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Sulfonyl fluorides have been increasingly favored by medicinal chemists and chemical biologists because

of their unique reactivity and stability, but their synthetic methods still have certain limitations. Based on

the SO2 radical insertion/fluorination strategy, we have developed a novel method for photocatalytic

induced synthesis of alkylsulfonyl fluorides (low to 1 mol% P.C. and up to 92% yield), which covers

primary, secondary and tertiary aliphatic carboxylic acid NHPI esters, providing a facile method for the

late-stage fluorosulfonylation of natural products and drugs. This method provides an efficient and

reliable approach for the synthesis and application of alkylsulfonyl fluorides.

Introduction

The discovery of sulfonyl fluorides can be traced back to 1921,
when Steinkopf treated toluene with fluorosulfonic acid.1

However, sulfonyl fluorides did not get enough attention until
2014, when Sharpless and colleagues proposed the concept of
sulfur(VI) fluoride exchange (SuFEx),2 which became known as
an excellent reaction for click chemistry and came to be widely
used in organic synthesis,3 chemical biology,4 drug discovery,5

materials science,6 etc.7 Then, a new chapter opened up for the
syntheses and applications of sulfonyl fluorides. The growing
demand for sulfonyl fluorides has led to an increasing empha-
sis on the development of novel and efficient synthetic
methods.

In recent years, the synthesis methods of sulfonyl fluorides
have developed rapidly.8 Typical methods mainly include: (1)
accessing the fluorosulfonyl group via the chloride–fluoride
exchange9 and alternative methods;10 (2) introducing sulfonyl
fluoride fragments into the target molecules via sulfonyl fluor-
ide hubs;11 and (3) direct fluorosulfonylation via FSO2 reagents
or FSO2 synthons.12 Due to decades of development, the
classic approaches to access the fluorosulfonyl group have
proven to be a straightforward and efficient way.

DABSO was developed by Santos et al. in 198813 and was
first applied as a novel SO2 source by Willis and co-workers to
deliver aryl aminosulfonamides in 2010.14 Since then, DABSO
has frequently been used as a solid precursor of SO2 gas in the
synthesis of various sulfonyl products,15 especially arylsulfonyl
fluorides in recent years (Scheme 1, I).16 Unsurprisingly, it can
also be used to synthesize aliphatic sulfonyl fluorides.17 For
example, the Willis group reported a radical approach toward

Scheme 1 Approaches for fluorosulfonyl group installation via SO2

radical insertion/fluorination.
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primary and secondary alkylsulfonyl derivatives via donor–
acceptor activation of pyridinium salts which were trapped by
DABSO to generate sulfonyl radicals (Scheme 1, II, A).18 Hence,
the SO2 radical insertion/fluorination strategy became a
popular method for the construction of the fluorosulfonyl
group, with special synthetic advantages in the direct synthesis
of sulfonyl fluorides via C–SO2F bond formation.8 Very
recently, the Weng group reported a photocatalytic decarboxy-
lative fluorosulfonylation approach for converting aldoxime
esters to the corresponding sulfonyl fluorides,17f which was
enabled by energy-transfer-mediated photocatalysis and N–O
bond homolysis. However, this protocol delivers the corres-
ponding sulfonyl fluorides usually in modest yields and is not
applicable to tertiary carboxylic acids (Scheme 1, II, B). Moreover,
SO2 sources including SO2 gas and its surrogates,15a–c such as in-
organic hypervalent sulfur sources like sodium/potassium meta-
bisulfite, are the key factors for the introduction of sulfone
groups.19

Aliphatic carboxylic acids, as a type of cheap and easily
available organic compound, are widely used in the synthesis
of various organic compounds. In particular, redox-active
N-hydroxyphthalimide (NHPI) esters, readily prepared from
abundant and widely available carboxylic acids, are considered
to be reliable precursors of alkyl radicals, which are widely
used in the synthesis of various C–X bonds.20 This year, the
Liu group developed an efficient method for obtaining alkyl-
sulfonyl fluorides from aliphatic carboxylic acid NHPI esters
using sodium dithionite as the SO2 source.

19i However, limited
by the equivalent amount of zinc powder to be used and high
temperature conditions, this method afforded the corres-
ponding alkylsulfonyl fluoride products in moderate yields
(Scheme 1, II, C). Our group is dedicated to the synthesis of
various types of sulfonyl fluorides by the photocatalytic redox
strategy. Based on the SO2 radical insertion/fluorination strat-
egy, we envisaged a facile method to synthesize alkylsulfonyl
fluorides through photocatalytic redox active ester decarboxyl-
ation with carboxylic acids as the alkyl radical source, DABSO
as the SO2 source and NFSI as the fluorine source. Herein, we
wish to report our efforts toward this goal and the establish-
ment of a facile method to access aliphatic sulfonyl fluorides
based on visible light-mediated decarboxylative radical fluoro-
sulfonylation via SO2 radical insertion/fluorination of alkyl
NHPI esters (low to 1 mol% P.C. and up to 92% yield). This
method is characterized by the rapid synthesis of a broad
range of alkylsulfonyl fluorides from primary, secondary, and
tertiary acids, late-stage modification of natural products and
drugs, and mild conditions (Scheme 1, II).

Results and discussion

To achieve the photocatalytic decarboxylated fluorosulfonyla-
tion of aliphatic carboxylic acid NHPI esters, an initial study
was conducted with 4-bromophenylpropionic acid-derived
NHPI ester 1a as the model substrate (Table 1). Ir[dF(CF3)
ppy]2(dtbbpy)PF6 was first tested as the photocatalyst in combi-

nation with DIPEA as the reductant and DABSO as the SO2

source. After 3 h of stirring, NFSI was added as the F source
and the reactions proceeded for an additional 1 h. The desired
product 2a was obtained in 91% yield (85% isolated yield,
Table 1, entry 1). The addition of Hantzsch ester (HE) as the
additional reductant slightly reduced the yield (entry 2 vs.
entry 1). This is probably due to the formation of a cloudy
mixture upon the addition of HE, which negatively affects the
light absorption of the photocatalyst. Next, changing the
photocatalyst to eosin Y (disodium salt), fac-Ir(ppy)3, or Ru
(bpy)3Cl2 would dramatically reduce the yields (entries 3–5).
Furthermore, varying the solvent proved that MeCN, DMF,
THF or DCM are all not suitable for the reaction (entries 6–9).
Replacing the sacrificial agent DIPEA with Et3N also signifi-
cantly reduced the yield to 13% (entry 10). When reducing the
equivalents of DABSO or DIPEA, the yield of 2a also decreased
accordingly (entries 11 and 12). In contrast, Selectfluor™ gave
a reduced reaction yield of 18% compared to NFSI (entry 13).
Also, more equivalents of NFSI did not result in a better yield
for this reaction (entry 14). Finally, control experiments
showed that photocatalyst, light source and inert gas protec-
tion were necessary (entries 15–17).

Having established the optimized reaction conditions, we
turned our attention to investigate the reaction scope. A variety
of primary, secondary and tertiary carboxylic acid-derived
NHPI esters were examined, and the results are shown in
Table 2. In the case of primary carboxylic acids, we could
observe good compatibility toward phenyl (2b, 86%), 4-methox-
ybenzene (2c, 79%), thienyl (2d, 78%), chloride (2e, 73%), C–C

Table 1 Optimization of the reaction conditionsa

Entry Variation from the standard conditions Yieldb (%)

1 None 91 (85)c

2 Addition of Hantzsch esters (2.0 eq.) 85
3 Eosin Y-Na2 instead of Ir[dF(CF3)ppy]2(dtbbpy)PF6 6
4 fac-Ir(ppy)3 instead of Ir[dF(CF3)ppy]2(dtbbpy)PF6 17
5 Ru(bpy)3Cl2 instead of Ir[dF(CF3)ppy]2(dtbbpy)PF6 5
6 MeCN instead of i-PrOH 13
7 DMF instead of i-PrOH 17
8 THF instead of i-PrOH N.P.
9 DCM instead of i-PrOH N.P.
10 Et3N instead of DIPEA 13
11 DABSO (1.5 eq.) 84
12 DIPEA (3.0 eq.) 61
13 Selectfluor™ instead of NFSI 18
14 NFSI (3.0 eq.) 90
15 Without P.C. N.P.
16 No light Trace
17 In air Trace

a Reaction conditions: 1a (0.2 mmol), DABSO (0.4 mmol), DIPEA
(1.0 mmol), Ir[dF(CF3)ppy]2(dtbbpy)PF6 (1 mol%), i-PrOH (4.0 mL), 24
W blue LEDs (λmax = 460 nm), rt, argon, 3 h; then NFSI (0.4 mmol),
1 h; N.P. = no product was detected. b Yields were determined by 19F
NMR analysis with 4-iodofluorobenzene as the internal standard.
c Isolated yield is shown in parentheses.
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triple bond (2f, 70%) and benzyl (2g, 71%). Secondary acids
could also be efficiently converted into the corresponding
alkylsulfonyl fluorides in high yields (2h–2l, 78%–92%),
including norbornylane (2i, 90%), cyclohexene (2j, 92%), cyclo-
heptane (2k, 88%) and α-methylbenzyl (2l, 78%) substrates.
Delightfully, compared with the existing synthetic methods of
tertiary alkylsulfonyl fluorides which suffer from synthetic
difficulties or moderate yields,17f,19i the most prominent
feature of this novel method is that it allows for direct fluoro-
sulfonylation of tertiary aliphatic carboxylic acid NHPI ester to
access tertiary alkylsulfonyl fluorides in high yields, including
adamantane (2n, 93%). Remarkably, due to mild conditions
and excellent compatibility, this method can also be used in
the late-stage modification of natural products or drugs to
obtain the corresponding fluorosulfonylation products in good
to high yields, including 2q (83%, from palmitic acid), 2t
(79%, from oxaprozin), 2u (86%, from flubiprofen) and 2v
(84%, from abietic acid). As shown in Table 2, primary, sec-
ondary and tertiary alkyl carboxylic acid-derived NHPI esters
can all be well accommodated under the reaction conditions,
providing rapid access to alkyl boronic esters with consider-
able structural diversity.

In order to gain a better understanding of the reaction
mechanism, 2,2,6,6-tetramethylpiperidinooxy (TEMPO) was
added to the reactions under the standard conditions. It was
found that the yield of the expected product 2a was dramati-
cally reduced and the TEMPO-trapped product 3 was detected
by HRMS analysis (Scheme 2A). In addition, we obtained the
corresponding ring-opened fluorosulfonylation product 519i in
66% 19F yield when cyclopropionate was used as the radical
probe under the standard conditions (Scheme 2B). The above
results showed that the reaction proceeds through an alkyl
radical mechanism. According to the above studies and pre-
vious work,21 a plausible mechanism for this visible light-
mediated decarboxylative radical fluorosulfonylation via SO2

insertion/fluorination is proposed, as shown in Scheme 2C.
Initially, the single electron transfer (SET) between the

excited photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6 (P.C., [Ir]) and
DIPEA produces DIPEA•+ and the reductive [IrII] species.
Subsequently, the reduction of NHPI esters 1 by the resulting
[IrII] species leads to the formation of the alkyl radical Int-I
and the regeneration of the photocatalyst [IrIII]. The insertion
of SO2 into the alkyl radical Int-I then gives rise to the sulfonyl
radical Int-II, which is captured by NFSI through fluorine atom
transfer17e,f to afford the final fluorosulfonylation product 2.

To demonstrate the synthetic value of our products, we
carried out the derivatization of the obtained product 2b
(Scheme 3). We investigated the multifunctional synthesis of
various sulfonyl-containing derivatives based on the fluorosul-
fonyl group. For example, sulfonyl azide 6 was obtained
through SuFEx click reactions with trimethylsilyl azide
(TMSN3). On the other hand, sulfonate ester 7 was achieved
through the reaction of 2b with naphthol. Moreover, the sulfo-
nate derivatives of estrone 8 can also be obtained in 77% yield
by the SuFEx click reaction.

Table 2 Substrate scopea

a Standard conditions: at the 0.2 mmol scale, isolated yields.

Scheme 2 Mechanistic study and proposed mechanism.
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Conclusions

In conclusion, by combining photoredox catalysis and SO2

radical insertion, a visible light-mediated decarboxylative
radical fluorosulfonylation via SO2 insertion/fluorination of ali-
phatic carboxylic acid NHPI esters has been successfully devel-
oped for the first time. This method is applicable to a variety
of alkyl carboxylic acids, including primary, secondary, and
tertiary ones, as well as several natural products and drugs,
allowing for facile access to various alkylsulfonyl fluorides,
which are important compounds in multiple fields of chem-
istry, biology and materials science. Moreover, the value of the
products has been demonstrated once again with a direct
transformation of sulfonyl fluorides to sulfonyl azides and sul-
fonate esters. We anticipate that this radical photocatalytic
decarboxylative fluorosulfonylation will provide a useful and
complementary new approach for the synthesis of sulfonyl
fluorides.
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