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Predictive quantitative structure-property
relationship (QSPR) modeling for adsorption of
organic pollutants by carbon nanotubes (CNTs)+

Joyita Roy,} Sulekha Ghosh,} Probir Kumar Ojha and Kunal Roy @ *

Nanotechnology has introduced a new generation of adsorbents like carbon nanotubes (CNTs), which have
drawn a widespread attention due to their outstanding ability for the removal of various inorganic and or-
ganic pollutants. The goal of this study was to develop regression-based quantitative structure-property re-
lationship (QSPR) models for organic pollutants and organic solvents using only easily computable 2D de-
scriptors to explore the key structural features essential for adsorption to multi-walled CNTs and improve
the dispersibility index of single-walled CNTs. The statistical results of the developed models showed good
quality and predictivity based on both internal and external validation metrics (dataset 1: R? range of 0.893-
0.920, Qf oo range of 0.863-0.895, Q% range of 0.887-0.919; dataset 2: R? range of 0.793-0.845, Qf oo,
range of 0.743-0.798, QF; range of 0.783-0.890; dataset 3: R? = 0.830, Qf ooy = 0.775, Qf = 0.945). We
have also tried to explore whether the quality of the predictions of test set compounds can be enhanced
through an “intelligent” selection of multiple models using the “Intelligent consensus predictor” tool. The
consensus results suggested that the consensus predictivity of the test set compounds gave better results
than those from the individual MLR models based on different criteria (dataset 1: Q2; = 0.935, Q2 = 0.935,
MAE s = good; dataset 2: Q% = 0.887, Q% = 0.879, MAE 95 = good). The contributed descriptors
obtained from different models suggested that the organic pollutants may adsorb to the CNTs through hy-
drogen bonding interactions, n-n interactions, hydrophobic interactions and electrostatic interaction. Based
on the observations obtained from the developed models, we have inferred that the adsorption of the or-
ganic pollutants onto the CNTs can be enhanced by the following factors: a higher number of aromatic
rings, high unsaturation or electron richness of molecules, the presence of polar groups substituted in the
aromatic ring, the presence of oxygen and nitrogen atoms, the size of the molecules, and the hydrophobic
surface of the molecules. On the other hand, the presence of C-O groups, aliphatic primary alcohols and
the presence of chlorine atoms may retard the adsorption of organic pollutants. The results also suggest
that the organic solvents bearing the >N- fragment, a higher degree of branching (compactness), polar
solvents with low donor number and lower ionization potential may be better solvents for enhancing the
dispersibility of single-walled CNTs.

Nanotechnology has introduced a new generation of adsorbents such as carbon nanotubes (CNTs), which have drawn widespread attention due to their
outstanding ability for the removal of various inorganic and organic pollutants. The goal of this study was to develop quantitative structure-property
relationship (QSPR) models to explore the key structural features of organic pollutants, which are essential for adsorption to multi-walled CNTs. We have
also developed models to investigate the characteristics that can improve the dispersibility of single-walled CNTs. This information may be helpful in the

process of removal of the harmful and toxic contaminants/disposal of the by-products from various industries by increasing the adsorption of pollutants
and the dispersibility of CNTs, thus making a pollution-free environment.
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A noticeable amount of organic pollutants is released into
the environment via various routes like the burning of fossil
fuels, wastes from incineration, exhausts from automobiles,
agricultural processes and industrial sectors. The disposal of
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the by-products from the various industries is a challenging
job for environmentalists and industries. The major problem
with pollutants is their effective and safe disposal without
further affecting the environment adversely. The organic pol-
lutants (phenols, cresols, alkyl benzene sulfonates, nitro
chlorobenzene, chlorinated paraffins, butadiene, synthetic
dyes, insecticides, fungicides and pesticides, etc.) accumulate
in the food chain and persist in nature and cause a signifi-
cant threat to the environment."™ The United States Environ-
mental Protection Agency (EPA) has set maximum contami-
nation levels (MCLs) and maximum contamination level
goals (MCLG) for each pollutant, with no ill health effects.
Sometimes the MCL level goes beyond the MCLG level be-
cause of the problem in determining small quantities of con-
taminants and due to lack of availability of treatment tech-
nologies and analytical methods.”™* Thus, for the protection
of the environment, the use of new and advanced materials
is important. In recent years, greater focus has been placed
on nanostructures as adsorbents and catalysts for removing
the harmful and toxic contaminants from the
environment.">"” Among the various nanomaterial adsor-
bents, carbon nanotubes (CNTs) have been thoroughly inves-
tigated because they have a large surface area to volume ra-
tio, inertness towards chemicals, light mass density, porous
structure, great physical and chemical properties, small di-
ameter, extraordinary optical and electrical properties, high
tensile strength and efficient affinity towards pollutants. The
possibility of surface modification with different functional
groups makes CNTs good adsorbents'®>° and enhances their
reactivity and dispersibility for environmental protection
applications.

SWCNTs have some unique mechanical, electrical and
thermal properties but possess poor solubility as well as poor
dispersibility in aqueous and other common organic sol-
vents.”’ They possess high polarizability along with van der
Waals interactions and hydrophobic surface, so they are able
to form aggregates with each other and with other biological
and chemical systems to produce mixtures of aggregates, spe-
cifically in water.>»** This bundling or entangling feature of
SWCNTs causes difficulties in the dispersion of CNTs in vari-
ous solvents or matrices.>*>® This also prevents the explora-
tion of the chemistry of CNTs at a molecular level and hin-
ders their applications®” as well as limits the availability of
adsorption sites for the adsorption of pollutants on the CNT
surface.”® The morphology variation of CNTs may also result
in a difference in their aggregation tendencies, which may
additionally impact their adsorption capability. The major in-
teractions are van der Waals interactions, n-n stacking, and
hydrophobic interactions for dispersibility, as suggested by
many researchers.

Hyung et al®° reported that organic contaminants can
interact with carbon nanotubes in aquatic systems and in-
crease their stability and transport and thus, the mobility of
the adsorbed organic matters on CNTs can be enhanced. The
popularity of CNTs has increased since Long and Yang first
reported that they can efficiently remove dioxins as compared
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to activated carbon.’’ The sorption studies performed on
CNTs for metal ions®” and organic contaminants, such as bu-
tane,®  trihalomethanes,* dioxin,®® xylenes,* chloro-
phenols,*® 1,2-dichlorobenzene,®” resorcinol®® and polycyclic
aromatic hydrocarbons (PAHs),"*?° suggest that CNTs can re-
move both organic and inorganic pollutants from water and
gases.

Although a large number of pollutants are reported in the
literature, adsorption data is available for only around 70 000
pollutants.*” The determination of experimental data for a
large number of pollutants is time-consuming as well as labo-
rious and costly. The surface properties of CNTs can be modi-
fied by treating them with some active chemicals so that the
CNTs do not aggregate or form bundles and hence, the dis-
persion of CNTs can be enhanced. QSPR modeling of organic
pollutants/solvents using adsorption properties/dispersibility
index by CNTs can, therefore, be of great importance for re-
searchers and practitioners. The quantitative structure-prop-
erty relationship (QSPR) approach is easier than the thermo-
dynamic model since the input parameters of QSPR can be
more easily obtained as compared to the thermodynamic
models.*” QSPR not only reduces the experimental work but
also predicts the features based on the chemical structures.
Thus, the rationalization ideas obtained from such models
provide the researchers with a conceptual framework upon
which a firm discussion can be based. Recently, a great deal
of work has been done with QSPR and linear surface energy
relationship (LSER) modeling to develop predictive models
for CNTs, including the adsorption of organic chemicals
(OCs) by CNTs,""™ dispersibility of CNTs in organic
solvents**™>' and other properties similar to CNTs. In the
past, some work has been done by researchers, for example,
linear LSER models were developed by Xia et al.** using the
biological surface index (BSAI) for the prediction and charac-
terization of the intermolecular adsorption of OCs by CNTs.
Apul et al.*® reported a 3D-QSPR modeling applying the same
data sets for the adsorption of aromatic compounds by CNTs
and compared it with MLR, ANN and SVM methods. Another
QSPR model was reported by Yilmaz et al.*® using additive
descriptors and quantum-chemical descriptors for the deter-
mination of the dispersibility of CNTs in different organic
solvents.

The objective of the present study has been to develop sta-
tistically significant QSPR models of organic pollutants with
multiple-endpoints using only easily computable 2D descrip-
tors to explore the key structural features that are essential
for adsorption to MWCNTs. We have also developed a QSPR
model for organic solvents to investigate the characteristics
of molecules that can improve the dispersibility of SWCNTs
and may overcome the drawbacks of SWCNTs. A variable se-
lection strategy was also employed prior to the development
of final models to reduce noise in the input. We have also
tried to explore whether the quality of predictions of test set
compounds can be enhanced through the “intelligent” selec-
tion of multiple MLR models using an “Intelligent consensus
predictor” tool.
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2. Methods and materials
2.1. Dataset

We have developed QSPR models separately, using three dif-
ferent data sets for diverse organic contaminants with
multiple-endpoints of carbon nanotubes reported in the liter-
ature.*™**°* The first dataset involves the defined adsorption
affinity properties (k.,) of 59 organic contaminants by multi-
walled carbon nanotubes (MWCNTS). The second dataset in-
volves the adsorption affinity of 69 organic contaminants re-
lated to the specific surface area (ks,) of multi-walled carbon
nanotubes (MWCNTs), and the third data set involves 29 or-
ganic solvents with defined dispersibility index values (Cpax)
for single-walled carbon nanotubes (SWCNTs). We have not
excluded any compound of individual data sets in our model-
ing analysis. All the endpoint values were taken in the loga-
rithmic scale for the modeling purposes. The first two data
sets mainly involve adsorption data for synthetic organic com-
pounds like pyrene, naphthalene, phenol, benzene, aniline,
benzoate, chloroanisole, alcohol, acetophenone, isophoron,
phenanthrene dicamba, atrazine, carbamazepine, pyrimidin-
one, acetamide, piperidine, propionitrile, acrylic acid, thio-
diethanol, ethanolamine, cyclopentanone, acetone and ethyl-
ene glycol derivatives, while the third data set is related to
different types of solvents. The dispersibility of single-walled
carbon nanotubes (SWCNTs) was measured in different sol-
vent ranges. Here, Cp,. (Mg mL™") represents the maximum
dispersibility of single-walled carbon nanotubes, K,, and Ksu
are both adsorption coefficients that can be obtained from
isotherm data. K., is the ratio of ¢g. and C. (solid and liquid
phase equilibrium concentrations, respectively, at infinite di-
lution conditions with an average of 0.2% aqueous solubility).
Ks, is the normalized value of K, and the specific surface area
of multi-walled carbon nanotubes (MWCNTSs). The data sets
are given in Tables S1, S2 and S3 in the ESIf section.

2.2. Descriptor calculation

“The molecular descriptor is the final result of a logic and math-
ematical procedure which transforms chemical information
encoded within a symbolic representation of a molecule into a
useful number or the result of some standardized experiments”.
All the dataset compounds were drawn using the Marvin
Sketch software.>® The descriptors were calculated using two
software tools, namely, Dragon software version 6,>* and
PaDEL-descriptor®® software. In this work, we have calculated
only 2D descriptors covering constitutional, ring descriptors,
connectivity index, functional group counts, atom centered
fragments, atom type E-states, 2D atom pairs, molecular
properties (using Dragon software version 6) and ETA indices
(using PaDEL-Descriptor software).

2.3. Data set division

Division of the dataset is a very important step for QSPR. The
present work deals with three datasets containing diverse or-
ganic pollutants or solvents. In each case, all the dataset
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compounds were divided into a training set and a test set
using the “Modified k-medoid” clustering technique. The
clustering technique categorizes a set of compounds into
clusters so that the compounds present in the same cluster
are similar to each other. On the other hand, when two com-
pounds belong to two different clusters, they are said to be
dissimilar in nature. The indicative compounds within a clus-
ter are called medoids. This technique tends to select k from
most middle objects or compounds as the initial medoid.
Three clusters were generated for the dataset containing 59
and 29 compounds, while six clusters were generated for the
dataset containing 69 compounds. We have selected approxi-
mately 25% of compounds from each data set for the test set
and the remaining 75% of compounds were selected for the
training set. The purpose of the training set was to develop
the model and the test set was used to validate the model for
prediction purposes. The same strategy was applied in the
case of all three datasets for training and test set division.

2.4. Variable selection and model development

After the dataset division step, we performed data pretreatment
to remove intercorrelated descriptors from all three sets of
datasets. Prior to the development of final models, we tried to
extract the important descriptors from the large pool of initial
descriptors using various variable selection strategies.*>>” In
case of the dataset containing 59 and 69 organic pollutants, we
separately ran a stepwise regression and selected some descrip-
tors in each case. After removing the selected descriptors
obtained from the first stepwise regression run, we ran the step-
wise regression again using the remaining pool of descriptors,
and we repeated the same procedure. In this way, we selected
some manageable numbers of descriptors and made a reduced
pool of descriptors. In the case of the dataset containing 29
compounds, we developed GA equations and made a descriptor
pool using the descriptors obtained from the GA (genetic algo-
rithm) equations. After that, we ran the best subset selection
for all three datasets using the reduced pools of descriptors.
For this, we used a tool developed in our laboratory.”® Five
(three models were selected) and four (two models were se-
lected) descriptor models were generated in the case of the
dataset containing 59 organic pollutants, whereas six (three
models were selected) and five (two models were selected) de-
scriptor models were generated for the dataset containing 69
organic pollutants. Among the equations generated from the
best subset selection, we selected five models, five models and
four models for 59, 69 and 29 compounds, respectively, based
on MAE criteria.>® Descriptors were selected from the GA and
stepwise regression models and a descriptor pool was gener-
ated. Finally, the selected models were run using the intelligent
consensus predictor (ICP) tool developed in our laboratory® to
explore whether the quality of predictions of external com-
pounds could be enhanced through an “intelligent” selection of
multiple models (in this report, five models were selected).

The multilayered strategies like data pretreatment,’® step-
wise regression,’’ genetic method®> and best subset
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selection®® were involved for the selection of variables prior
to the development of the final models and different steps
are discussed separately in the ESIt section.

2.4.1. Intelligent consensus predictor (ICP).°° This soft-
ware was used to judge the performance of consensus predic-
tions in comparison to their quality obtained from the indi-
vidual (MLR) models based on the MAE based criteria (95%).
It is obvious that a single model might not be equally useful
for prediction for the whole test set compounds, which
means that one QSPR model may be the best model for pre-
diction of a test compound while the other model may be the
best predictor for another test compounds. For this reason,
we have selected five models in the case of a dataset
containing 59 (M1-M5) and 69 (N1-N5) organic contami-
nants, and performed consensus prediction using the “Intel-
ligent consensus predictor” tool to explore whether the qual-
ity of the predictions of the test set compounds could be
enhanced through an “intelligent” selection of multiple
models. The steps involved in the development of both MLR
and PLS models are represented schematically in Fig. 1.

2.5. Statistical validation metrics

In order to judge the predictivity and reliability of the devel-
oped QSPR models, we have examined the statistical quality,
applying both internal and external validation metrics. In this
work, we have used various statistical parameters like deter-
mination coefficient R?, explained variance R2, variance ratio
(F), and standard error of estimate (s). These parameters are
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not sufficient to evaluate the predictive potential of the
model, so we have used some other classical parameters for
validation of the models. The internal predictivity parameters
like the leave-one-out cross-validated correlation coefficient
(Qfoo), and external predictivity parameters like Rpeq OF Qg,
Q% and concordance correlation coefficient (CCC), were also
calculated. We also calculated some 1%, parameters like
moo) and Arpy ooy for internal validation and riesy and
Ar%n(test) for external validation.®® The basic objective of the
predictive performance of QSPR models is to investigate the
prediction errors of an external set, which should be within
the chemical and response-based domain of the internal set
(i.e., training set). The Q2 -based metrics (i.e., Rpreq and Qf,)
are not always able to provide the correct indication of the
prediction quality because of the influence of the response
range as well as the distribution of the values of response in
both the training and test set compounds.”® Thus, we have
also validated the models using the mean absolute error
(MAE) criteria for both external and internal validation.” The
error based metrics were used to determine the true indica-
tion of the prediction quality in terms of prediction error
since they do not evaluate the performance of the model in
comparison with the mean response (Roy et al, 2016 (ref.
59)). The threshold values of Q2 Qf,, Rf,red, rfn(test), r%n(Loo)
are 0.5 and for CCC, it is 0.750.°*** The limit for Argy(cese) and
Arfn(Loo) is 0.2. Recently, Roy et al. reported that a single
model might not be equally useful in the prediction for the
whole test set compounds, i.e., one QSPR model may be the
best model for prediction of a test compound while the other

59 Organic pollutants || 69 Organic pollutants 29 Organic solvents
(log K,) (Dataset 1) (log K, ) (Dataset 2) || (log C,,,, ) (Dataset 3)

\ |

Drawing the structures using Marvin
sketch (version 14.10.27) software

|

Descriptor calculation using Dragon
and PaDEL-Descriptor software

v
Dataset division using Modified k- Medoid |

59 compounds

69 compounds

—

v

Selected 43 descriptors (for
dataset 1) and 47 descriptors
(for dataset 2)

v

Best subset selection using
reduced pool of descriptors

29 compounds

Model Validation & check the

4' Intelligent
H Consensus
Selected 5 models for both data > Prediction of
sets 1 & 2 5 MLR models
""""" (for both data
l . sets 1 & 2)
i Variable selection strategy
Genetic
i ~>| Selected 5 GA model:
>{ algorithm (GA) | 0 clecte models | s
| Selected 15 descriptor
i | Final PLS
| Selected 1 model based on MAE ’—> model was
B L T R i o e O ot TR o e o i | developed

A

applicability domain

Fig. 1 Schematic representation of the steps involved in the development of QSPR models.
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model may be the best predictor for another test compound.
For this reason, we have also performed Intelligent consen-
sus prediction (ICP) using multiple QSPR models to deter-
mine whether the quality of the predictions of test set com-
pounds can be enhanced through an “intelligent” selection.
Here, a simple average of predictions from all the models is
not considered; only ‘qualified models’ are taken into
account.

2.6. Applicability domain

“The applicability domain of a (Q)SAR is the physicochemical,
structural, or biological space, knowledge or information on which
the training set of the model has been developed, and for which it
is applicable to make predictions for new compounds. The appli-
cability domain of a (Q)SAR should be described in terms of the
most relevant parameters, i.e., usually those that are descriptors
of the model. Ideally, the (Q)SAR should only be used to make pre-
dictions within that domain by interpolation not extrapolation”.
The AD of the QSAR model is characterized by the molecular
properties of the training set compounds. The AD criteria help
to check whether the test/query compound under consideration
is inside the AD or not. Here, we have checked the applicability
domain of test set compounds of the developed models,
employing the standardization approach (for first two data sets)
using the software developed in our laboratory®® and a DModX
(distance to model X) approach®” at 99% confidence level using
SIMCA-P software®® (for the third data set). The predictability
of a QSPR model is good if the molecules are present within
the domain of the chemical space of the training set
molecules.

2.7. Software used

Marvin Sketch version 5.5.0.1 (ref. 53) was used to draw chem-
ical structures. Descriptors were calculated by the PADEL-
Descriptor software®® and Dragon software version 6.°* Clus-
tering of each data set was done by the “Modified K-Medoid”
tool version 1.3 (ref. 58) for its splitting into a training set and
a test set. Data Pretreatment version 1.2 was used to remove
intercorrelated descriptors. Stepwise regression analysis was
done by the MINITAB software version13.14.°° Genetic Algo-
rithm was done by using the Genetic Algorithm tool version
4.1.°® Best subset selection®® and intelligent consensus predic-
tor tool®® were used to generate the QSPR models.

3. Results and discussion

We have developed QSPR models (five MLR models for each
of the datasets containing 59 and 69 organic contaminants,
and one PLS model for the dataset containing 29 organic
contaminants) for three datasets containing diverse organic
pollutants with defined adsorption affinities for MWCNTSs
(for datasets 1 and 2), and the dispersibility index of SWCNTs
(for dataset 3), using reduced descriptors pools obtained by
different strategies as discussed in the Materials and
methods section. We checked the statistical quality of all the
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individual models using both internal and external validation
parameters, which showed that the models are statistically
significant (Table 1). We also checked the MAE-based criteria
for all the models.>® All the models passed the MAE-based
criteria.’® Besides the routinely used validation parameters,
we also checked the consensus predictions (for datasets 1 and
2 only) using the developed MLR models employing a newly
developed “Intelligent consensus predictor” tool®® to check
whether the quality of the predictions of the test set com-
pounds can be enhanced through an “intelligent” selection of
multiple MLR models. We found that the consensus predic-
tions of multiple MLR models are better (based on MAE based
criteria) than the results obtained from the individual models
as shown in Table 1 (here, in both cases, the winner model is
CM3). It was also found that the consensus predictions of the
test set compounds are better as compared to the individual
MLR models based on not only the MAE-based criteria but
also the other external validation metrics used in this work as
shown in Table 1. All the individual models are mentioned be-
low and the descriptors are discussed elaborately. In the equa-
tion, Mining 1S the number of compounds used to develop
the models and 7 is the number of compounds used for
the external prediction of the developed models. The values of
leave-one-out (LOO) cross-validated correlation coefficient
(Q?) (Q? in the range of 0.863-0.895 for dataset 1; 0.743-0.798
for data set 2 and 0.775 for dataset 3) above the critical value
of 0.5 signify the statistical reliability of the models. The pre-
dictability of the models was judged by means of predictive
R® (Rprea) or Qf: (Qf; range of 0.887-0.919 for dataset 1;
0.783-0.890 for data set 2 and 0.945 for dataset 3) and Qz,
(Q%, range of 0.886-0.919 for dataset 1; 0.768-0.882 for data
set 2 and 0.938 for dataset 3), which show the good predictive
ability of the models. The statistical results of all the models
are summarized in Table 1. The PLS model developed from
dataset 3 was also validated using a randomization test
through randomly reordering (100 permutations) the depen-
dent variable (log Cpay) using the SIMCA-P software.®® Here,
the intercept values for both R* and Q? are below the stipu-
lated values (R, < 0.4 and Qf,; < 0.05), which confirmed
that the developed model was not obtained by chance (Fig.
S1 in ESIf). We have also checked the intercorrelation
among the modeled descriptors for MLR models based on
the Pearson correlation coefficient using the SPSS soft-
ware.”® The results showed that there is no intercorrelation
between the modeled descriptors.

From the observations obtained from the modeled de-
scriptors, it has been found that the organic pollutants may
interact with the MWCNTs through different mechanisms
like hydrogen bonding interactions, hydrophobic interac-
tions, m-m interactions and electrostatic interactions as
discussed below.

3.1. Dataset 1:59 organic pollutants

The significant descriptors obtained from the five MLR
models (see Models M1-M5) for the adsorption properties

This journal is © The Royal Society of Chemistry 2019
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(logKa) of 59 organic chemicals on MWCNTs are XOv,
nArOH, BO1[C-O], BO06[C-Cl], Ui, F03[0-O], F04[N-O],
ETA_BetaP, minsCH;, B03[O-O] and nHBint4, which regulate
the adsorption properties of the organic pollutants. The con-
tribution of the descriptors can be easily identified from the
regression coefficient of the independent variables. In this
case, all the descriptors contributed positively (positive re-
gression coefficients), except the B01[C-O] descriptor (nega-
tive regression coefficient). The definition, contribution and
frequency of the contributed descriptors are shown in Table
S4 in the ESI.f We have checked the applicability domain of
the developed MLR models using the standardization ap-
proach to confirm whether there is any compound present
outside the applicability domain or not. It was found that
one compound (compound number 41) for model M1 is situ-
ated outside the applicability domain, while compound num-
ber 56 is situated outside the domain of applicability in case
of models M2, M3, M4 and M5; however, these compounds
showed good predictivity based on the models. The scatter
plot of the observed vs. predicted adsorption coefficient for
all the MLR models are shown in Fig. 2.
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Model M1. logk, = -4.62(+0.337) + 0.834(+0.155) x Ui
+ 0.663(+0.220) x B0O6[C—Cl]
+0.641(+0.057) x X0v
+0.600(£0.091) x nArOH
- 0.611(+0.121) x B01[C-O]

Myining = 44, R* =0.920, R, = 0.908,5 = 0.294, F =85.93,
PRESS=4.267, 0 =0.895,7, ,, = 0.851,
A7, 00) = 0.078, MAE = Good,
N =15,07, = 0.887,07, =0.886,7,  =0.745,Ar7  =0.104,

CCC =0.934, MAE = Good

Model M2. logk, = —8.51(+0.722) + 0.803(0.048) x XOv
+0.681(+0.146) x F03[0-O]
+0.415(+0.144) x FO4[N-O]
+3.27(+0.491) x ETA_BetaP
+0.204(£0.067) x minsCHj

Experimental logK_ vs predicted logK  values of 59 organic pollutants

Model M1 Model M2 Model M3
4 @ Training set © Training set : ¥r ati“i':g set
E 4 o est sef
© Test set (] 4 ©Testset ° 4 o
%‘; 3 © 3 o/ o 3 /e
) j &0
= ° ° X 2
3 o0 [ )
& 2 = 2 4 3 2
>3 L
5 3 L k] ®
£ ° ot - 3 ™ A
1 L4 g 1 £ 1 o [
L4 [
» p
° (] ®. b Py
\J L)
- -1® 1 2 3 4 2 - 1 3 4 L' - 1 2 3 4
v v v
-1 9 L
Experimental logK,, Experimental logK, Experimental logK_,

Model M4
® Training set
4 ® Test set
[ ]
. 3 o/ o
%
2 °
g 2 o
=
-] °
£ 1 -
b °
° o :
i) -1° 1 2 3 4
-1

Experimental logK,,

Model M5
4 4 © Training set
® Test set °
3 N [ ) ®
o0 L]
= 2
g °
2 ([ 1) o
x 11 '
A
L] P y
Pt °
Ly
2 -4° ° 1 2 3 4
e
Experimental logK_,

Fig. 2 The scatter plot of the observed and the predicted adsorption coefficient property (log K.,) of the developed MLR models (models M1-M5).
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=44,R* =0.912,R%. =0.900,S = 0.306, F = 78.66,

lramlng adj

PRESS =4.356,0" =0.892,7’ 72 =0, 848,

m(LOO)

Ar? =0.079,MAE = Good,

m(LOO)

=15,0%, =0.916,0%, =0.915,”
CCC =0.952,MAE = Good

=0817,A72 ) =0.072,

Piegt m(test) m(tes

Model M3. logk,, = -8.68(+0.746) + 0.802(+0.050) x XOv
+0.603(+0.272) x B03[0-0]
+3.39(+0.503) x ETA_BetaP
+0.213(+0.069) x minsCH;

+ 0.412(+0.148) x nHBint,

=44,R* =0.905,R},; =0.893,5 = 0.318,F =72.57,

lrammg

PRESS = 4.840,0” =0.880,7° m(L0O) P =0 832,
Ar? m(100) = =0.075,MAE = Good,
N, =15 ,02,=0.919,0%, =0.919, r m(iest) 2 =0. 825, Ar m(test) =0.069,

CCC =0.954,MAE = Good

Model M4. logk, = -8.72(+0.782) + 0.785(+x0.052) x XOv
+0.650(+0.158) x F03[0-0]
+3.51(+0.527) x ETA_BetaP

+0.202(0.073) x minsCH;

=44,R* = 0.893,Rﬂzle =0.882,5=0.334,F =81.11,

trammg

PRESS =5.164,0° =0.872, r m(100) =0.821,
Ar? m(100) =0.092, MAE = Good,
n., =15,07,=0.918,0%, =0.917,r m(tet) P2 =0 806, Arm tet) =0.074,
CCC=0.953,MAE = Good
Model M5. logk, = -8.42(x0.773) + 0.785(0.052)X0v

+3.29(+0.526)ETA_BetaP
+0.199(0.072)minsCH;
+ 0.566(+0.137)nHBint,

=44,R* =0.893,R’, = 0.882,5 =0.333,F =81.33,

lrammg adj

PRESS =5.543,0° = 0.863,72, ,, = 0.808,
A7 100y = 0.086, MAE = Good,
M =15.04 =0915.0, =0914,72 | =0.798,Ar2 _ =0.076,

CCC=0.950,MAE = Good

3.1.1. The descriptors related to hydrogen bonding inter-
actions. The functional group count descriptor, nArOH, repre-

This journal is © The Royal Society of Chemistry 2019

View Article Online

Paper

sents the number of aromatic hydroxyl groups present in the
compound. This descriptor influences the adsorption proper-
ties of organic pollutants by MWCNTs as indicated by its pos-
itive regression coefficient. Thus, the compounds containing
a large number of aromatic hydroxyl groups may enhance the
adsorption properties of organic pollutants by MWCNTSs as
shown in compou