The use of single metal atoms-based photocatalysts for the production of ammonia through photocatalytic nitrogen fixation

Abstract

The conventional synthetic ammonia industry is characterized by its high energy consumption, necessitating the exploration of a new environmentally sustainable method for NH3 synthesis. A prospective alternative to the Haber-Bosch process is the photocatalytic reduction nitrogen (pNRR), allowing NH3 production under room conditions. The optimization of photocatalysts, particularly through the use of single metal atom catalysts, plays a significant role in enhancing the performance of pNRR. Single metal atom catalysts offer adjustable catalytic performance and improved selectivity, making them a viable strategy for pNRR. Research has demonstrated that carbon-based and metal-based matrices effectively disperse highly active single atoms, enhancing pNRR efficiency. This review delves into utilizing atomically dispersed single atoms in pNRR on various supporters, examining theoretical frameworks and experimental findings. The review is structured into 4 sections: elucidating the mechanism and pathway of pNRR, highlighting the use of single metal atom catalysts (SMACs) where metal atoms are dispersed on carbon substrates for pNRR, showcasing SMACs with metal atoms dispersed on non-carbon substrates for pNRR, and concluding with an overview of the existing challenges and prospects of pNRR for sustainable ammonia production.

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Review Article
Submitted
27 Sep 2024
Accepted
12 Nov 2024
First published
12 Nov 2024

Inorg. Chem. Front., 2024, Accepted Manuscript

The use of single metal atoms-based photocatalysts for the production of ammonia through photocatalytic nitrogen fixation

P. Zhang, Y. Yu, R. Tuerhong, X. Du, K. Chai, X. Su, Q. Su, S. Meng and L. Han, Inorg. Chem. Front., 2024, Accepted Manuscript , DOI: 10.1039/D4QI02449D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements