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Enantioselective synthesis of P-chiral tertiary
phosphine oxides with an ethynyl group via Cu()-
catalyzed azide—alkyne cycloadditiony

Ren-Yi Zhu,? Long Chen,? Xiao-Si Hu,® Feng Zhou ©2° and Jian Zhou © *ab<

We report the highly enantioselective synthesis of P-chiral tertiary phosphine oxides featuring an ethynyl
group via Cu(l)-catalyzed azide—alkyne cycloaddition. Newly developed chiral pyridinebisoxazolines
(PYBOX) bearing a bulky C4 shielding group play an important role in achieving excellent
enantioselectivity while suppressing side bis-triazoles formation in desymmetrizing prochiral
diethynylphosphine oxides. Notably, by tuning the size of the C4 shielding group, it is possible to achieve
excellent remote enantiofacial control in desymmetrizing phosphole oxide-diynes with the prochiral P-
center farther from the ethynyl group by four covalent bonds. Time-dependent enantioselectivity is
observed for these desymmetric CuAAC reactions, suggesting a synergic combination of
a desymmetrization and a kinetic resolution, and our ligands prove to be better than unmodified PYBOX
in both steps. This finding contributes to a highly enantioselective kinetic resolution of racemic
ethynylphosphine oxides. The resulting chiral ethynylphosphine oxides are versatile P-chiral synthons,
which can undergo a number of diversifying reactions to enrich structural diversity.

Introduction

P-chiral phosphorus compounds have widespread applications
in many areas such as agrochemistry, biology and pharmacy.* In
particular, they are regarded as a class of promising ligands or
organocatalysts, because they can organize the chirality proxi-
mate to the catalytic center.>® However, their application is
rather limited, as compared with the more readily available
phosphines with axial, spiro, planar, or carbon-centered
chirality. In view of the crucial role of phosphorus ligands*
and organocatalysts® in asymmetric catalysis, it is important to
develop efficient protocols for the facile access of P-stereogenic
phosphorus molecules.

Conventional syntheses of P-chiral phosphines require using
a stoichiometric amount of chiral starting materials or chiral
reagents.® However, recent progress in the field of asymmetric
catalysis has provided some elegant protocols'*” that are mainly
based on two synthetic strategies, the arylation or alkylation of
secondary phosphine oxides® or secondary phosphines® and the
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desymmetrization of prochiral phosphorus compounds®
(Scheme 1a). Despite much progress, catalytic enantioselective
synthesis of versatile P-chiral phosphorus building blocks is
still very limited.

Because the electronic and steric properties of tertiary
phosphines can be readily tuned over a very wide range by
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Scheme 1 Access to P-stereogenic compounds.

Chem. Sci,, 2020, 11, 97-106 | 97


http://crossmark.crossref.org/dialog/?doi=10.1039/c9sc04938j&domain=pdf&date_stamp=2019-12-16
http://orcid.org/0000-0002-6729-1311
http://orcid.org/0000-0003-0679-6735
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sc04938j
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC011001

Open Access Article. Published on 06 November 2019. Downloaded on 06.02.2026 07:41:02.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

varying their substituents,*>'* a library of P-chiral phosphines
with high structural diversity is very helpful for reaction devel-
opment. Therefore, P-chiral building blocks featuring a versatile
synthetic handle, capable of undergoing various diversifying
reactions to enrich structure diversity, are much sought after.
They also offer the promise of developing new chiral ligands or
organocatalysts via modular combination with other function-
alities. Although P-chiral synthons with a hydroxymethyl or
vinyl group are known,' those with an ethynyl group are
unprecedented.’” As an acetylene group has many possibilities
for elaboration, the resulting optically active P-chiral synthons
are very useful, but their enantioselective catalytic synthesis is
very difficult, due to the shortage of efficient methods to form
stereocenters bearing an acetylene group.**

On the other hand, while kinetic resolution is a fundamental
strategy to access chiral materials," catalytic kinetic resolution
of racemic P-chiral molecules is undeveloped. In principle, it is
a promising strategy to access two distinct P-chiral phosphine
derivatives (Scheme 1a). To our knowledge, only two elegant
protocols have been disclosed, the dynamic kinetic resolution
of phospholene oxides by Hayashi et al,' and the kinetic
resolution of phosphinic amides by Cramer et al.'” Herein, we
report a highly enantioselective synthesis of diverse P-chiral
tertiary phosphine oxides with an acetylene group via Cu(i)-
catalyzed azide-alkyne cycloaddition (CuAAC) by desymmetri-
zation and kinetic resolution (Scheme 1c).

Results and discussion
Desymmetric CuAAC of prochiral diethynyl-phosphine oxides

The CuAAC reaction, concurrently discovered by the groups of
Meldal® and Sharpless,” has found application in many
areas.”® However, its application to enantioselective catalysis
has met with limited success.”* In 2005, Fokin and Finn pio-
neered this study, and demonstrated that it was possible to
develop enantioselective CuAAC via desymmetrization or
kinetic resolution.*® Eight years later, we developed the first
highly enantioselective CuAAC, by desymmetrizing oxindole-
diynes.”** Uozumi and Xu also disclosed nice desymmetric
CuAAC reactions of prochiral dialkynes.** In general, a chal-
lenge in developing desymmetric CuAAC is how to suppress side
bis-triazoles formation while achieving excellent enantiocon-
trol, because most known protocols afford substantial amounts
of achiral bis-triazoles, with few substrates able to achieve
excellent ee values.””?* On the other hand, the application of
CuAAC for the kinetic resolution of racemic alkynes or azides is
in its infancy,”* although Topczewski most recently made
a notable advance with an elegant dynamic kinetic resolution of
allylic azides.”® We speculate that asymmetric CuAAC is
a promising approach to access P-chiral synthons featuring an
acetylene group, by desymmetrization or kinetic resolution
(Scheme 1c). The advantages of this method include: (1) easy
access to di- and monoethynyl-phosphine oxides 1 and 4 (one-
pot, 2-3 steps, see ESIt); and (2) the usefulness of the P-chiral
phosphine oxides 3 and 4. They may act as organocatalysts®*“ as
well as precursors to various P-chiral phosphine derivatives.
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Notably, P-chiral phosphines bearing a triazole moiety are
unknown, the properties of which are interesting to explore.

We began by attempting the desymmetrizing CuAAC of diyne
1a and azide 2a (Table 1). It is worth mentioning that the
desymmetrization of diethynylphosphine oxides is unprece-
dented, although several desymmetrizing reactions of dia-
Ikynylphosphine oxides have been reported since the seminar
work of Tanaka et al* Prochiral diynes bearing terminal
alkynes are very difficult substrates for the intermolecular
desymmetric reactions, because their linear shape makes it
difficult to achieve good enantioselectivity and to suppress side
difunctionalization.*® As expected, it was hard to achieve high
enantioselectivity and 3a/3a’ ratio in this research. The reaction
was first conducted in the condition we optimized for the
desymmetric CuAAC of oxindole-diynes, by using -catalyst
PYBOX L;/CuCl and 2,5-hexanedione as the solvent.>** Unfor-
tunately, product 3a was obtained in only 8% ee, with a poor
2.0 : 1 ratio of 3a/3a’ (entry 1). Further screenings revealed that
if running in MeCN, the reaction could give 3a in 63% yield and
83% ee, with 3a/3a’ ratio up to 6.8 : 1 (entry 2).

To suppress the formation of the side bis-triazoles 3a’ while
improving the enantioselectivity, we tried modifying L, by a C4
shielding group to improve its chiral pocket, to prevent the
interaction of the alkynyl group of monotriazole 3a with the
copper center. It was postulated that a C4 group may cooperate
with the substituent at the chiral centers of the ligand, to
enhance the enantiotopic group discrimination, and to prevent
the ethynyl group of chiral monotriazoles 3 from interacting
with the copper for a further CuAAC, leading to better mono-

Table 1 Condition optimization

o} o '«N\NR1
g L (12 mol%) D N N%
O \\\\ R CuX (10 mol%) O PW_N . Osy
0 MeCN, -20 °C \ \ O Y\INR*
1a 2a R' = 4-MeCgH4CH, O R O NN
(0.1 mmol) (0.1 mmol) 3a 3a’
R OCH,Ar OCH,Ar
o) ) o) 2 o) 0 N0,
o SR VoY
Ph Ph Ph Ph
L, R=H; Ly, Ar = 3,5-(CF3),CeHs Q
L,, R = OBoc Ls, Ar = 2-MeO-3,5-Buy-CeH F Ly Ar=Ph F
Ls, R=0Bn Le, Ar = 1-naphthyl Ls, Ar = 1-naphthyl
Entry L Solvent CuX 3a/3a’® Yield of 3a” (%) ee of 3a° (%)
14 L, Dione® CuCl 2.0:1 33 8
2 L; MeCN CuCl 6.8:1 63 83
3 L, MeCN CuCl 5.1:1 51 84
4 L3 MeCN CuCl 104:1 71 90
5 L, MeCN CuCl 6.4:1 60 84
6 Ls; MeCN CuCl 12.0:1 79 91
7 Ls MeCN CuCl 13.9:1 80 93
8 L, MeCN CuCl 11.4:1 77 91
9 Lg MeCN CuCl 9.3:1 74 89
10 L¢ MeCN CuBr 139:1 80 95
“ Determined by 'H NMR. ?NMR yield by using 1,3,5-

trimethoxybenzene as the internal standard. ¢ Determined by chiral
HPLC analysis. 4 Reaction at 0 °C, 36 h. ¢ Dione = 2,5-hexanedione.
T Yield of the isolated product 3a.

This journal is © The Royal Society of Chemistry 2020
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and bis-triazoles (M/D) ratio. Several modified PYBOX L, g were
accessed in three or four steps (see ESIT) and subjected to the
model reaction. Gratifyingly, the presence of a suitable C4
shielding group could indeed bring about beneficial effects.
While ligand L, with a tert-butoxycarbonyl group failed to
improve the 3a/3a’ ratio (entry 3), ligand L; (ref. 29) with a flex-
ible OBn group raised the 3a/3a’ ratio to over 10 : 1, giving 3a in
90% ee (entry 4). This encouraged us to vary the benzyl group to
other bulkier substituents. Ligand L, with an electron-deficient
phenyl group led to a poor result (entry 6), but Ls; with an
electron-rich substituent increased both the enantioselectivity
and the 3a/3a’ ratio (entry 6). Ligand Le¢ with a 1-naph-
thylmethoxy group further enhanced the 3a/3a’ ratio to 13.9/1,
giving 3a in 80% yield and 93% ee (entry 7). The variation of
the substituent at the chiral center of the ligand affected the
result as well, as shown by the performance of ligands L, g (entry
8 vs. 4,9 vs. 7). Further varying CuCl to CuBr increased the ee to
95%, with the 3a/3a’ ratio unchanged (entry 10).

The high 3a/3a’ ratio and ee value achieved by ligand L were
very impressive. For a better understanding of the role of Le, we
evaluated the time-dependent enantioselectivity of the reaction of
1a and 2a, because Uozumi et al. previously showed that the
desymmetric CuAAC of diynes bearing prochiral biaryls was
a synergic combination of a desymmetrization and a kinetic res-
olution.** As shown in Scheme 2a, whether using L, or L¢ as the
ligand, the enantioselectivity of 3a gradually improved with
increasing levels of conversion of the reaction, while the 3a/3a’
ratio decreased. This suggests that the formation of the undesired
achiral 3a’ was beneficial for the ee value of 3a. In the presence of
the chiral catalyst, the consumption of the minor enantiomer (S)-
3a, generated in the initial desymmetric CuUAAC, was faster than

a) The ti of er of the reaction of 1a and 2a catalyzed by L4 or Lg/CuBr complex
95 e °
. — (96%, 95% ee, 15/1) (>99%, 95% ee, 14/1)
& (87%, 94% ee, 19/1) R
= » _ (>99%, 93% ee, 6/1)
S 4 -
890 @ o
2760 50% ce, 201)_B— (90%, 91% ee, 11/1)
8 (84%, 89% ee, 17/1)
85 L
-y
(549,525 o0, 2071 (conversion of 1a, ee of 3a, 3a/3a)
L - — T T T T =
0 2 40 60 80 100 Time (h)

b) Synergic combination of a desymmetrization and a kinetic resolution.
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that of the major enantiomer (R)-3a (Scheme 2b). Therefore, the
reaction of 1a and 2a was also a synergic merger of a desymmet-
rization and a kinetic resolution,* where k;> k, and k, > k;, rep-
resenting a favorable scenario to obtain (R)-3a with high ee value.

Notably, our ligand Le was superior to L; in both the desym-
metrization and the kinetic steps. Whereas similar conversion of
1a was found with a time of 4 h, with 3a/3a’ ratio over 20 : 1 in
both cases, the use of Lg gave 3a with a clearly higher ee than by
using L; (90 vs. 82%), suggesting that Le could achieve better
enantiotopic group discrimination. On the other hand, when L,
was used, the 3a/3a’ ratio decreased to a greater extent as the
reaction proceeded. This implied that the minor enantiomer of
3a was consumed more in the kinetic resolution, and that the
high ee value obtained using L; was at the expense of the
chemical yield of product 3a. Furthermore, ligand Ls was also
better than L, in the kinetic resolution of racemic monotriazole
3a (Scheme 2c), in terms of the ee of recovered (R)-3a (70% vs.
48%). This result also implied that our new PYBOX ligands might
be promising to develop kinetic resolution shown in Scheme 1.

Now that we have a better understanding of the superiority of
our newly developed PYBOX ligand L over the parental L; in the
desymmetric CuAAC reaction of 1a and 2a, we next evaluated
the scope of this desymmetric CuAAC with respect to differently
substituted dialkynylphosphine oxides 1 and azides 2 under the
optimized condition (Table 2). All reactions were run in MeCN
at —20 °C, using 10 mol% of the chiral catalyst and a 1/2 ratio of
1.0/1.0. The substituent of dialkynylphosphine oxides obviously
influenced the reaction. Dialkynylphosphine oxides 1a-d with
1-naphthyl or 2-substituted phenyl group worked well to afford
the monotriazoles 3a-d in good yield and excellent ee (entries 1-
4). However, dialkynylphosphine oxides 1e-f, with a 3-MeO or 3-
bromophenyl group gave the corresponding products 3e-f in
lower M/D ratios (entries 5, 6). Oxide 1g bearing a 4-tert-butyl-
phenyl group afforded product 3g in 90% ee and an M/D ratio of
10: 1 (entry 7). Unfortunately, tert-butyl substituted oxide 1h
gave adduct 3h in diminished 75% ee and an M/D ratio of 3 : 1
(entry 8). A variety of aliphatic azides 2b-h all worked well to
give adducts 3i-o in good yield, excellent ee and a high M/D
ratio (entries 9-15). The absolute configuration of product 3b
is assigned by X-ray analysis.

Kinetic resolution of monoethynylphosphine oxide

Since ligand Le could achieve better result in the kinetic reso-
lution of racemic monotriazole 3a (Scheme 2¢), we next tried the
kinetic resolution of alkynylphosphine oxide 4a using azide 2a
under the same condition. To our delight, the use of 0.5 equiv.
of azide 2a relative to 4a allowed the reaction to work well,
affording monotriazole 5a in 44% yield and 85% ee, with (S)-4a
recovered with 80% ee and 44% yield.

Q o
©/P N, H
AR S
) A
Ph =N Ph

1
+ R' = 4-MeCgH,CH, sa R (S)-4a
R'-N3 2a (0.5 equiv) 44%, 85% ee 44%, 80% ee

Lg (15 mol%)
CuBr (12 mol%)

MeCN, -20 °C, 4 d

Chem:. Sci,, 2020, 11, 97-106 | 99
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Table 2 Scope of asymmetric CUAAC of 1 and 2
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l‘;' Lg (12 mol%) o)

- 1 0, 1

R \\\s . R™-N, CuBr (10 mol%) R'Eﬂ‘“

1 2 MeCN, -20 °C \\\ N
(0.3 mmol) (0.3 mmol) 48-96 h 3 R!
1 o

2a: R = 4-MeCgH,4CH, 2e: R' = BnO,CCH, Ng
2b: R11 =Bn 2f: R! = 3-MeCgH4CH; N—,
2c: R' = 4-CF3CgH4CH, 2g: R' = 3,5-(CF3),CeH3CHy 2h

2d: R" = naphthalen-1-ylmethyl o
Entry 1 2 3 3/3'“ Yield of 3 (%) ee of 3° (%)
1 1a: R = 1-naphthyl 2a 3a 14:1 80 95
2 1b: R = 2-MeC¢H, 2a 3b 18:1 81 94
3 1c: R = 2-BrCqH, 2a 3c 11:1 77 95
44 1d: R = 2-EtC,H, 2a 3d 12:1 72 92
5¢ 1e: R = 3-MeOCgH, 2a 3e 7:1 65 92
6° 1f: R = 3-BrCgH, 2a 3f 4:1 60 83
7¢ 1g: R = 4--BuCgH, 2a 3g 10:1 80 90
8 1h: R = t-Bu 2a 3h 3:1 51 75
9 1b 2b 3i 20:1 85 96
10 1b 2¢ 3j 20:1 83 95
11 1b 2d 3k 16:1 84 91
12 1b 2e 31 14:1 77 90
13 1b 2f 3m 23:1 80 93
14 1b 2g 3n 13:1 72 91
15 1b 2h 30 16:1 73 90

“ Determined by "H NMR analysis. ? Yield of the isolated products 3. ¢ Determined by chiral HPLC analysis. ?1:2 =1.05:1.°1:2 = 1: 1.05.

Further optimization provided a condition for the kinetic
resolution of alkynylphosphine oxide 4, by using L, as the
ligand and 0.52 equiv. of azide 2a (Table 3). Accordingly,
chiral o-methylphenyl-substituted phosphine oxides 4a-g
featuring an acetylene group were accessed in 85-99% ee
values, regardless of whether the R" group was a substituted
phenyl, 2-thienyl, cyclohexyl, or isopropyl (entries 1-7). On
varying the 2-methylphenyl group to an 2-bromophenyl or a 1-
naphthyl group, the corresponding alkynylphosphine oxides
4h and 4i were also resolved in 44-45% yields and 95-97% ee
(entries 8, 9). The racemic ethynylphosphine oxides 3a, 3b,
with a triazole group, could also be readily resolved to afford
chiral 3a and 3b in good recovery and ee values (entries 10 and
11). With the acetylene group, these P-chiral phosphine
oxides could undergo different diversifying reactions to
enhance structural diversity. The bromophenyl group in
adducts 4b, 4d, and 4h also offered the promise for further
modification. The absolute configuration of product 4a was
assigned by X-ray analysis.

On the other hand, a highly enantioselective CuAAC of
ethynylphosphine oxide 4 to P-chiral phosphine oxides 5
featuring a 1,2,3-triazole moiety is also developed by slightly
optimizing the condition (Table 4). By using ligand Lg and
adjusting the ratio of azides 2 to alkynylphosphine oxide 4,
a range of different P-chiral P-substituents could be tolerated,
including substituted phenyl, 2-thienyl, 1-napththyl, and
aliphatic groups, to afford interesting P-chiral phosphine oxides
bearing a 1,2,3-triazole moiety.

100 | Chem. Sci., 2020, 11, 97-106

Remote desymmetrization

Achieving remote enantiofacial control is still challenging in
asymmetric catalysis. If prostereogenic centers are located
farther from the reaction sites, it is very difficult to develop
a highly enantioselective remote desymmetrization reaction
because of diminished chiral bias.?®*' Most protocols are based

Table 3 Kinetic resolution of 4

o L7 (18 mol%) o
P N3 CuBr (15 mol%) R.
- o R,
e o (T i A
RN 2a MeCN, -20 °C, 4 d A
4

(+)-4 (0.30 mmol) (0.52 equiv)

Entry 4 (R, R") Recovery® (%) ee’ (%) s° factor

1 4a: (2-MeCgHy, Ph) 42 9 21
2 4b: (2-MeC¢H,, 3-BrC¢H,) 47 91 29
3 4c: (2-MeCgH,, 3-MeOCgH,) 43 85 12
4 4d: (2-MeC¢H,, 4-BrCsH,) 42 94 18
5 4e: (2-MeCgH,, 2-thienyl) 48 99 116
6 4f: (2-MeCgHy, cyclohexyl) 44 94 23
7 4g: (2-MeCgH,, isopropyl) 43 90 16
8 4h: (2-BrC¢H,, Ph) 44 95 25
9 4i: (1-Naphthyl, Ph) 45 97 36
104 3a 42 93 17
119 3b 44 92 20

“ The recovery of 4. ” Determined by chiral HPLC analysis. ¢ s = In[(1 —
C)(1 — ee))/In[(1 — C)(1 + ee)]; C refers to the conversion of (+)-4, [1-
(recovery of 4)]. ¢ 0.55 equiv. of 2a was used at —10 °C for 4 d.

This journal is © The Royal Society of Chemistry 2020
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Table 4 Enantioselective CUAAC of 4 and 2
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Table 5 Enantioselective CUAAC of 6a

R ,(IF); Lg (18 mol%) /IS’ N
(©Ammol) ()4 (0.21 mmol) ~ MeCN.-20°C.4d s R
Me O Me O Me O R

@@k

5a: R = 4-MeCgH,CH,
94%°2, 90% ee®

MeO

5b: R = 4-MeCgH,CH,
82%, 90% ee®

5¢°: R = 4-MeCgH4CH,
68%, 80% ee

5d%: R = 4-MeCgH4CH,
90%, 90% ee

o

Me O Me O Br C

1] W Me O
N NN P ©/ N
5g: R = 4-MeCgH,4CH,

5f: R = 4-MeCgH,CH, 5h: R = 4-MeCgH,CH,
90%, 93% ee 84%, 90% ee 84%, 90% o

°0:

5e: R = 4-MeCgH,CH,
92%, 92% ee

o
=
@
o}

5i% R = 4-MeC4H4CH,
86%, 90% ee

5J: R = p-CF3PhCH,
90%, 90% ee

51: R = CH,CO,Bn

5k: 82%, 90% ee 92%, 90% ee

“ Yield of the isolated products 5 based on the azide 2. ” Determined by
chiral HPLC analysis. © 0.25 mmol (+)-4. ¢ 0.23 mmol (+)-4.

on substrates with the prostereogenic center being separated
from the functionality by up to three covalent bonds.** Remote
intermolecular desymmetrization at a distance of four or more
covalent bonds separation is rare.** Now that our PYBOX
ligands Le showed superiority over parental L; in suppressing
side reactions and improving enantioselectivity, we tried
varying the size of the C4 shielding groups of these ligands to
develop desymmetric CuAAC of phosphole oxide-diynes 6,
whose ethynyl group is four covalent bonds from phosphine.
It is worth mentioning that phosphole oxide-based -
conjugated systems®® have drawn great attention because of
their unique electronic properties, such as low-lying LUMO
resulting from effective o*-m* orbital interaction.*® While the
diverse synthesis of new phosphole oxide derivatives is of
current interest, chiral analogues of this 7-system are unknown.
In light of this, the study of asymmetric CuAAC of phosphole
oxide-diyne 6 not only acts as a testing ground to evaluate the
performance of our ligands Ls-Lg in remote enantiofacial
control, but also affords chiral phosphole oxide derivatives of
potential use. The desymmetrization of diyne 6a indeed proved
to be difficult. The best result obtained using ligand L, is to use
CH,Cl, as the solvent, providing 7a in 88% ee, albeit in 45%
yield due to the poor ratio of 7a/7a’ (entry 1, Table 5). Gratify-
ingly, our ligands Ls¢ with a bulky shielding group afforded
improved results. Ligand Ls, with the bulkiest group, gave 7a in
62% yield, 96% ee, and 4.6 : 1 ratio of 7a/7a’ (entry 2), but ligand
L¢ gave 7a in lower 93% ee and 3.5 : 1 of 7a/7a’ (entry 3). This
further suggested that by tuning the size of the C4 shielding
group of PYBOX ligands, it is possible to develop highly enan-
tioselective desymmetric CuAAC reactions of different prochiral
systems. The subsequent optimization showed that Ls/CuBr

This journal is © The Royal Society of Chemistry 2020

prochiral center prochiral center .
P reaction site

Art O
N2

reaction site
. ,['.3 L

- 14

R \%

\

one covalent bond away

L/CuX (15 mol%)

Ar_ O : R
o L RN
= _— R'= o
3
oo’ ga O"Pr \(’QN;]Q .
(Ar = 4-MeCgH,) 0 N’

DCM, 25°C, 72h N
R

Entry L CuX 6a/2h 7a/7a“ Yield of 7a” (%) ee of 7a° (%)
1 L, CuCl 1.0:1 19:1 45 88
2 Ly CuCl 1.0:1 4.6:1 62 96
3 Lg CuCl 1.0:1 3.5:1 57 93
4 L; CuBr 1.0:1 6.6/1 66 98
5 L; CuBr 1.2:1 12.0/1 81 98

“ Determined by 'H NMR analysis. * NMR yield using anisole as the
internal standard. ¢ Determined by chiral HPLC analysis.

could afford 7a in 98% ee, with a 7a/7a’ ratio up to 6.6 : 1 (entry
4). By further changing the ratio of 6a and 2h from 1.0: 1 to
1.2 : 1, the 7a/7a’ ratio jumped to 12 : 1 without the erosion of ee
value (entry 5).

Next, the generality of the desymmetric CuAAC reaction of
phosphole-diynes 6 was tested by performing the reaction in
CH,Cl, at 25 °C, using 18 mol% L; and 15 mol% CuBr, as shown
in Table 6. Both aryl and alkyl P-substituents could be tolerated,
giving the desired products 7a-i in good yield, with high 7/7’
ratio. Diynes with different ether groups all gave adducts 7j-1
with good results. Various azides also worked well to furnish
monotriazoles 7m-t in good yield and high 7/7’ ratio. Notably,

CuBr (15 mol%) R °

Table 6 CUuAAC of phosphole oxide-diynes
Ls (18 mol%)

R_0
P. 7,
- _ ,
ST - o o
R DCM (0.04 M) Ny
OR?

R?0 25°C, 4872 R' )
6 (0.18 mmol) 2(0.15 mmol) R

7a: R = 4-MeCgHy, 81%", 96% ee®, Ta/Ta' = 12:1°
7b: R = 4-"BuCgHy, 7%, 97% ee,7b/7b" = 13:
~p 7c: R = 4-MeOCgHy, 75%, 98% ee, 7c/7
7d: R = 4-FCgHy, 68%, 99% ee, 7d/7d" = 8:1
7e: R = 4-CICgHy, 81%, 93% ee, Te/Te' = 18:1
7f: R = 2,6-Cl,CgH3, 68%, 92% ee, 7/7f = 10:1
o "Pro 7 7g: R = 3-MeCgHy, 68%, 95% ee, 7g/7g" = 11:1

7h: R = Me, 77%, 94% ee, Th/Th' = 10:1
o 7i: R = "Bu, 81%, 94% ee, Ti/Ti" = 10:1
Ph__ S
OFL, =
gevaie
)
NN / O OR?
0
o R?0 7
oV
N P, = .
“,‘ﬁ/ Q O 7q: R' = 4-OHCgH,CH,, 71%, 97% ee, Tq/7q" = 18:
R N , O"Pr 7r: R" = 3,5-(Me0),CgH3CH,, 76%, 94% ee, Tr/T)
P

] 7s: R' = 1-naphthyICHj, 74%, 92% ee, Ts/7s' = 14:1
7t% R" = BnO,CCHy, 65%, 93% ee, T/7t' = 9:1

7j: R? = "Pr, 80%, 96% ee, Ti/7j' = 8:1
7k: R? = Et, 79%, 93% ee, TK/TK' = 9:1
71:R? = "Bu, 71%, 96% ee, 771" = 8:1

7m: R' = 4-MeCgH,CH,, 75%, 93% ee, Tm/Tm" = 14:1
7n:R" = Bn, 70%, 93% ee, 7n/7n' = 7.5:1

70: R = 4-CICgH4CHy, 77%, 96% ee, To/70" =
7p: R' = 4-CF3C¢H,CHj, 70%, 95% ee, 7p/7p’

“ Yield of the isolated products 7. ” Determined by chiral HPLC analysis.
¢ Determined by the yield of the isolated products of 7/7’. ¢ 20 mol% of
CuBr and 24 mol% of Ls.

Chem. Sci, 2020, 11, 97-106 | 101


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sc04938j

Open Access Article. Published on 06 November 2019. Downloaded on 06.02.2026 07:41:02.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

chiral phospholes 7 were all obtained in >90% ee. The absolute
configuration of product 7° was assigned by X-ray analysis. The
remote desymmetrization of diynes with ethynyl group five
covalent bonds away from P-prochiral central was also attemp-
ted, but the enantioselectivity was unsatisfactory.*®

Product elaboration

The thus obtained P-chiral tertiary phosphine oxides featuring
an ethynyl group are useful for the diverse synthesis of P-chiral
phosphine derivatives. For example, a Gram-scale synthesis
gave product 3a in 95% ee with 3a/3a’ ratio of 11/1. A Sonoga-
shira reaction followed by a reduction readily converted 3a to
tertiary phosphine 9 without erosion of ee value. Interestingly,
phosphine 9 can react with alkenyl ester to give phosphine
oxide 11 in 95% ee, with the triazole moiety being replaced.
Similarly, tertiary phosphine 12 obtained from 5a also under-
went such a replacement reaction to furnish product 13 in 89%

7 The structure of the major diastereomer of 14, accessed
from the reduction of 13, was confirmed by X-ray analysis.
Based on the absolute configuration of the phosphine of 14, it
turned out that in the replacement reaction, the configuration
of tertiary phosphine 9 or 12 was reversed (Scheme 3).

The P-chiral monoethynylphosphine oxides 4 can be used to
develop a new P-chiral organocatalysts. For instance, via a two-
step transformation, P-chiral monophosphine 16 can be readily
accessed from 4 with undiminished ee value. Initially, the
capacity of these phosphines was evaluated in the [3 + 2]
cycloaddition of chalcone and 10 that Fu developed by using an
axially chiral monophosphine catalyst,*® with up to 84 : 16 er for
product 17a being obtained. This suggests the potential of P-
chiral monoethynylphosphine oxides 4 for developing P-chiral
ligand or organocatalysts. Notably, with an methyl or bromo
group on the ortho position of phenyl ring, the resulting chiral
monophosphines could be readily modified to increase the
structural diversity (Scheme 4).>¢

0
1a + 2a standard condition N ! PA(PPha)s,
35mmol)  (35mmol)  (1.03g, 79%, 95% ee, O P:W_\\N Cul, Et;N
.0 MmO .. 2 )
( (1.03 g, 79%, 95% ee, A\
3a/3a’ = 11/1) O e
R' = 4-MeCgH,CH, 3a (1.5 equivs)
coza
0
COLE PPh BN
2! 3 B N
\\ H,0 O _Hsicls O -\XN,
(3 0 equivs) . \\ \ ;:U
Toluene bh
10 .

(85%, 95% ee) (5.0 equivs) (81%, 95% ee) (80%, 95% ee)

=0

PPh
10 and H,0 (\COzEt

?‘ N HSiCH, PN

i i 4 /0 '

H N, 84% Ph R Ph

Ph R! o 13

Toluene
12 88%

—T

5a (90% ee) (89% ee, E/Z > 20/1)

o

Il Pd/C
N : \(\coza A
AP \ 2 (3 MPa)
oo = Ph 14

(91%, 89% ee, 1.6:1 dr)

X-ray structure of the major diastereomer of 14
(after recrystalization, 99% ee, > 20:1 dr)

Scheme 3 The elaboration of P-chiral phosphine oxides 3a and 5a
with a triazole substituent.
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4
(95% ee)
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(95% ee)

56%, 94% ee 62%, 95% ee 55%, 94% ee 68%, 94% ee
° 16d (15 mol%) COLEt CO,Et
5A MS (100 mg) /. @\/
pn/\)kpn AL PR’ coph * Ph
PhOC
Toluene, 17a 17b

-20°C, 2d

(63%, 84:16 er) (17a:17b =11:1)

Scheme 4 The synthesis of P-chiral monophosphine 16 and their
application.

The versatility of monoethynylphosphine oxides 4 as a P-
chiral phosphorus building block is further demonstrated by
a diastereodivergent® Mannich reaction with chiral imines 18
derived from enantiopure tert-butylsulfinamide. Because both
(R)- and (S)-4a can be readily obtained in excellent ee values via
the above established kinetic resolution, it is convenient to take
the alkyl-imine addition reaction®® to modularly access four
isomers of compounds 19 by using either (R)- or (S)-18. The
resulting multifunctional P-chiral phosphine oxide 19 contains
three different chiral centers, one carbon and two heteroatom
chiralities, which is an attractive framework to develop new
chiral ligands and organocatalysts (Scheme 5).**

Furthermore, P-chiral monoethynylphosphine oxides 4 can
undergo sequential Glaser coupling and reduction to give 4-
bis((R)-dialkynylphosphine)butane 20, which could form
a digold Au(r) complex, the structure of which was confirmed by
X-ray analysis (Scheme 6).

The optically active phosphole oxides 7 are also intriguing
targets for optoelectronic studies. The extension of the m-plane
of phosphole oxides is known to be beneficial for - stacking
and electron-spin delocalization, and may tune the electron
affinity of the m-systems. The presence of a triazole moiety
should result in an extended m-plane to bring about some
beneficial effects. In addition, compounds 7 may be further

(o]

8 (sy4 (R)-4 ] NP
Ross d 4a i~ N
\( ®R18 \ ©/ /" (Rr18 @fau g
(R, S, Rg)1 ’ (Sp, S, Rg)19
66%, >20:1 dr -or (S)-4a 72%, >20:1 dr
+
2
=S
r\‘l Bu o)
o H ‘Bu g‘\\\n S,,o
P O _ (Sr4a (R-4a =~ N
Puse  N-g” ( Y \
S8 Tisre (R)-or (Sy18 S8 gy B
gy Bu
Condition: LDA, THF, -78 °C, 2-3 h.
(Sg, R, Sp)-19
(Rp, R, Ss)-19

. 71%, >20:1 dr

59%, >20:1 dr w

wA X-ray analysis of
o

(Rp, S, Rg)19

Scheme 5 Diastereodivergent synthesis of P-chiral tertiary phosphine
oxides sulfinamide 19.
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o
1] CuCly Pd/C HSICly P
Ronse "
= 0O, balloon Hy Et;N @
i) 3 steps, 67%, 99% ee 2

4a 20
(0.3 mmol, 99% ee)

AuCl

B
g} ‘.} - Qé/ /> AuCI(SMe,)
) 95% , 99% ee
2
21

X-ray analysis

Scheme 6 The synthesis of digold Au() complex 21.

elaborated by manipulating the acetylene group. For example,
an unprecedented phosphole oxide-based chiral platinum(u)
acetylide 22 was readily accessed from enantiopure 7a, which
might be interesting for the studies in the areas of organome-
tallic gels, solar cells and luminescent materials, in view of the
importance of Pt-acetylide as functional units.** Starting from
7a, a Sonogashira coupling gave an extended w-system 23 in
57% yield, without the erosion of ee value. Chiral P-sulfide 24
was obtained from 23 upon treating with Lawesson's reagent.
We initially checked the optical properties of compounds 6a, 7a,
23 and 24, with absorption and emission data shown below. As
compared with 6a, the UV/vis absorption and emission band
maxima of compound 7a are slightly red-shifted, but that of
product 23 with extended m-system is obviously red-shifted. In
addition, the quantum yield (QY) of 7a was significantly higher
than that of 6a (0.40 vs. 0.14) and the chiral P-sulfide 24 showed
lower QY than that of 23. These results showed that the prop-
erties of chiral phosphole 7 could be readily tuned for opto-
electronic applications (Scheme 7).

We also examined the CD spectra of 7a, and found (R)-7a
showed an obvious positive first (A = 270 nm) and negative
second (A = 235 nm) Cotton effect peak (Fig. 1). (S)-7a showed
mirror image with (R)-3a in the 230-300 nm region. In the region
of 300-400 nm, (R)/(S)-7a also showed symmetry CD spectrum,

"PrQ O"Pr
7a Pt(PEts),l,, Cul, Et;N R O O _
Ar = p-MeCgHy red Q NN ”’;p\\ T T PHPER),l
TN A0
Ph 3 22 (70%, >99% ee)
Pd(PPhs),Cl, o (from 7a with 99% ee)
Cul
Pro o"Pr Lawesson's "PrO, O"Pr
: Lem’ R‘NF‘h
N ), = N=N “R¢
N=N ”;p\\ Ph A S
A" O
o oo 24:X=5
23 (57%, 95% ee) (91%. 04% 00)
(from 7a with 96% ee)
Fluorescence 4,
Compound Absorption A [nm]° mex fd
(nm)
6a 267, 276, 350, 365 400 0.14
7a 270, 280, 352, 367 405 0.40
23 280, 290, 365, 382 421 0.33
24 282, 298, 367, 385 420 0.09

“At a concentration of 2.0 X 10™ M in CH,Cl,. *Excited at A = 350 nm,

measured relative to quinine sulfate.

Scheme 7 The Synthesis of 22—24 and their photophysical properties.
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Fig.1 (a) CD spectra of (R)-7a (black line) and (S)-7a (red line) at 2 x
107> M (10 mm path length) in CH,Cl, at 25 °C. (b) UV-vis spectra of
(R)-7a in CH,Cl, at 25 °C.

however, no Cotton effect peak were observed. The highest
optical anisotropy factor was observed at 235 nm (gabs = 3 X
10~ %) for both (R)-7a and (S)-7a, this value was in the region of
most chiral organic molecule (from 10> to 10~ %). Based on these
data, we tried to measure the circularly polarized luminescence
(CPL) of (R)/(S)-7a with CPL-200. Unfortunately, due to the low
chiral optical activity of these compound and measurement limit
(glum ~ 10~ %), we failed to collect high quality CPL spectrum.

Conclusions

In conclusion, we have developed highly enantioselective
CuAAC reactions for the synthesis of P-chiral phosphorus syn-
thons featuring a versatile ethynyl group, which can undergo
various diversifying reactions to access structurally diverse P-
chiral phosphine derivatives. Importantly, newly developed
PYBOX-type ligands featuring a C4 bulky shielding group offer
a flexible solution for the development of enantioselective
CuAAC: by varying the C4 shielding group,* the desymmetri-
zation of diethynylphosphine oxides 1, the kinetic resolution of
monoethynylphosphine oxides 4, and the remote desymmetri-
zation of phosphole-diynes 7 is developed, affording the corre-
sponding P-chiral phosphine derivatives in excellent
enantioselectivity. The exploitation of new PYBOX ligands
bearing various types of C4 shielding groups to develop asym-
metric CuAAC reactions for the synthesis of optically active
alkynes or azides, as well as the application of the resulting P-
chiral synthons for the development of new ligands and cata-
lysts is ongoing in our laboratory.
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