Chemical)
were used as received.

2.2 Fabrication

The SMP was dissolved in DMAc at a concentration of 10 wt%
and mixed with the IL of EMI-TFSI at different weight ratios
(Wr). After vigorous stirring, the mixtures were drop cast and
dried at Teflon dishes for 2 days at 50 °C, then dried at 200 °C
under an N, atmosphere for 2 hours to remove the solvent
completely. The ionic SMP gel film with a thickness of ca. 300 um
was peeled off from the Teflon dish, and the PEDOT:PSS water
dispersion containing 10 wt% of EG was spin-coated at 500 rpm
for 60 s on both sides of the ionic SMP gel and subsequently
heated at 120 °C for 30 min with a moisture analyzer (MOC-120H,
Shimadzu) not only to control temperature precisely, but also to
monitor weight loss during heating.

2.3 Measurements

The FT-IR spectra of SMP, EMI-TFSI, and ionic SMP gel were
measured by the attenuated total reflection (ATR) method using
an infrared spectrophotometer (FT/IR-4200, Jasco). The dynamic
mechanical analysis (DMA) of the ionic SMP gels (5 mm long,
2 mm wide, and ca. 300 pm thick) was carried out using TMA/
$S6200 (Hitachi High-Tech) under a constant tension measured
at a heating rate of 2 °C min~" and a frequency of 0.1 Hz. The
thermomechanical analysis (TMA) was performed with TMA/
S$S6200 (Hitachi High-Tech) using a tensile fixture at a force
control mode. The SEM and element mapping images of the
ionic SMP gel sensor were measured using an electron probe
micro analyzer (EPMA, JXA-iHP200F, JEOL) at an accelerating
voltage of 10 kV. The mechanoelectrical response of the ionic
SMP gel sensors (15 mm long, 5 mm wide, and ca. 300 pm thick)
was evaluated by measuring the generated voltage and charge
with a data logger (NR-500, Keyence) and charge amplifier (NR-
CA04, Keyence) under bending deformation induced with a
mechanical tester (EZ-TEST, Shimadzu) at various displacements
(d=3,5,and 7 mm) and velocities (v = 0.8, 1.7, and 3.3 mm s~ ).

3 Results and discussion
3.1 Structure and thermomechanical properties

Fig. 1(a) illustrates an ionic SMP gel composed of EMI-TFSI as
ionic liquids (ILs) and SMPs, in which the EMI-TFSI is highly
miscible with the SMP and produces a uniform and transparent
gel at IL contents (Wy) up to 25 wt%. A further increase of the
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Wi, however, brought about a leakage of the IL from the gel,
indicating the maximum uptake of the IL in SMPs was ca.
25 wt%. Fig. 1(b) shows the FT-IR spectra of SMPs, EMI-TFSI,
and ionic SMP gels (W, = 25 wt%), indicating that the SMP
is a typical polyether-based polyurethane with absorptions
at 1707 cm ™' (C=0), 1066 cm™ " (C-0O), 3311 cm™*, 1533 cm ™"
(N-H), and 1108 cm ™' (C-O-C).>® Furthermore, the absorptions
at 1599 cm ' (C=C), 1223 cm™ %, 829 cm ™', and 759 cm " (C-H)
can be assigned to 4,4'-diphenylmethane diisocyanate (MDI).>*
Thus, the plausible chemical structure of SMPs inferred from
FT-IR and previous patents®®*” is shown in Fig. S1 (ESIt), where
hard segments, composed of MDI and reactants of bisphenol A
and ethylene oxide, connected to soft segments of polypropylene
glycol. On the other hand, absorptions at 1350 cm™ ' (S=0),
1190 cm ™! (C-F), and 1055 cm™* (S-N) belong to the TFSI~ of
ionic liquids. It is noted that the ionic SMP gel (W, = 25 wt%)
shows both absorption peaks of SMP and EMI-TSFI, indicative of
their mixture without specific reactions.

The viscoelastic properties of the ionic SMP gels were
evaluated by dynamic mechanical analysis (DMA), and the
results are shown in Fig. 2. It was found that the SMP (Wy, =
0 wt%) showed a steep drop of storage modulus (£’) and large
loss tangent (tan J) peak at 63 °C, corresponding to the glass
transition temperature (7), where soft segments in the rever-
sible phase of the segmented polyurethane block copolymer
transfer from glass to rubber state while phase separated hard
segments form hard domains by physical crosslinks through
hydrogen bonding.>® Notably, an increase of the Wy, signifi-
cantly decreases both storage modulus at 20 °C (E}.c) and Ty,
demonstrating that the IL in the ionic SMP gel acts as a
plasticizer®® that enhances the micro-Brownian motion of
polymer chains. To develop wearable sensors with both shape
memory and piezoionic effects available near body temperature
(36 °C), the ionic SMP gel at Wy, = 25 wt% (T = 22 °C) was used
for further investigation.

Fig. 3(a) shows a thermally induced shape memory effect
consisting of two processes: One is the programming process
where the ionic SMP gel heated above T, is deformed by an
external force (strain changes from ¢, to &) and then cooled down
below Ty to fix the temporary shape (strain relaxes from e, to &,).
The other is the recovery process where heating of the ionic SMP
gel with the temporary shape above the T, will release the stored
stress, which results in a recovery of the ionic SMP gel from the
temporary to its original shape (strain recovers from e, to &3).>°
The thermomechanical analysis (TMA) curves of the SMP (Wy, =
0 wt%) (Fig. 3(b)) and ionic SMP gel (Wy;, = 25 wt%) (Fig. 3(c)) were
measured for evaluating the shape memory effect. The specimen
(5 mm long, 2 mm wide, and ca. 300 pm thick) was first heated to
70 °C above T, at a heating rate of 5 °C min™ ' and stretched under
a constant stress of 0.5 MPa, then cooled down to ca. 10 °C to fix
the shape with a temporary strain of ¢,. After releasing the stress,
the sample slightly relaxed with a fixed strain of e,. Finally, the
sample recovered from its temporary shape to the original shape
with a recovery strain of ¢; by heating again from room tempera-
ture to 70 °C. The shape fixing ratio (Ry) and shape recovery ratio
(R) were, respectively, calculated as follows:
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(a) Schematic illustration of ionic shape memory polymer (SMP) gel composed of ionic liquids (EMI-TFSI) and SMPs. (b) FT-IR spectra of SMPs,
EMI-TFSI, and ionic SMP gels (W, = 25 wt%).
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Fig. 2 Temperature dependence of (a) storage modulus (E’) and (b) loss tangent (tan ) for ionic SMP gels with different W, . Dependence of (c) storage
modulus at 20 °C (Ejy.) and (d) T4 of ionic SMP gels on W,
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Fig. 3 (a) Schematic diagram of the shape memory effect of an ionic SMP gel. TMA curves of (b) SMPs (W,_ = 0 wt%) and (c) ionic SMP gels (W,_ = 25 wt%)
where temperature (on the left of the plot), strain, and stress curves correspond to black, red, and blue lines, respectively. The specimen (5 mm long,
2 mm wide, and ca. 300 um thick) was first heated to 70 °C above Ty at a heating rate of 5 °C min~! and stretched under a constant stress of 0.5 MPa,
then cooled down to ca. 10 °C to fix the shape with a temporary strain of ¢;. After releasing the stress, the sample slightly relaxed with a fixed strain
of &,. Finally, the ample recovered from its temporary shape to the original shape with a recovery strain of ¢3 by heating again from room temperature to
70 °C.
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Fig. 4 SEM and EPMA element mapping images (blue: carbon, green: fluorine, and red: sulfur) of cross section and surface of the ionic SMP gel sensor
with PEDOT:PSS electrodes on both surfaces of the gel (W = 25 wt%).
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It is found that the SMP (Wi, = 0 wt%) exhibits excellent
performance (R; = 99.9% and R, = 93.2%), whereas the ionic
SMP gel (Wy, = 25 wt%) still keeps the shape memory effect with
the R¢ and R, values of 72.7% and 72.9%, respectively. This can
be ascribed to the plasticizing effect of EMI-TFSI, where a
decrease of E’ and T, values of the SMP (Fig. 2) lowers both
forces to keep the temporary shape and to recover its original
shape, leading to the decrease of R; and R, values.

3.2 Multifunctional sensors

Fig. 4 shows SEM and EPMA element mapping images of the
ionic SMP gel sensor with PEDOT:PSS electrodes on both
surfaces of the gel (Wy, = 25 wt%). The distribution of carbon
in the cross section (blue) clearly shows the sample in the SEM
image, where fluorine (green) originated from TFSI™ distributed
homogeneously in the ionic SMP gel due to the high miscibility
between SMPs and ionic liquids achieved by the solution casting
method. Herein, the higher sulfur density at both surfaces can be
explained by the PEDOT:PSS electrodes fabricated by spin coating.
The SEM and EMPA element mapping images of the surface also
support the homogeneous distribution of elements and smooth
surfaces (except for a few small holes) without phase separation
and aggregation at the microscopic level. It is noted that fluorine
is observed on the surface because the detectable depth of EPMA
(ca. 1 pm) is larger than the thickness of the PEDOT:PSS electrode
(ca. 100 nm). Compared to other electrodes such as carbon
nanotubes/ionic liquid composites and chemically plated gold or
platinum,'®™® the PEDOT:PSS is more flexible capable of fabricating
by a facile wet-process such as spin-coating, bar-coating, dip-coating,
and even spray-coating,”®*°

As shown in Fig. 5(a), the ionic SMP gel sensor (15 mm long,
5 mm wide, and ca. 300 pm thick) was placed on a home-build
sample holder, in which 5 mm at one end of the sensor strip
was clamped with two gold electrodes to allow independent
electrical contact with the PEDOT:PSS electrodes. The other end

(b) N’:han ical tester l

Sample
holder

Bending
_—

<

Recovery

Fig. 5 (a) Experimental setup for evaluating ionic SMP gel sensors with
PEDOT:PSS electrodes on both surfaces of the gel (W, = 25 wt%) where
5 mm at the left end of the sensor (15 mm long, 5 mm wide, and ca.
300 um thick), placed on a PET sheet (100 um thick) used as the substrate,
was clamped with gold electrodes. (b) The ionic SMP gel sensor was bent
by pushing down the right end with a mechanical tester at different
bending displacements (d = 3, 5, and 7 mm) and velocities (v = 0.8, 1.7,
and 3.3 mm s7Y) at a constant temperature of 36 °C.
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of the sensor strip was bent with the mechanical tester
(Fig. 5(b)) at different bending displacements (d = 3, 5, and
7 mm) and velocities (v = 0.8, 1.7, and 3.3 mm s~ ') at a constant
temperature of 36 °C. Fig. 6 shows the relation between input
mechanical stimuli of constant bending displacement (d = 7 mm)
(a) with different velocities (v = 0.8, 1.7, and 3.3 mm s~ ') (b) and
output electric signals of voltage (V) (c) and electric charge (g) (d)
of ionic SMP gel sensors (Wi, = 25 wt%). Upon bending, a large
positive g was generated, followed by a small negative g, while the
opposite phenomenon was observed when the bent film recovers
to the original straight shape. Here, the generation of charge is
associated with the movement of EMI" and TFSI™ ions in the gel
induced by the bending deformation, suggesting that the EMI"
can move faster than TFSI . In general, the transference number
of ions strongly depends not only on the size but also on the
shape and charge distribution of ions. Indeed, the EMI" ions have
higher transference number (¢, = 0.63) than TFSI™ ions (¢_ = 0.37)
evaluated by NMR measurements.”® We should emphasize that
the ionic SMP gel sensor generated a voltage (V) of 3.3 mV which is
an order of magnitude larger than conventional ionic polymer—
metal composite (IPMC) sensors."” To evaluate the reliability of
sensing, the bending cycle was repeated 10000 times. It was
found that no notable change and hysteresis in both electric
charge (Fig. S2, ESIt) and voltage (Fig. S3, ESIf) demonstrating
high stability and reproducibility of the ionic SMP gel sensor. For
the practical use, the ionic SMP gel sensor can be laminated with
polymer films to keep away from moisture which will affect the
piezoionic effect.'” It is noted here the strong correlations
between d and V and between v and ¢ indicate multifunctional
sensors, capable of transducing different input mechanical
stimuli into corresponding output electric signals. Further inves-
tigation was carried out at constant v = 3.3 mm s~ with different
d =3, 5, and 7 mm, and the results are shown in Fig. 7. One can
see that the input mechanical stimuli correspond well with the
output electric signals similarly to Fig. 6, where V (c) and ¢ (d) are
generated independently in response to d (a) and v (b),
respectively.

A clear indication of the importance of an ionic SMP gel as a
multifunctional sensor is demonstrated in Fig. 8(a and b). It
was found that the values of V and g increase linearly with
increasing d and v, where sensitivities corresponding to each
slope of the straight lines obtained by fitting with the least-
squares method were 0.37 V. m™ "' and 0.47 uC s m™ ', respec-
tively. Different from the conventional piezoelectric phenom-
enon, the mechanism of ionic SMP gel sensors can be
explained in terms of the ‘piezoionic effect’ as depicted in
Fig. 8(c).">*" In the initial state of the ionic SMP gel sensor,
both EMI" and TFSI™ ions distribute homogenously in the gel.
Upon bending, the dissociated EMI" and TFSI~ ions would
migrate from the compressed side to the expanded side
because of the concentration gradient in the curved ionic
SMP gel. In fact, the strain difference on both sides of the gel
(Ag) was calculated using the free length (L = 10 mm), thickness
(t = ca. 300 um), and bending displacement (d) as follows:>*>°

Ae (%) = 2td/(L* + d*) x100

Soft Matter, 2022,18, 6791-6799 | 6795
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Fig. 6 Relation between input mechanical stimuli of (a) constant bending displacement (d = 7 mm) with (b) different velocities (v = 0.8, 1.7, and
3.3 mm s~ and output electric signals of (c) voltage (V) and (d) electric charge (g) of ionic SMP gel sensor (W, = 25 wt%).
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Fig. 7 Relation between input mechanical stimuli of (a) constant bending velocity (v = 3.3 mm s™3) with (b) different displacements (d = 3, 5, 7 mm) and
output electric signals of (c) voltage (V) and (d) electric charge (q) of ionic SMP gel sensor (W, = 25 wt%).
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= 0.8 (A), 1.7(0), 3.3 mm s~ (O) with calculated voltages (Vcac) defined as Veaec = Q/C represented by black symbols where straight lines were obtained
by fitting with the least-squares method. (c) Schematic illustration of a possible mechanism of piezoionic effect in ionic SMP gel sensor.

Although the range of d seems to be narrow, the bending at
d = 7 mm is quite large (Fig. 5b) where the value of A¢ tends to
level off at d > 7 mm (Fig. S4, ESIY). Since the EMI" ions have a
higher transference number than TFSI~ ions,*° bending the
ionic SMP gel sensor causes the EMI' ions to move rapidly
toward the expanded outer surface, producing the positive g,
followed by TFSI™ ions producing the negative g. To clarify the
detailed mechanism of the piezoionic effect more quantitively,
the actual transference numbers in the SMP gel can be evaluated
by the solid-state NMR technique.*® Furthermore, the mecha-
nism of voltage generation can be explained using the overall net
positive charge (Q.) and net negative charge (Q_) calculated as
shown in Fig. S5 (ESIt), where q is the charge generated at the
moment but Q, and Q_ represent the total amount of electric
charges. If the Q. value is not in balance with the Q_ value due to
the specific interactions between ionic liquids and polymer
networks, the total amount charge (Q = Q. + Q_) is stored in
the ionic SMP gel under bending deformation, which will be the
origin of the voltage generation. Indeed, the calculated voltages
(Veale) can be derived from the values of Q as follows:

Veale = Q/ Cc

where C is the capacitance of the ionic SMP gel (1.28 mF)
determined using a current-voltage curve measured by an
electrochemical impedance system (Fig. S6, ESIt). We should
emphasize here that the values of V., represented by the
black open symbols in Fig. 8(a), are consistent with the
measured V values regardless of the input mechanical stimuli
such as d and v. This clearly shows that the piezoionic sensors
can be represented by a simple capacitor expressed as V = Q/C.
Therefore, there are two ways to enhance the output voltage of
the piezoionic sensors: one is to increase the Q value where the

This journal is © The Royal Society of Chemistry 2022

large difference in transference numbers between cations (t,)
and anions (¢_) and the large strain difference on both sides of
the gel (Ag) are crucially important. The other is to reduce the
C value where low Wy, and dielectric constant of the ionic gel
are preferred. In addition, to improve sensor performance, the
interaction between the IL and the polymer matrix should be
clarified, affecting both Q and C values. The results suggest that
the TFSI™ ions may interact with the SMP matrices through ion-
dipole interactions, resulting in the generation of large positive
charges mainly by migration of EMI" in the gel. Furthermore,
the sensor performance is dependent on the ionic liquid
content (Wy), where the ionic SMP gel sensor with Wy, <
25 wt% showed a small response of both g and V probably due
to the higher T, than body temperature. Therefore, the sys-
tematic research to clarify the effect of Wy, and measurement
conditions (temperature, humidity, etc.) on sensor performance
is currently underway. Moreover, since the role of PEDOT:PSS
electrodes with a negative zeta potential (—50 mV) in water®> on
sensor performance is still unclear, the detailed mechanism
can be clarified in future work where Kelvin probe force
microscopy is available to observe the local charge state.

3.3 Application to wearable sensors

Based on the piezoionic phenomenon of the ionic SMP gel, we
have devised wearable shape memory multifunctional sensors.
Fig. 9(a) shows the shape memory effect of the ionic SMP gel
sensor, in which the temporary flat shape recovers to the initial
curved shape on a finger because the body temperature (ca.
36 °C) is higher than T, of the ionic SMP gel (22 °C). This
indicates that the ionic SMP gel sensor can fit on a variety of
curved surfaces, allowing us to develop an on-demand wearable
sensor by adapting to individual body shapes. Furthermore, a
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Fig. 9 (a) Schematic and photographs of ionic SMP gel sensor (W, = 25 wt%) with shape memory effect where temporary flat shape (T < T) recovers to
initial curved shape on a finger at body temperature (T > T). (b) Photograph of a wearable sensor, fabricated with two equivalent ionic SMP gel sensors
arranged in parallel by lamination with polyester films (100 pm thick), attached to the wrist detecting voltage (V) and charge (g) in response to shaking the

wrist up and down.

sensor array with two equivalent ionic SMP gel sensors
arranged in parallel was fabricated by lamination with polyester
films (100 um thick) to detect the different mechanical stimuli
at the same time. As revealed in Fig. 9(b), the sensor array
attached to the wrist generates positive and negative voltages
and charges in response to shaking the wrist up and down,
indicative of the multifunctional sensors capable of sensing
both direction and quantity of bending displacement and
velocity. Unlike the power-consuming piezoresistive sensors,
the piezoionic sensor using the ionic SMP gel is a self-powered
displacement sensor without a power supply and amplifier,
which may open up a new field of wearable multifunctional
motion sensors such as virtual reality, healthcare, and robots
for the IoT applications. Furthermore, the non-power flexible
sensors using ionic SMPs can be applied to power generators
and electric double-layer capacitors for energy harvesting.

4 Conclusion

The ionic SMP gels composed of EMI-TFSI and SMPs were
fabricated at different Wy. The increase of Wy, significantly
decreased the T, of the ionic SMP gel due to the plasticizing
effect. It was found that the ionic SMP gel at Wy, = 25 wt% with
Ty = 22 °C exhibited the shape memory effect of R =72.7% and
R, = 72.9%. The values of V and ¢, generated by bending the
ionic SMP gel sensor increased in proportion to the d and v with
the sensitivities of 0.37 V. m~" and 0.47 pCs m™', respectively.
The results allowed us to conclude that the ionic SMP gel
sensors could be applied to self-powered wearable shape mem-
ory multifunctional sensors in a wide field of IoT applications.
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