ChemPren: a new and economical technology for conversion of waste plastics to light olefins
Abstract
With the ever-increasing demand for plastics, sustainable recycling methods are key necessities. The current plastics industry can manage to recycle only 10% of the 400 million metric tons of plastic produced globally. Waste plastics, in the current infrastructure, land up mostly in landfills. Although a lot of research efforts have been spent on processing and recycling co-mingled mixed plastics, energy-efficient sustainable and scalable routes for plastic upcycling are still lacking. Catalytic valorization of waste plastic feedstock is one of the potential scalable routes for plastic upcycling. Silica-alumina based materials, and zeolites have shown a lot of promise. A major interest lies in restricting catalyst deactivation, and refining product selectivity and yield for such catalytic processes. This article highlights ChemPren technology as a clean energy solution to waste plastic recycling. Co-mingled, mixed plastic feedstock along with spray dried, attrition resistant, ZSM-5 containing catalysts is preprocessed with an extruder to form optimally sized particles and fed into a fluidized bed reactor for short contact times to produce selectively and in high yields ethylenes, propylenes and butylenes. This techno-economic perspective indicates that the ChemPren technology can produce propylene at $0.16 per lb, whereas the current selling price of virgin propylene is $0.54 per lb. This technology can serve as a platform for mixed plastic upcycling, with more advancements necessary in the form of robust and resilient catalysts and reactor operation strategies for tuning product selectivity.
- This article is part of the themed collection: In Celebration of Klavs Jensen’s 70th Birthday