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ine learning and high-throughput
experimentation to discover photocatalytically
active organic molecules†

Xiaobo Li, ‡*a Phillip M. Maffettone,‡ab Yu Che, ‡ac Tao Liu,‡a Linjiang Chen *ac

and Andrew I. Cooper *ac

Light-absorbing organic molecules are useful components in photocatalysts, but it is difficult to formulate

reliable structure–property design rules. More than 100 million unique chemical compounds are

documented in the PubChem database, and a significant sub-set of these are p-conjugated, light-absorbing

molecules that might in principle act as photocatalysts. Nature has used natural selection to evolve

photosynthetic assemblies; by contrast, our ability to navigate the enormous potential search space of

organic photocatalysts in the laboratory is limited. Here, we integrate experiment, computation, and

machine learning to address this challenge. A library of 572 aromatic organic molecules was assembled with

diverse compositions and structures, selected on the basis of availability in our laboratory, rather than more

sophisticated criteria. This training library was then assessed experimentally for sacrificial photocatalytic

hydrogen evolution using a high-throughput, automated method. Quantum chemical calculations and

machine learning were used to visualise, interpret, and ultimately to predict the photocatalytic activities of

these molecules, covering a much broader chemical space than for previous polymer photocatalyst libraries.

By applying unsupervised learning to the molecular structures, we identified structural features that were

common in molecules with high catalytic activity. Further analysis using calculated molecular descriptors

within a suite of supervised classification algorithms revealed that light absorption, exciton electron affinity,

electron affinity, exciton binding energy, and singlet–triplet energy gap had correlations with the

photocatalytic performance. These trained predictive models can be used in future studies as filters to

deprioritise or discard would-be low-activity candidate molecules from experiments, and to prioritize more

favourable candidates. As a demonstration, we used virtual in silico experiments to show that it was possible

to halve the experimental cost of finding 50% of the most active photocatalysts by using the machine

learning model as an experimental advisor. We further showed that the ML advisor trained on the 572-

molecule library could be used to make predictions for an unseen set of 96 molecules, achieving equivalent

predictive accuracies to those in the initial training set. This marks a step toward the machine-learning

assisted discovery of molecular organic photocatalysts and the approach might also be applied to problems

beyond photocatalytic hydrogen evolution, such as CO2 reduction and photoredox chemistry.
Introduction

Conjugated organic materials such as carbon nitride, conju-
gated linear polymers, conjugated organic frameworks, and p-
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0754
conjugated molecules have emerged as photocatalysts for solar
fuels generation1–6 and for photoredox organic synthesis.7–10

However, it remains challenging to predict the activity of
organic photocatalysts, either by expert knowledge or by using
a priori computations. This is because catalytic performance is
inuenced by a host of factors spanning multiple length scales,
such as light absorption, thermodynamic driving force, exciton
recombination, charge carrier mobility, physical surface prop-
erties, and so on. Beyond the basic question of whether a given
material is likely to absorb visible light, these factors are
generally hard to predict. Also, the variables interact in complex
ways:11 for example, porosity might be desirable to increase the
catalyst surface area, but it might also reduce charge carrier
mobility. To deconvolute such multivariate relationships, we
need algorithms to model multi-dimensional datasets. We also
© 2021 The Author(s). Published by the Royal Society of Chemistry
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need a sufficient volume of data to create meaningful models.
At present, most studies in the literature are focused on
a handful of catalysts, making it difficult to probe general
structure–activity relationships. To complicate things further,
photocatalytic activity is critically dependent on the precise
details of the experimental set up, such as the intensity of the
light source: as such, notwithstanding the surge of interest and
publications in this area, the lack of experimental stand-
ardisation between laboratories makes it challenging to
implement data-mining approaches across a large number of
different studies. We need larger and more standardized data-
sets to have a chance of learning the underlying structure–
property rules.

Machine learning techniques are used increasingly to
complement experiments when studying complex chemical
systems, oen in combination with quantum chemical calcu-
lations or molecular modelling, as exemplied by the acceler-
ated discovery of drugs,12 catalysts,11,13–17 porous adsorbents,18

and batteries.19 A key goal is to generate both predictive models
and to gain physical insights: the rst allows for fast, in silico
pre-evaluation of potential candidates through quantitative
prediction, qualitative ranking, or coarse-grained ltering; the
second allows us to understand the relationship between
material structure and physicochemical characteristics and its
functional properties. Machine learning strategies are some-
times also referred to as “data-driven”, with the implication that
they require sizable datasets to train on. This limits the power of
such methods when the acquisition of experimental data is
time-consuming and expensive.

To our knowledge, the largest library of organic photo-
catalysts that was experimentally tested under identical condi-
tions contained 175 conjugated linear polymers.11 All of those
polymers were alternating AB co-polymers, where one of the two
comonomers already known to promote photocatalytic activity.
Here, we set out to create a larger and more diverse library of
candidate organic molecules that could be rapidly sourced and
tested for sacricial photocatalytic hydrogen evolution as
a training set. This strategy has several advantages. First, p-
conjugated organic molecules are a promising class of photo-
catalysts: various aromatic compounds such as benzophe-
none,20 proavin,21 and dyes (boron-dipyrromethene,22

xanthene,23,24 etc.25,26), have been studied for photocatalytic
hydrogen evolution,27,28 but there is a far larger space of p-
conjugated molecules that are as yet unstudied. Second, in
contrast with polymer photocatalysts, which are mixtures of
molecules with a wide range of molar masses, organic mole-
cules are attractive choices for data-driven studies because of
their unambiguous molecular structures, dened composition,
and chemical purity. Third, no new synthesis was involved in
this study: we worked withmolecules that were already available
in our laboratory based on historical research activity. This
allowed us to rapidly expand the size of the library to include
572 molecules. The size of this library could be increased
further in the future, while preserving the data consistency
required for applying pre-trained machine-learning models to
new data. We focused only on aromatic molecules here, based
on the assumption that the presence of a p-conjugated system
© 2021 The Author(s). Published by the Royal Society of Chemistry
is necessary for light absorption in the spectral range of the
light source used in this study (350–1000 nm). The second
criterion was availability in our laboratory. As such, the library is
diverse, containing many molecules that were originally
sourced or synthesized for other applications, such as the
synthesis of porous organic cages, conjugated microporous
polymers, and covalent organic frameworks, as well as some
molecules that had been explored in photocatalysis-related
problems; for example, as potential sensitizers, monomers for
polymers, or precursors for monomers, etc. Apart from aroma-
ticity and availability, no other prior knowledge about the
desirable properties of the candidate photocatalysts was applied
in the library selection, thus minimising prior chemical
knowledge from skewing the structure–activity correlation. As
a result of this broad selection approach, we expected the hit
rate for good photocatalysts to be modest.

With a large dataset of organic photocatalyst activities in
hand, we then carried out density functional theory calculations
and machine learning to visualise, interpret, and predict the
activity of the molecules. By applying unsupervised learning to
atomic neighbour environments, we identied correlations
between molecular structure and photocatalytic activity that is
to some extent human interpretable. These structure–activity
correlations were further demonstrated to be machine learn-
able for predicting the photocatalytic activity. We also used
a suite of supervised classication algorithms, together with
calculated molecular descriptors, to construct predictive
models for hydrogen evolution rates, which reveals key opto-
electronic properties that impact the performance of these
molecular photocatalysts. Finally, the potential of machine-
learning driven advisors to assist chemists in the discovery of
new photocatalysts was illustrated by in silico virtual experi-
ments and experimental blind tests.

Results and discussions
A library of candidate organic photocatalysts

Drawing on our laboratory's existing chemical stocks, we iden-
tied 572 aromatic molecules and investigated their perfor-
mance for photocatalytic hydrogen evolution activity. No
selection bias other than aromaticity and availability in our
laboratory was applied. A total of 11 elements occurred in this
library of molecules; the frequencies of their occurrence is
shown in Fig. 1a. To help visualise the structures of all the 572
molecules, we also developed an interactive browser-based
explorer for our library (https://www.molecular-photocatalysts-
library.app).

To assess the chemical diversity of our molecules in terms of
the chemical space coverage, we compared them with the linear
polymer photocatalysts reported by Bai et al.,11 which is the
largest library of organic photocatalysts in a single study to date.
We used the Smooth Overlap of Atomic Positions (SOAP)31

descriptor to encode atomic neighbour environments for the H,
C, N and O elements in both libraries. For visual comparison,
we applied the Uniform Manifold Approximation and Projec-
tion (UMAP) technique32 to learn a mapping from the high-
dimensional SOAP vectors to a two-dimensional (2D)
Chem. Sci., 2021, 12, 10742–10754 | 10743
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Fig. 1 A library of 572 aromatic candidate organic photocatalyst molecules. (a) Polar bar chart showing the percentage of molecules in the library
containing the 11 different chemical elements that occur: 100% contain C, 96% contain H, and so on. The radial coordinates are on a logarithmic
scale. (b) Comparison of the diversity of atomic neighbour environments for H, C, N and O elements found in this molecular library (red points)
and in the library of 99 conjugated polymers reported in ref. 11 (blue points). Themolecular library covers a significantly larger chemical space. (c)
Scheme showing the proposed photocatalytic processes involved in sacrificial hydrogen production. M ¼ organic molecule. Conditions used
here: 5 mg molecular catalyst, triethylamine/MEOH/H2O (1 : 1 : 1 vol%) mixture, 3 wt% Pt (formed in situ), solar simulator irradiation (spectral
range of source: 350–1000 nm). (d) Statistical summary of the photocatalytic hydrogen evolution performance of the candidate molecular
catalysts in the library. The hydrogen evolution rate (HER) was classified against two conjugated polymers as a benchmark: carbon nitride PCN29

(2.2 mmol h�1) and a covalent triazine framework CTF-1 (ref. 30) (17.0 mmol h�1).
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representation (Fig. 1b). This showed that our library of 572
molecules covers a signicantly larger chemical space than the
polymer library,11 as expressed by the four key elemental types
(C, H, O and N; Fig. 1B). The higher chemical diversity of our
molecular library stems from the larger number of occurring
elements (11 vs. 8), as well as our library containing a signi-
cantly larger number of different molecules than the total
number of uniquemonomers in the polymer library (572 vs. 99).
Also, that polymer library was constructed by using chemical
knowledge: specically, it was biased to include comonomers
such as dibenzosulfone that were already known to promote
photocatalytic activity.33

The photocatalytic hydrogen evolution performance for the
small molecule library was investigated using a high-
throughput parallel photocatalysis screening platform that
utilizes a solar simulator, as described previously.11 Triethyl-
amine (TEA) and Pt (produced by in situ photoreduction) were
used as the sacricial agent and as a proton reduction catalyst,
respectively. For molecular organic photocatalysts (and to
10744 | Chem. Sci., 2021, 12, 10742–10754
a great extent conjugated polymers), the exciton binding energy
is large relative to kT (26 meV at room temperature). Hence,
spontaneous dissociation of excitons into free electrons and
holes is difficult. The generalised catalytic mechanism
proposed here is that the photo-generated excitons on the
molecule can either undergo a single-electron reduction or
oxidation, mediated by the sacricial electron donor (TEA) and
the proton reduction catalyst (Pt), respectively (Fig. 1c). Fig. 1d
shows a statistical summary of the photocatalytic hydrogen
evolution rates (HERs) of the dataset. In comparison with two
benchmark conjugated polymers PCN29 and CTF-1,30 syn-
thesised in-house and measured under exactly the same
conditions, 63 molecules showed HERs higher than for PCN
(2.2 mmol h�1), and 6 molecules surpassed the HER for CTF-1
(17.0 mmol h�1). The highest HER among our molecular pho-
tocatalysts (ID153; see Fig. 2b for structure) was 28.3 mmol h�1

(5660 mmol g�1 h�1), which is comparable to the highest HER
(�6000 mmol g�1 h�1) measured for the 175 conjugated poly-
mers using the same experimental setup using a more design-
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Structure–activity map of the molecular photocatalyst library. (a) 2D UMAP embedding of the chemical space of the photocatalyst library,
colour-coded by k-means clusters identified using the 2D UMAP coordinates; symbol size denotes the experimentally measured hydrogen
evolution rate (HER). (b) Molecules selected based on their high HERs; their locations on the UMAP plot are labelled in (a). (c) Plots showing
relative HERs for groups of structurally similar molecules; the locations of these three groups (Z1–Z3) are circled on the UMAP plot in (a).

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Ju

ni
 2

02
1.

 D
ow

nl
oa

de
d 

on
 0

7.
09

.2
02

4 
18

:0
4:

51
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
led approach.11 A full list of the molecules (ID1-ID572) is
provided in the ESI.†
Mapping structure–activity correlations

To investigate possible structure–activity correlations in our
library, we used SOAP descriptors to encode the molecules and,
together with a regularised entropy match (REMatch) kernel,34

to quantify the similarity between all pairs of molecules. The
resulting similarity matrix was then projected onto a 2D space
by a UMAP embedding, as shown in Fig. 2a, where each point
represents a molecule. The size of each point relates to the
photocatalytic activity of the molecule (the HER). The points are
arranged spatially such that the closer the two points are on the
plot, the more similar the two molecules are, as described by
SOAP. We further used the k-means algorithm to identify clus-
ters on the 2D UMAP space, showing that the 572 molecules can
be broadly clustered into ve groups, colour coded in Fig. 2a,
based on their chemical and structural similarity.

Fig. 2a shows that there are correlations between molecular
structure and hydrogen evolution activity in the dataset (symbol
size scaled by measured HER). For example, the molecules in
the library with high HERs are mostly located in group 1 (red
points on plot). Within each of the ve larger sub-groupings,
molecules with relatively high catalytic performance tend to
form smaller, local clusters. Structural analysis of the molecules
with the highest activities (>9 mmol h�1) revealed that all but
one examples (ID566) shared the common structural feature of
having at least one aryl carbonyl moiety (Fig. 2b, and S1a†).
However, it is worth noting that molecules with similar struc-
tures can show large differences in hydrogen evolution
© 2021 The Author(s). Published by the Royal Society of Chemistry
activities; for example, the structural isomers shown in sub-
cluster Z1, Fig. 2c.

Descriptors for molecular photocatalysts

For an organic molecule to act as an efficient hydrogen evolu-
tion photocatalyst according to the scheme in Fig. 1c, it must
absorb light efficiently and drive thermodynamically the
reduction of protons and the oxidation of water or, in this study,
a sacricial agent (TEA). To achieve this, the electron affinity
(EA) of the molecule or its exciton ionization potential (IP*) and
the ionization potential (IP) of the molecule or its exciton
electron affinity (EA*) must straddle the proton reduction and
the TEA oxidation potentials. The exciton potentials (EA* and
IP*) are important for molecular photocatalysts, where the
exciton binding energy (Eeb)—that is, the energy binding an
electron–hole pair through the electrostatic Coulomb force—is
generally large and spontaneous dissociation of excitons into
free electrons and holes is difficult. We used density functional
theory (DFT) and time-dependent (TD) DFT calculations to
determine these energy levels computationally; details are given
in the Methods section and the ESI.†

We also performed detailed analyses of a range of key
optoelectronic and excited-state properties, that is: (i) light
absorption (optical gap, DES1/S0), (ii) excited-state charge
distribution (change in dipole moment between S1 and S0, DD;
degree of spatial extension of hole and electron distribution in
the charge-transfer direction, HCT) and charge separation
(difference in the extent of spatial distribution between electron
and hole, Ds; electron–hole overlap, Sr), and; (iii) the energy gap
between the rst singlet (S1) state and the rst triplet (T1) state
(DES1/T1

). We also calculated the solvation energy (Esol) of the
Chem. Sci., 2021, 12, 10742–10754 | 10745
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molecule in water as a potential indicator of its wettability, as
well as the self-binding (in a dimer) energy, Eb, of the molecule
as a proxy for its propensity for aggregating with itself. Full
denitions of these descriptors and calculation details are given
in the ESI.†
Machine learning the hydrogen evolution activity

To gain insight into the dependence of HER on these various
calculated descriptors, we rst explored the Pearson's correla-
tion coefficients for individual features and their binary
combinations. The cells on the diagonal (top-le to bottom-
right) of Fig. 3a show the extent of linear correlation of the
HER with individual variables, while the off-diagonal cells
contain the geometric mean of the correlation of HER with each
of the two descriptors. The absolute value of the Pearson
correlation coefficient is less than 0.1 for all variables and
variable pairs, indicating a weak linear correlation, if any,
between the HER and single descriptors or binary combinations
of them. This shallow statistical analysis will not capture any
complicated or nonlinear behaviours dependent on multiple
features, but it conrms that any possible structure–property–
activity relationship in our dataset is of a nonlinear, multivar-
iate nature. Indeed, Fig. S4† shows that the HERs are not line-
arly dependent on any individual descriptors, nor is any pair of
the calculated molecular descriptors correlated in a simple way.
Fig. 3 Machine learning the activity of the molecular photocatalysts. (a
(HER) and all pairs of the calculated molecular descriptors, where the sca
corner to the bottom-right corner shows the correlation between the H
binary classifier. (c) Extracted permutation feature importance for the MLP
all the 572 molecules plotted against the five key molecular features su
symbols are colour-coded by the k-means clusters as shown in Fig. 2a.

10746 | Chem. Sci., 2021, 12, 10742–10754
Next, a number of machine learning (ML) models were
evaluated for their suitability to construct predictive models
together with the computed molecular descriptors. This
included k-nearest neighbours (KNN), random forests (RF),
support vector machines (SVM), Gaussian processes (GP),
gradient boosted decision trees (GB-DT), and multilayer per-
ceptrons (MLP), all of which have been used in various areas of
chemistry and materials science.35–37 The models were trained
for tiered classication tasks based on optimised HER thresh-
olds. By transforming a regression problem into a lower-
resolution classication problem, the models act as a ltra-
tion step for agging potentially photoactive candidate mole-
cules. For binary classication, this resulted in one class being
assigned to HER values smaller than 1.07 mmol h�1, with the
other class assigned to values larger than 1.07 mmol h�1. The
class thresholds (in mmol h�1) for ternary classication were
1.07 and 12.5; that is, low: HER # 1.07, medium: 1.07 < HER #

12.5, high: HER > 12.5. The quaternary classication was also
attempted, as well as regression tasks, but no satisfactorily
predictive models could be achieved.

Leave-one-out results showed that the calculated molecular
descriptors were successful at producing binary and ternary
classications with greater than 87% accuracy, independent of
the model type (Table 1). The use of 10-fold cross-validation
affords computational efficiency but fails to produce high F1-
) Bivariate Pearson's correlation between the hydrogen evolution rate
le runs between �0.1 and +0.1; the diagonal running from the top-left
ER and individual descriptors. (b) Confusion matrix for the MLP-based
models in binary and ternary classification tasks. (d) Measured HERs of
ggested by the MLP models; SHE: standard hydrogen electrode. The

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Binary and ternary classification metrics across all models, obtained by 10-fold and leave-one-out (LOO) cross-validation proceduresa

Model

Binary Ternary

10-fold

LOO accuracy CM MCCd

10-fold

LOO accuracyAccuracyb F1-scorec Accuracy F1-score

KNN 0.89 0.69 0.89 0.46 0.89 0.61 0.89
GP 0.87 0.57 0.87 0.30 0.87 0.42 0.87
RF 0.89 0.69 0.88 0.35 0.88 0.57 0.89
GB-DT 0.89 0.73 0.89 0.44 0.88 0.57 0.89
SVM 0.87 0.68 0.87 0.34 0.88 0.58 0.87
MLP 0.89 0.71 0.89 0.46 0.89 0.56 0.88

a Analyses of the area under the curve (AUC) for the receiver operating characteristic (ROC) curve and the precision-recall (PR) curve for all the
binary-classication models are given in Table S2. b The sum of the number of true positives (TP) and true negatives (TN) divided by the sum of
the number of true positives, true negatives, false positives (FP), and false negatives (FN). c Weighted harmonic mean of precision and recall,
where precision is the number of true positives divided by the sum of the number of true positives and false positives; recall is the number of
true positives divided by the number of true positives and false negatives. For ternary classication, metrics are computed independently for
each class and then averaged (macro average). d The Matthews correlation coefficient (MCC), calculated directly from the binary confusion
matrix (CM; Fig. S12–S17), as MCC ¼ ðTP� TN� FP� FNÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞp

, ranging between �1 and 1;
values greater than zero indicate a performance better than random assignment.
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scores. This was a result of class imbalance: there are far more
data points in the ‘low’ performance class than in the ‘high’
performance class (492 vs. 80), and 59% of molecules in the
library produced no hydrogen at all, thus exposing the classier
to more information related to the low-performance case. This
occurs when the dataset is sampled uniformly for each fold of
cross validation; this issue remains when using biased
sampling to force each fold to have a constant amount of each
class. Class imbalance is a core challenge in applying machine
learning to a wide range of research problems in the physical
sciences, such as diversity-oriented screening for new photo-
catalysts, where there are oen far more zeros in a dataset than
nonzero values. Overall, our results show that the use of
molecular descriptors that quantify a range of photochemical
and electronic features of the molecule, in conjunction with ML
models, can predictively assign HER performance levels (low,
medium or high) to candidate photocatalysts, albeit with
limitations.

Comparing KNN with the other ML models (Tables 1 and
S2†), we note the relative similarity of themodels and the largely
interpolative behaviour of them, with featurization being more
important than the ML model itself. This is unsurprising
because of the class imbalance challenge described above as
well as missing any mesoscale experimental factors, which are
not captured by the current set of molecular descriptors, as
discussed further below.

To assess the practical utility of these models, we explored
when and how they failed. From the confusion matrices shown
in Fig. 3b and S12–S17,† it is clear that the experimentally high-
performing catalysts are more oen mislabelled as being ‘low’
performers than the opposite case. This is a result of the
signicant class imbalance, discussed above. The current
models are robust against producing false positives (more than
95% ‘low’ performers are correctly labelled by all the models;
Fig. S12–S17†), and hence useful to screen out candidates that
would show zero or low hydrogen evolution activities. Some
‘high’ performing molecules will also be eliminated because
© 2021 The Author(s). Published by the Royal Society of Chemistry
they are mislabelled as ‘low’ performing, but this behaviour
could be acceptable when the cost of experiment is high and
evaluating an excess of candidates becomes expensive—for
example, to guide investigations that cannot access high-
throughput screening facilities, as used here. To minimise the
model's proneness to false negatives—that is, mislabelling
‘high’ performers as ‘low’—more data points in the ‘high’ HER
class would be required to improve themodel's performance. By
examining these confusion matrices and the performance
metrics in Table 1, we identied the MLP models as the stron-
gest binary and ternary classiers.

Binary and ternary classication tasks were also performed
for the 572 molecules, using only the molecular structure as
input representation (Section 3.5, ESI†). To encode the mole-
cules for machine learning, both Morgan ngerprints and SOAP
descriptors were tested, together with using the Tanimoto index
or the REMatch kernel as the similarity measure (further details
are given in Table S3†). KNN and SVM models were evaluated
for both structural representations, using their respective, pre-
computed distance metrics. All the KNN models outperformed
their SVM counterparts, in both binary and ternary classica-
tions, for both structural representations (Table S3 and
Fig. S24–S27†). The SOAP-based KNN model was identied as
the strongest binary classier, while the Morgan ngerprints-
based KNN model was identied as the strongest ternary clas-
sier; both of these models performed well in both binary and
ternary classication tasks. These results show that the struc-
ture–activity correlations that are only somewhat human-
interpretable in Fig. 2a are machine-learnable, achieving
equivalent levels of predictive ability to the strongest MLmodels
using engineered descriptors (cf. Table 1). It would be particu-
larly advantageous to use structure-based ML models to guide
large-scale experimental screening of molecular photocatalysts,
as expensive descriptor calculations would otherwise become
the bottleneck to increasing the throughput. Naturally, such
models do not intuitively highlight physical features of high-
performance photocatalysts, which could then be used to
Chem. Sci., 2021, 12, 10742–10754 | 10747
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guide the design of better catalysts, nor do they reveal directly
the structural features that may have correlated with the pho-
tocatalytic activity.
Understanding the important molecular features for
photocatalytic activity

Beyond their predictive ability, interpretability is a key goal for
MLmodels to understand the importance of each descriptor and
to obtain physical insights into structure–property–activity rela-
tionships. Permutation importance was calculated for all of the
models presented in Table 1 and these are shown in Fig. 3c and
S18–S23.† The MLP models, the strongest binary and ternary
classiers, assign high relative importance to exciton electron
affinity (EA*), electron affinity (EA), exciton binding energy (Eeb),
optical gap (DES1/S0), and singlet–triplet energy gap (DES1/T1

) for
both binary and ternary classication tasks. EA* estimates the
thermodynamic driving force for the molecular photocatalyst to
oxidise the sacricial agent, TEA. EA estimates the thermody-
namic driving force for proton reduction. DES1/S0 estimates the
optical gap of the molecular photocatalyst. EA*, EA and DES1/S0

are intuitively important, because they are essential optoelec-
tronic requirements for a molecule to act as a photocatalyst: that
is, the molecule must absorb light efficiently over a broad range
in the visible spectrum as well as having enough thermodynamic
driving force to oxidize TEA (EA*) or to reduce protons (EA).
Importantly, our ML models identied two additional molecular
properties, Eeb and DES1/T1

, that correlate strongly with a high
photocatalytic activity. Eeb represents the energy penalty for
separating an exciton into free charges and large values of Eeb
would be expected to lead to fast exciton recombination, thus
unfavourably inuencing the photocatalytic activity. DES1/T1

is
the energy gap between the rst singlet state and the rst triplet
state; the smaller the value of DES1/T1

is, the larger the spin–
orbital coupling, the faster the rate of intersystem crossing and,
ultimately, the higher the triplet exciton yield. Fig. 3d shows that
the high-activity (>12.5 mmol h�1) molecules tend to have a small
Eeb and a small DES1/T1

.
Molecules ID146, ID153, ID255, ID338 and ID487 are among

the most active photocatalysts in this study and share the
common structural feature of having at least one aryl carbonyl
moiety (Fig. 2a). Their high HERsmight be attributed, at least in
part, to their ability to generate triplet excitons.24,31,38 More
generally, many aryl carbonyl compounds, such as ketones and
aldehydes, are known for their high yields of excited triplet
states.39–43 Molecule ID566 has a high HER of 20.5 mmol h�1 and
is known for its thermally activated delayed uorescence
(TADF),44 a process that entails the molecule harvesting triplet
excitons. In general, triplet excitons have a longer lifetime than
singlet excitons, whichmay be benecial for allowing the photo-
generated excitons on the molecule to participate in redox
processes with the sacricial agent and/or the Pt cocatalyst,
rather than undergoing recombination to the ground state.

Both the feature importance analyses of the trained ML
models (Fig. 3c and d) and the structural analyses of the most
active photocatalysts in our library (Fig. 2) highlighted a positive
correlation between the formation of triplet excitons and high
10748 | Chem. Sci., 2021, 12, 10742–10754
hydrogen evolution activity. For the future design of molecular
photocatalysts, an effective strategy may be to boost the
formation of triplet excitons by incorporating auxochrome
moieties (such as the carbonyl group) and/or heavy atoms (such
as I, Br, and S) into the molecular structure, as exemplied by
some selected pairs in our library shown in Fig. S1.† However,
an attempt to correlate HERs for some of the molecules with
their reported triplet-state yields in isolation failed to produce
any correlation, as shown in Fig. S2.† This is perhaps unsur-
prising since the hydrogen evolution activity of a photocatalyst
is rarely governed by a single physicochemical or optoelectronic
property but rather by a host of molecular and mesoscale
factors. As such, more sophisticated approaches—such as the
structure-based or the descriptor-based machine learning
demonstrated here—hold the promise for using data-driven
strategies to probe the complex structure–property–activity
relationship for molecular photocatalysts.

In addition to the intrinsic challenge of classifying reactions
that are dictated by a complex, interrelated set of factors, there
are other experimental factors that may contribute to the diffi-
culty of this classication task. First, while we conducted all
reactions under the same experimental conditions, the gener-
alised mechanism proposed in Fig. 1c makes various assump-
tions: for example, we assume that the hydrogen produced is
generated from the water, rather than from the organic mole-
cule itself. Usually, we would conrm this for each reaction, for
example via isotopic labelling experiments, but this is more
challenging for such a large library of reactions. Some mole-
cules in our library—such as ID67, ID146, ID153, and ID566—
were already reported by others to perform photocatalytic
hydrogen evolution in the presence of sacricial agents.20,38,45

Also, molecules ID98, ID182 and ID183 showmeasured HERs of
2.6, 4.2 and 8.1 mmol h�1, respectively, but contain no H atoms;
hence, the H2 produced cannot come from the organic molecule
itself. Another consideration is solubility: while the molecules
selected have, on the whole, low aqueous solubilities, some
molecules in the library might have nite solubility in the water/
TEA/MEOHmixture, and we did not try to account for this in the
descriptors. Also, the interaction between the organic molecules
and the Pt cocatalyst is important—which could be inuenced
by particle size, surface properties, or the Pt loading method—
but these factors were not captured explicitly by any of the
descriptors used. That said, the objective of this work was to
build a useful classier with affordable experimental cost, and
in this respect, a balance must be struck between exactness and
complexity of the experiments. In this regard, it took us only 15
working days to explore the 572-member molecular library
using the high-throughput screening platform that we devel-
oped.11 This platform can perform 48 samples per day (1 hour to
weigh samples; 6 hours for N2 purge and liquid dispense
(overnight); 3 hours for light illumination, and a further 8 hours
for GC analysis).
Virtual experiments and blind tests

To assess the potential for using an ML ‘advisor’ to discover
molecular photocatalysts, we carried out in silico experiments
© 2021 The Author(s). Published by the Royal Society of Chemistry
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on the 572 molecules using their measured HERs as the ground
truth to evaluate the search performance. To do this, we
compared the use of an adaptive ML advisor with random
sampling (Fig. 4a). In these in silico virtual experiments, 48
samples were ‘measured’ in each batch, which matches the
batch-size of the real high-throughput experiments. In the ML
advisor approach, an MLP binary classier and an MLP ternary
classier were trained on all known data aer each batch, and
then used to predict a class for each of the remaining untested
molecules. The next batch was then chosen from the untested
molecules until the 48 slots were lled by selecting, in the
following priority order: (i) molecules predicted by the ternary
classier to have high-activity (HER > 12.5 mmol h�1); (ii)
molecules predicted by both the ternary classier and the
binary classier to be active (HER > 1.07 mmol h�1); and (iii)
molecules predicted by the binary classier to be active. When
necessary, the batch of 48 molecules was completed with
molecules selected randomly from the non-active class. The
classication models were then rebuilt aer each batch. For the
random sampling approach, each batch of 48 molecules was
simply chosen randomly from the untested molecule pool.
Fig. 4 Virtual experiments and blind tests. (a and b) Virtual experimen
sampling: the 572 molecules were encoded by the molecular descriptors
by the SOAP descriptors (the same as in Fig. 2a) and trainedwith KNNmod
high-activity samples as having HERs > 12.5 mmol h�1. The average numbe
marked by the red arrows. A total of 200 in silico experiments was carrie
each with a different random starting point, to obtain these average res
(referred to as the 572-molecule library) for 96 unseen molecules (refer
space (encoded by SOAP) of the 572-molecule library (in blue) and the
measure HER. (d) Percentages (in red) of the active samples (HERs > 1.07
Confusion matrices for the predictions of the blind-test set by models ba
trained on the 572-molecule library.

© 2021 The Author(s). Published by the Royal Society of Chemistry
Fig. 4a shows that it took, on average, about 3.8 and 4.0 batches
to discover 50% of the active and high-activity catalysts,
respectively, using the ML advisor. Using the random selection
approach, it took 6 batches to discover the same proportion of
active and highly active photocatalysts. Similarly, using binary
and ternary classiers both built on SOAP-based KNN models
(Fig. 4b), the adaptive approach was able to discover 50% of the
active and high-activity catalysts within, on average, about 3.0
and 4.5 batches, respectively. The use of this adaptive ML
advisor to assist the chemist could therefore signicantly
reduce the experimental cost for nding promising photo-
catalysts, thus providing a predictive method to explore large
molecular search spaces.

We further tested our ML advisor on 96 molecules that were
not included in the initial 572-molecule photocatalyst library, to
better assess its potential in real-world applications. The 96
molecules, referred to as the blind-test set, were selected
considering only their aromaticity and (again) availability in our
lab, as for the rst 572 molecules. They were measured in two
batches using our high-throughput parallel photocatalysis
screening platform. The blind-test set falls within the chemical
ts comparing an adaptive machine learning approach with random
(MD; the same as in Fig. 3) and trained with MLPmodels (a) or encoded
els (b). Active samples were defined as having HERs > 1.07 mmol h�1 and
r of batches taken to find 50% of the active and highly active catalysts is
d out for both the ML approach and for the random sampling method,
ults. (c–f) Blind tests of the ML models trained on the 572 molecules
red to as the blind-test set). (c) 2D UMAP embedding of the chemical
blind-test set (in red); the symbol size is scaled by the experimentally
mmol h�1) in the 572-molecule library and the blind-test set. (e and f)

sed on the MD +MLP protocol (e) or the SOAP + KNN protocol (f), both

Chem. Sci., 2021, 12, 10742–10754 | 10749
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space of the 572-molecule library (Fig. 4c) and has a similar
percentage (10%) of active samples to that of the 572-molecule
library (14%; Fig. 4d) — 10 out of the 96 molecules had HERs
larger than 1.07 mmol h�1, none of which was greater than 12.5
mmol h�1. In predicting for the blind-test set, the MLP model
was again identied as the strongest binary classier, when
combined with the calculated molecular descriptors (Fig. 4e,
and S29–S34†); the MLP model was ranked second for ternary
classication, with a slightly inferior performance to the KNN
model. Binary classication for the blind-test samples directly
from their molecular structures (Fig. 4f), encoded by SOAP
descriptors, using KNN yielded an equivalent level of predictive
accuracy to that achieved by the strongest binary classier using
molecular descriptors. For ternary classication, the descriptor-
based KNN markedly outperformed the structure-based KNN
(Fig. S34 and S35†). These blind-test results conrmed the
potential of using an ML advisor to assist the chemists in the
discovery of new molecular photocatalysts, as well as high-
lighting the promise for structure-based ML models to facilitate
large-scale high-throughput screening.

Looking forward, the predictive ability of machine learning
for molecular photocatalysis might be improved by capturing
additional information for the higher-activity molecules. For
example, efficient charge transfer between the molecular pho-
tocatalyst and the sacricial agent or the co-catalyst is key to
catalytic performance, but such intermolecular effects are not
considered explicitly here. Future work in engineering
descriptors might focus on better capturing the charge-transfer
characteristics of the system, as well as the exciton lifetime and
transport properties. Second, populating the dataset in the
high-activity region is essential for training robust, predictive
machine-learning models. Our initial results suggest
hypothesis-led strategies, such as investigating molecules that
are known for their thermally activated delayed uorescence,46

room temperature phosphorescence,47 or photoinduced singlet
oxygen production,48 all of which necessitate the formation of
excited triplet states. We further expect that model assembling
might increase the robustness of these approaches. Ensembles
should include models trained against a variety of descriptors,
including those derived from the molecular structure and those
abstracted from graph neural networks,49 for example. Transfer
learning may be a particularly promising strategy because the
acquisition of large experimental datasets can be time-
consuming and expensive; here, models are pre-trained on
large datasets with relevant or surrogate properties, followed by
task-specic ne-tuning for predictive modelling. The experi-
mental study presented here was a single batch process; that is,
all of the experiments were done prior to model building. This
was done because it was tractable to attempt measuring HERs
for all 572 molecules in the available library using the high-
throughput automated methods that we have developed.11 For
much larger libraries, or where such automation is not avail-
able, a more efficient approach would be to build the model ‘on
the y’, as in the virtual experiments above, and to recommend
the next batch of molecules as the model evolves. This could
also tackle the class imbalance problem that is discussed above.
10750 | Chem. Sci., 2021, 12, 10742–10754
In this respect, a closed-loop autonomous search would be
particularly attractive.50–52

Conclusions

Molecular photocatalysts are a promising and relatively less
explored avenue for hydrogen production, as well as other
photocatalytic transformations such as CO2 reduction and
hydrogen peroxide synthesis,53,54 but the potential chemical
space is enormous, and most of this space remains unexplored.
We assembled here the largest library of organic photocatalysts
tested experimentally to date and tested all 572molecules under
identical experimental conditions using a high-throughput
testing methodology. We further tested 96 molecules as
a blind-test set for evaluating the trained ML models, bring the
combined total of experimentally measured molecules to 668.
This is a tiny fraction of the total available chemical space, but
large enough to construct useful ML structure–property–activity
models. We used unsupervised learning and supervised classi-
cation to reveal the structural features and optoelectronic
properties that positively impact the activity of these molecular
photocatalysts for sacricial hydrogen production, which also
allowed some physical interpretations: for example, the
formation of triplet excitons seems to have a benecial effect.
This suggests further exploration of molecules known for
intersystem crossing. Despite being sourced simply on the basis
of availability in our laboratory, rather than any more sophis-
ticated rationale,�1% of the molecules in the library (5 in total)
performed comparably (4040–5660 mmol g�1 h�1) to the highest
HER (�6000 mmol g�1 h�1) measured for the 175 conjugated
polymers using the same experimental setup from a more
design-led but much more synthetically expensive approach.11

Moreover, some of the active molecules that were discovered—
for example, 1,8-naphthalimide (ID487), tetra-
uoroterephthalonitrile (ID183), and 1,3,5-tribenzoylbenzene
(ID237)—have not to our knowledge been explored before in
this context.

Virtual experiments show that an adaptive ML-assisted
selection approach outperforms random sampling (Fig. 4a
and b), signicantly reducing the experimental cost of identi-
fying the active photocatalysts in the library. A further evalua-
tion of the trainedML advisor on a blind test set of 96 molecules
conrmed its potential in assisting the discovery of new
molecular photocatalysts. We did not benchmark our methods
against expert knowledge: for example, where a chemist pre-
sorts the library in terms of probable photocatalytic activity.
We note, however, that while some of the active catalysts
discovered could have been prioritized based on existing liter-
ature reports (e.g., ID67, ID146, ID153, and ID566),20,38,45 others
were unknown and—to us at least—non-intuitive, such as
ID183 and ID237. As such, these fast screening methods can
create new inspiration for future research directions. We would
expect the ML-assisted rapid screening method to be particu-
larly helpful for problems where there is little or no prior
literature to draw upon—for example, in the search for photo-
catalysts that illicit new, unknown reactivity in organic trans-
formations, where the initial hit rate will be low by denition.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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This dataset of molecular structures, measured photo-
catalytic activities, and calculated molecular descriptors joins
other established, public databases of organic molecules55–57

and offers a test-bed for groups interested in new machine
learning methods. Also, the online interactive explorer that we
developed here (https://www.molecular-photocatalysts-
library.app) might allow for new physical insights and/or new
design principles to be developed by other catalysis researchers.
In summary, this is one of a relatively small number of studies
where machine learning methods have been integrated with
high-throughput property measurements across a sizeable and
diverse set of materials (668 organic molecules in total). This
makes an important step towards accelerating the discovery of
molecular photocatalysts and allows us to consider a much
broader chemical space than we have contemplated so far.
Methods
Library selection

We sourced the 572 molecules on the basis of (i) the presence of
an aromatic unit and (ii) their availability in our laboratory on
the scale needed for experimental testing. The same selection
criteria were adopted when sourcing a further set of 96 mole-
cules for blind tests of the machine-learning models.
High-throughput hydrogen evolution experiments

Agilent Technologies vials (10 mL) were charged with 5.0 �
0.1 mg of the organic molecule to be tested and transferred to
a Chemspeed Accelerator SWING workstation for liquid trans-
fer. Degassed jars with triethylamine, methanol, and a stock
solution of H2PtCl6 were loaded into this automated liquid
handling platform. The system was then closed, and the entire
cabinet was purged for 4 h with nitrogen. The automated liquid
handling platform then dispensed the liquids as follows: (i)
degassed aqueous H2PtCl6 solution (1.7 mL, 3 wt% Pt w. r. t. to
the organic molecule); (ii) triethylamine (1.7 mL), and (iii)
methanol (1.7 mL). The pH of the solution was typically around
11.5. The vials were then capped using the capper/crimper tool
on the platform under inert conditions. Once capped, the
samples were removed, shaken, and transferred to an ultrasonic
bath to disperse the photocatalysts, which were typically insol-
uble (by eye) in the reaction medium. Oriel Solar Simulator
94123A with an output of 1.0 sun was used to illuminate the
vials on a Stuart roller bar SRT9 for the time specied (classi-
cation IEC 60904-9 2007 spectral match A, uniformity classi-
cation A, temporal stability A, 1600W Xenon light source, 12�
12 in.2 output beam, air mass 1.5 G lter, 350–1000 nm). Aer
photocatalysis, the gaseous products of the samples were
measured on an Agilent gas connected to a headspace sampler
(HS) and Shimadzu GC-HS. No hydrogen evolution was
observed for mixtures of water/triethylamine/methanol or
water/triethylamine/methanol/H2PtCl6 under the identical
conditions. For a subset of 89 molecules, HER measurements
were repeated at least twice. Results for the 28 top-performing
molecules are shown in Fig. S3,† conrming that the HER
measurements were reproducible; other molecules in this sub-
© 2021 The Author(s). Published by the Royal Society of Chemistry
set had low (<1.0 mmol h�1) or zero HERs with high
repeatability.

To investigate the effect of the Pt cocatalyst loading on the
photoactivity of these molecular photocatalysts, six structurally
diverse molecules with varying levels of photocatalytic perfor-
mance were studied with different Pt loadings, ranging from
0 to 5 wt%. Fig. S36† plots the HERs of these six molecules as
a function of the Pt loading. The presence of the Pt cocatalyst is
essential to achieve measurable HERs; none of the six catalysts
showed an appreciable HER at zero Pt loading. The Pt loading
also had no inuence on the activity ranking of these six
molecules. Some molecules, such as ID487 and ID146, showed
lower HERs at Pt loadings above 1 wt%, probably because of
light occlusion by excess photodeposited metal. Overall, while
Pt loading is clearly important, the HER ranking of these six
molecules is independent of the metal loading, at least in the
loading range 1–5 wt%, though the results do show that
comparisons should be made at equivalent cocatalyst loadings.

Suitable sacricial agents are necessary for photocatalysts to
exhibit hydrogen evolution activity. Common sacricial agents
include alcohols, amines, organic acids, suldes/sulphites, and
so on. Fig. S37† plots the HERs of the same six molecules
measured with three different sacricial agents: trimethyl-
amine, methanol and ascorbic acid. The results show that tri-
methylamine is the most suitable sacricial agent for these
organic molecular photocatalysts.
Computational and machine learning details

All DFT and TD-DFT calculations made use of the B3LYP density
functional, together with the 6-31G* basis set (SDD was used for
iodine atoms), using the Gaussian 16 soware.58 Benchmarking
of our choice of the level of theory using available experimental
data and against the range-separated CAM-B3LYP functional,
together with a larger basis set (Def2-SVP), is given in section 3.2
of the ESI (Fig. S5–S8†). The effect of solvation by water was
accounted for by using the PCM/SMD solvation model. All (TD-)
DFT calculations were based on the geometry optimised in the
charge-neutral, ground state (at the same level of theory)—that
is, vertical ionization and vertical excitation—except for the
singlet–triplet energy gap (DES1/T1

). For DES1/T1
, the effect of

excited-state relaxation on both the S1 and T1 potential energy
surfaces was accounted for by optimizing the geometry in the
respective state with TD-DFT employing the Tamm–Dancoff
approximation. All electron excitation analyses were performed
using Multiwfn.59

The Uniform Manifold Approximation and Projection
(UMAP) technique was used for dimensionality reduction for
mapping high-dimensional data to 2D representations, while
preserving both global and local topological structures of the
data in the high-dimensional space as much as possible. For
Fig. 1b, we used all atoms of one of the four elemental types to
learn the 2D UMAP embedding of their atomic neighbour
environments, in which atoms of any elemental types may be
present. In the resulting UMAP-learned 2D representation,
points will overlay in the 2D space if they are at the same
position in the original high-dimensional space.
Chem. Sci., 2021, 12, 10742–10754 | 10751
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All machine-learning models were implemented using the
scikit-learn package60 except for the MLPs, which were imple-
mented in PyTorch.61 Hyperparameters were optimised using
a discrete Bayesian optimization50 and the scikit-optimise
package.62 During model training and optimization, the data-
set was split between 80% training and 20% test across 10
different folds. The target metric—accuracy and F1-score for
classication—of the resulting 10 models is averaged across all
folds during hyperparameter optimization. We then trained the
best models under a leave-one-out dataset split. This is equiv-
alent to k-folds, where k is the number of points in the dataset,
and results in a convergence of accuracy and F1-score by de-
nition. Table 1 summarises the optimal results obtained across
all models, while the full optimised hyperparameters are given
in Table S1.†
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