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Here, for the first time, a hybrid catalyst in which hemin and gold nanoparticles are positioned in spatially separate domains within 
graphene-mesoporous silica support is presented. Specifically, monomeric hemin, can be anchored on the inner exposed graphene surface 
of GS via π–π stacking interactions. After the assembly, such nanocomposites can function as a peroxidase mimic. Next, gold 
nanoparticle, which acts as an artificial glucose oxidase, can be conjugated to the functional NH2 group present on the outer coated silica 10 

surface. As a result, the integrated catalysts containing multiple catalytic sites can be used to catalyze sequential reactions, without the 
aid of true enzymes. This work is an important step forward in positional assembly of biomimetic catalysts for artificially mimicking 
natural organelles or important chemical transformations in future. 

Introduction 
In a natural environment, enzymes are almost always spatially 15 

confined in crowded and tightly controlled cellular compartments, 
which can isolate the catalytic cycle, prevent interference and 
make biomolecular catalysts more efficiently.1 In order to mimic 
the natural compartmentalization process, researchers have long 
directed their attention to enzyme encapsulation or assembly.2 20 

Until now, much effort has been focused on using phospholipid 
liposomes or polymersome as synthetic nano- or microcapsules.3 
Furthermore, to be efficient, the biomolecular catalysts need not 
only to be presented in a confined reaction space but also to be 
positioned at specific sites within subcellular organelles.3 To this 25 

end, van Hest and collaborators constructed a variety of biohybrid 
polymersome nanoreactors in which two or more different 
enzymes were spatially positioned, and precisely ordered.1a, 4 
Very recently, through loading different enzyme-containing 
organelle mimics inside larger polymersomes, they have even 30 

successfully created a structural and functional eukaryotic cell 
mimic.5 Recently, Lu et al has demonstrated a promising 
approach by assembling and encapsulating enzymes within a thin 
polymer shell to form biomimetic enzyme nanocomplexes with 
precise compositional and spatial controls.6 35 

On the other hand, using synthetic systems to simulate the 
function of natural enzymes have attracted increasing attention 
for the last decades.7 Among the countless examples arising from 
these efforts, catalytically active nanomaterial as a new 
generation of artificial enzymes is particularly impressive and 40 

leads to new opportunities in biomedical diagnosis, 
environmental monitoring, and therapeutics.8 Until now, 
researchers have discovered a number of nano-sized materials 
that possess unique enzyme-mimicking activities, such as CeO2,9 

Fe3O4,10 gold nanoparticles (AuNPs),11 V2O5,12 PtPd−Fe3O4,13 
45 

graphene oxide14 and graphene nanocomposites15. Nevertheless, 
creating such ‘‘static’’ artificial enzymes are not sufficient to 
mimic smart enzymatic systems, just like simply combining 
individual biomolecules (e.g., protein, nucleic acid and lipid) 
together is not enough to construct a functional cell.16 Recently, 50 

through the integration of artificial enzyme with natural enzyme, 
catalytic ensemble with synergic and complementary functions 
has been achieved.15b, 17 Such studies take one important step 
towards mimicking complex natural systems. To mimic nature 
more completely, it would be desirable not only to explore 55 

‘‘static’’ artificial enzymes, create catalytic ensemble or design 
functional enzyme complexes with a high level of control over 
positional assembly, but also to position different types of 
artificial enzymes (or prosthetic groups) in separate domains. 

Herein, we described a rational design of robust artificial 60 

enzyme nanocomplexes to achieve this aim, as shown in Fig. 1. 
Specifically, graphene-mesoporous silica hybrid (GS) was used 
as a nanocontainer to anchor two artificial enzymes (i.e. AuNPs 
as a glucose oxidase (GOx) mimic and hemin as a prosthetic 
group to mimic peroxidase) at different locations, namely, on the 65 

outer surface of coated silica and on the inner surface of exposed 
grapheme. This environment allows a simple design of artificial 
enzymatic reaction system in which AuNPs and hemin can work 
in tandem catalysis. To the best of our knowledge, this is the first 
example of the integration of multiple biomimetic catalysts 70 

through a controlled spatial positioning procedure. Meanwhile, 
our new findings might pave the way to apply artificial tandem 
catalytic systems for artificially mimicking organelle or important 
chemical transformations. 

Results and discussion 75 

Synthesis of GSHA 
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pathways scheme by GSH/H2O2 could be described as shown in 
Fig. 3b. As expected, GSH had high catalytic activity, whereas 
free hemin showed little activity at the same hemin concentration 
(Fig. S8). The oxidation of TMB produced a blue color with 
major absorbance peaks at 370 and 652 nm (Fig. 3c). After 5 

incubation of sulfuric acid, the reaction was stopped, and the blue 
color changed to yellow with maximum absorbance at 450 nm 
(Fig. 3c). Control studies indicated that neither H2O2 nor GSH 
alone could efficiently oxidize TMB (Fig. 3d). Meanwhile, the 
ability of GSH/H2O2 to oxidize TMB was dependent on catalyst 10 

concentration (Fig. 3e) and pH (Fig. S9). 

 
Fig. 3 The peroxidase-like catalytic activity of GSH sheets. (a) Schematic 
illustration of GSH-catalyzed TMB oxidation to produce oxTMB. (b) 
TMB oxidation pathways and their corresponding chemical structures. (c) 15 

UV-vis absorbance spectra of TMB and its oxidation products. (d) Time-
dependent absorbance changes at 652 nm for different samples after 
incubation with TMB: 1) none; 2) only H2O2; 3) GSH alone; 4) H2O2 and 
GSH. Inset: corresponding visual color changes. ([TMB] = 1 mM, [H2O2] 
= 50 mM, [GSH] = 25 μg/mL). (e) Time-dependent absorbance changes 20 

in the absence or presence of different concentrations of GSH. Inset: 
corresponding visual color changes. 

The glucose oxidase-mimic activity of GSA 

Next, we systematically evaluated the glucose oxidase-mimic 
activity of GSA in solution (Fig. 4). Recently, unsupported 25 

AuNPs have been found to exhibit intrinsic GOx-like activity,11a-d 
we reasoned that the “naked” AuNPs supported on GS could 
serve as a more effective GOx mimic. Like GOx (Fig. S10), GSA 
could catalyze the oxidation of glucose by means of molecular 
oxygen (in equilibrium with air), yielding gluconic acid and H2O2 30 

(Fig. 4a). The reaction solution was interrogated with a gluconic 
acid-specific colorimetric assay.11a Upon addition of hydroxamine 
and Fe3+, the color of the solution turned red with a characteristic 
absorbance peak at 505 nm (Fig. 4b, 4c), which suggested that 
gluconic acid was indeed produced in this GSA-catalyzed 35 

reaction. The solutions containing glucose or GSA alone could 
not introduce any color change. However, control experiments 
indicated that GSH without AuNPs and citrate-capped AuNPs (13 
nm) had very little activities. This is because that GS support 
helps the formation of a high degree of ultrafine AuNPs (Fig. S4). 40 

As a result, a larger fraction of active metal atoms are exposed to 
the surface, and thus these very small and stable AuNPs possess 
highly enhanced catalytic activities.11a In addition, since gluconic 
acid is one of the organic acids, we reason that its production in 
the reaction can also decrease the ambient pH. To further confirm 45 

the reaction product, we used methyl red as a pH indicator (red in 
pH under 4.4 and yellow in pH over 6.2) and the pH meter to 
monitor pH changes of the solution (Fig. 4d, 4e). All the above 
results confirmed that GSA can act as a more effective GOx 
mimic than unsupported AuNPs.11a-d 50 

 
Fig. 4 The GOx-like catalytic activity of GSA sheets. (a) Schematic 
illustration of GSA-catalyzed glucose oxidation to produce gluconic acid 
and H2O2. (b) Relative absorbance spectra and visual color changes for 
different samples obtained by gluconic acid-specific assay: 1) none; 2) 55 

only glucose; 3) GSA alone; 4) glucose and GSA. ([glucose] = 200 mM, 
[GSA] = 900 μg/mL). (c) Relative absorbance spectra and visual color 
changes in the absence or presence of different concentrations of GSA. (d) 
Typical photographs and corresponding chemical structures of methyl red 
without or with glucose and GSA in phosphate buffer (0.5 mM, pH 7.0). 60 

(e) pH changes for different samples in phosphate buffer (0.5 mM, pH 
7.0). 

GSHA-catalyzed two-step reaction 

So far, many studies have been reported in the literature with 
the objective of mimicking natural enzyme architectures. In terms 65 

of these studies, there are basically two major aspects concerning 
the construction of synthetic systems, namely (1) using enzyme 
encapsulation or assembly to mimic the natural 
compartmentalisation process (Fig. 5a, Route 1);1-3, 5 and such a 
strategy has been developed to encapsulate and position different 70 

types of natural enzymes in separate domains. (2) Exploring 
artificial enzymes that mimic the function of natural enzymes 
(Fig. 5a, Route 2); 8-15 and researchers have recently directed their 
attention to the construction of catalytic ensemble for mimicking 
complex enzymatic systems15b, 17. However, no report of artificial 75 

enzyme-loaded nanodevices with a high level of control over 
positional assembly for mimetic tandem catalysis has appeared. 
Based on the enzyme-mimicking activities of GSH and GSA, we 
expected that the integrated GSHA could function as a hybrid 
catalyst that could drive a two-step reaction to allow for in situ 80 

generation of H2O2 for the oxidation of peroxidase substrate 
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Positional Assembly of Hemin and Gold Nanoparticles in Graphene-Mesoporous Silica 
Nanohybrids for Tandem Catalysis 
 

 5 

A hybrid catalyst in which two different types of enzyme mimics are positioned in spatially separate 

domains within graphene-mesoporous silicasupport is presented.
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