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Diffusion of chemicals or tracer molecules through complex systems containing irregularly shaped
channels is important in many applications. Most theoretical studies based on the famed Fick-
Jacobs equation focus on the idealised case of infinitely small particles and reflecting boundaries.
In this study we use numerical simulations to consider the transport of finite-size particles through
asymmetrical two-dimensional channels. Additionally, we examine transient binding of the molecules
to the channel walls by applying sticky boundary conditions. We consider an ensemble of particles
diffusing in independent channels, which are characterised by common structural parameters. We
compare our results for the long-time effective diffusion coefficient with a recent theoretical formula
obtained by Dagdug and Pineda [J. Chem. Phys., 2012, 137, 024107].

I. INTRODUCTION

Diffusive transport in structured environments is a
ubiquitous feature relevant in a large variety of systems.
Inter alia, these range from the dispersion of tracers in
the permeable rock or loose materials making up ground-
water aquifers [1], over the diffusion of chemicals in ram-
ified matrices such as porous glasses or zeolites [2, 3],
up to the random motion of biomolecules and submi-
cron objects in the crowded environment of living bio-
logical cells with their complex scaffolding made up of
structural, semiflexible polymers [4–6]. A general theme
connecting these systems are the geometrical constraints
imposed on the motion of the tracer particles, which may
lead to interesting entropic effects [7].

Important model systems for confined geometries are
two- and three-dimensional channels and pores. The
quantitative mathematical description of diffusion in
such objects with varying width has a long-standing his-
tory (see [8] and references therein). In a seminal work
Zwanzig derived a modified Fick-Jacobs equation which
is at the basis of most subsequent quasi-one-dimensional
descriptions [9],

∂G(x, t)

∂t
=

∂

∂x
D(x)w(x)

∂

∂x

G(x, t)

w(x)
(1)

Here G(x, t) describes the local concentration of particles
at position x and time t, w(x) the width of the channel
at position x and most importantly D(x) is an effective
position-dependent diffusion coefficient. Subsequently,
several different forms for D(x) were derived and applied
to various systems [9–19]. Taking along only first order
derivatives of the width profile w(x), Kalinay and Per-
cus [13] (see also Martens et al. [16]) obtained the closed
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form result

DKP (x) = D0
arctan(w′(x)/2)

w′(x)/2
, (2)

where D0 denotes the position-independent diffusion co-
efficient in the absence of confinement.
However, the above form of D(x) is restricted to sym-

metric channels, i.e., channels with a straight centre-line.
This constraint was removed in an approach by Bradley
[20], which was subsequently generalised by Dagdug and
Pineda to [21]

DDP (x) = D0

⎛
⎝arctan

(
y′0(x) +

w′(x)
2

)
w′(x)

−
arctan

(
y′0(x) −

w′(x)
2

)
w′(x)

⎞
⎠ , (3)

where y0(x) denotes the vertical position of the centre-
line at horizontal position x. Note that Eq. (3) gener-
alises all the previous results for D(x), for instance, one
obtains the result (2) for symmetrical channels by setting
y′0(x) = 0 [21].
As detailed by Zwanzig [9], in a system with periodic

boundary conditions the effective diffusion coefficient in
the long-time regime, Deff , is obtained by using the fol-
lowing formula introduced by Lifson and Jackson [22] and
generalised by Festa and Galleani d’Agliano [23],

1

Deff
=

〈
1

D(x)w(x)

〉
〈w(x)〉, (4)

where 〈·〉 denotes the average over one period. Thus,
for any channel with width profile w(x) and centre-line
y0(x), Eq. (3) can be used to calculate DDP (x), which in
turn is used in Eq. (4) to calculate the effective diffusion
coefficient Deff,DP.
Here we consider two generalisations of the above sce-

nario. The first concerns the fact that the above theories
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based on the Fick-Jacobs formalism pertain to point-like
particles, that is, the particle can move along the chan-
nel as long as the width is not exactly equal to zero. For
scenarios, in which the size of the diffusing particle is
comparable to the channel width, the particle can only
fully cross the channel when the width profile w(x) at
any position is larger than the particle size. This is par-
ticularly relevant for biological systems, for instance, in
membrane channels [24]. Systems containing finite-size
particles were indeed studied in literature [25–27], show-
ing that, essentially, in all formulas the channel width
w(x) has to be replaced by an effective channel width.

The second modification with respect to the Fick-
Jacobs approach that we consider here concerns the
boundary conditions. Usually, reflecting boundary con-
ditions are used, i.e., when the particle collides with
the channel walls, its perpendicular motion is simply re-
versed. In the present scenario, the diffusing particle is
allowed to (transiently) bind to the channel walls. Such a
behaviour occurs when the diffusing particle has a chemi-
cal or physical binding of adhesion propensity to the sur-
face. We explicitly include this effect by reactive bound-
ary conditions, due to which the model particle will be
transiently immobilised by binding to the channel wall.
Moreover, it may immediately rebind to the channel wall
after unbinding. As we will see, this has a major effect
on the particle motion.

Finally, we consider quenched, randomised channel
walls with periodic boundary conditions. The walls are
subject to the constraints of a fixed channel width at the
boundary and a second parameter characterising the ran-
domness of the wall configuration. We also consider that
the channel in a typical system changes its shape along
the trajectory of the particle beyond the length of the
unit cell with its periodic boundary conditions, or that
several such channels exist and can be traversed by trac-
ers in parallel. To account for these ensemble effects we
average the dynamics over an ensemble of tracer particles
in an ensemble of channel geometries, all characterised by
a common set of the structural parameters.

The assumption of a finite-size particle in a channel
with randomised, reactive boundary conditions signifi-
cantly generalises the Fick-Jacobs model. In particular,
we find that the particles in their channel perform tran-
sient subdiffusion, that we analyse in terms of the anoma-
lous diffusion exponent, the number of successful moves
with respect to the number of simulations steps, and the
effective long-time diffusivity, as function of the charac-
teristic channel geometry parameters.

The paper is structured as follows. In the subsequent
section we introduce the details of the numerical ap-
proach used in this study. In section 3 we discuss how
the numerical results are analysed in terms of time and
ensemble averaged observables. In section 4 we present
the detailed results. Section 5 puts our findings in per-
spective with respect to theory by Dagdug and Pineda,
before drawing our conclusions in section 6.

II. SIMULATION DETAILS

We study the diffusion through a two-dimensional
channel with periodic boundary conditions in the hori-
zontal x-direction. In the vertical y-direction the system
is limited by two walls, see Fig. 1. These two walls are
described by N points connected by straight lines, rep-
resented by the blue lines in Fig. 1. Thus, if one ne-
glects the periodic boundary conditions the channel is
of length N − 1. For numerical convenience the points
of the channel wall reside on a lattice with unit lattice
constant, which effectively determines the fundamental
length scale of the system. Due to the horizontal peri-
odic boundary conditions the two leftmost and the two
rightmost wall points are identical. Their vertical dis-
tance (in y-direction) is denoted by g, see Fig. 1. This
gap opening parameter is one of the fundamental param-
eters of the system.
We solely allow wall configurations in which the y-

coordinates of nearest neighbour points within one wall
differ by at most unity. This excludes the occurrence of
extremely rugged walls. We consider channel walls with
different contour lengths. The ruggedness parameter M1

describes the number of displacements of size ±1 which
occur in a wall. Due to the periodic boundary constraint
the number of jumps directed upwards must be equal
to the one for jumps downwards for both walls. Conse-
quently, M1 is an even number and lies in the interval
[0, N − 1] (for odd N) or [0, N − 2] (for even N). We
only consider configurations in which M1 is equal for the
upper and lower walls. However, this does not confine
our study to symmetric channels, compare Fig. 1.
Explicitly, to generate a given channel configuration we

proceed along the following steps: We start with the up-
per wall at coordinate (0, g) and then move to the next
lattice point 1, g + j, where j ∈ {−1, 0, 1}, and so on.
The value of the vertical offset j is determined by a ran-
dom number from the unit interval. A non-zero offset
is chosen when the random number is smaller or equal
the ratio of the number of remaining vertical displace-
ments (given by M1 minus the number of already per-
formed nonzero vertical offsets) and the number of re-
maining intervals in horizontal direction (N − 1 minus
the number of already performed steps). From a second
random number we decide whether a vertical offset is
taken upwards or downwards. From these configurations
we choose those for which the height of the final point
at coordinate N is equal to g. This procedure guaran-
tees that exactly the right number M1 of displacements
will be implemented. After this, we further randomise
the configuration by multiply interchanging the indices
of the individual steps. An analogous procedure follows
to construct the lower channel wall. Finally, only those
configurations are accepted for which the upper and lower
walls do not touch or overlap.
Thus the width profile of the system is fully described

by the gap opening parameter g and the two ‘displace-
ment vectors’ of size (N − 1) for the upper and lower
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FIG. 1: Schematic of the channel with periodic boundary
conditions. The blue lines depict the channel walls, while the
dotted (brown) lines mark the excluded volume for a finite-
size particle. Parameters: gap opening g = 6, particle size
s1 = 1, step size s2 = 0.6, ruggedness parameter M1 = 6, and
lateral channel length 12.

walls. The ith entry of this displacement vector denotes
the difference between the y-coordinate of the (i + 1)st

and ith wall points for each of the two walls (i is counted
from left to right). Due to the constraints mentioned
above only 0,±1 are valid entries, and the sum of all en-
tries per wall must be zero to fulfil the periodic boundary
requirement.

The position of the random walking particle is de-
scribed by the position of its centre of mass, illustrated
by the green cross in Fig. 1. Its motion is off-lattice. This
is shown in Fig. 1, where a circle of radius s2 (the step
size of the random walk) is drawn around the particle’s
current position. For each step a random angle with re-
spect to the x-axis is drawn, and the particle attempts to
move its centre to the corresponding point on the dotted
circle. To account for the diffusion of finite-size particles
through the channel, before executing a step we check
whether the distance from the current position to the
wall is sufficient. To this end, the minimal distance to
the wall is calculated for the trial position. Only if it
is larger than the particle size s1, the step is actually
performed. This accessible space is limited by the two
dotted brown lines in Fig. 1. Their vertical distance is
the effective channel width for the finite-size particle, and
it is the quantity to be inserted into Eqs. (3) to (4). If the
particle aims to move at a forbidden position, the step
is cancelled and the particle remains at its current posi-
tion, but time is increased by one unit. This corresponds
to ‘sticky’ boundary conditions, which mimic transient
binding to the channel wall.

The diffusing particle is initially placed in the middle of
the channel in both x and y directions. However, if such
a starting position is not possible in the sense described
above, the given channel configuration is dismissed and a
new one chosen. Tmax random walk steps are performed

and the position in the x direction is traced and analysed.
If not stated otherwise, for each parameter set g and
M1 the results were averaged over 25, 000 configurations
using the parameters N = 100, Tmax = 106, s1 = 1, and
s2 = 0.6.

III. EVALUATION PROCEDURE

A quantity of central interest when tracking the mo-
tion of single particles is the time-averaged mean squared
displacement (TA MSD)

δ2i (t) =
1

Tmax − t

Tmax−t∫
0

dt′
[
xi(t

′ + t)− xi(t
′)
]2

(5)

for the ith time series xi(t) along the horizontal direction.
We use the fixed simulation time Tmax, and in what fol-
lows the bar denotes a time average. The TA MSD was
subsequently averaged over all configurations to obtain
the ensemble and time averaged mean squared displace-
ment (EATA MSD)

〈
δ2(t)

〉
=

1

Nconf

Nconf∑
i=1

δ2i (t). (6)

Thus, the usual ensemble-averaged MSD is nothing but
a special case of the ensemble- and time-averaged MSD,
where the point of reference is the starting position. We
also consider the ensemble averaged mean squared dis-
placement (EA MSD) in x-direction,

〈x2(t)〉 =
1

Nconf

Nconf∑
i=1

[
xi(t)− xi(0)

]2
, (7)

where Nconf denotes the number of different configura-
tions, in our case Nconf = 25, 000. Here and in the fol-
lowing 〈·〉 denotes the ensemble average over channel re-
alisations. Note that the ensemble of trajectories was ob-
tained by generating a single random walk trajectory for
each wall configuration, with the exception of the results
presented in section IVA, where the ensemble consisted
of trajectories obtained with the same wall configuration.
At first we address whether the observed motion cor-

responds to normal Brownian diffusion characterised by
the mean squared displacement

δ2(t) � K1t, (8)

where K1 denotes the diffusion coefficient. Deviations
from this linear time dependence are termed anomalous
diffusion. For a power-law form δ2(t) � Kαt

α we dis-
tinguish subdiffusion (0 < α < 1) and superdiffusion
(α > 1) [28, 29]. Subdiffusion of submicron tracers
is quite widely observed in systems with a dense and
highly structured environment, including the motion of
tracer beads in in reconstituted F-actin networks [30] or
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FIG. 2: Transient subdiffusion in an ensemble with gap open-
ing parameter g = 6 and wall ruggedness parameter M1 = 30.
We plot 〈x2〉/t (blue symbols) and 〈δ2〉/t (red symbols) as
function of time t. Note the logarithmic abscissa. Inset: The
time-local scaling exponent α(t) obtained from EATA MSD
data for g = 6, M1 = 10 (black), 30 (red) and 70 (green). The
red line corresponds to the ensemble for which the curves are
shown in the main plot.

in wormlike micellar solutions [31] or the passive, ther-
mally driven motion of labelled messenger RNA in living
bacteria cells [32], of the infectious pathway of adeno-
associated viruses in living HeLa cells [5], and of en-
dogenous granules in living fission yeast and MIN6 insuli-
noma cells [33, 34]. Anomalous diffusion may be ergodic,

that is, the time averaged MSD δ2(t) for sufficiently long
trajectories converges to the ensemble quantity 〈x2(t)〉.
However, there also exist stochastic dynamics for which
so-called weak ergodicity breaking occurs, and δ2(t) and
〈x2(t)〉 behave differently [35–38].

As transient anomalous diffusion behaviour is not read-
ily discernable in a conventional log-log plot of the MSD
versus time, we visualise the data in terms of the MSD
divided by time, as function of the logarithm of time,
see Refs. [39, 40]. This method emphasises deviations
from normal diffusion behaviour: curves with a negative
slope represent subdiffusion. A typical plot is shown in
Fig. 2. We observe a weaker form of transient subdiffu-
sion for times up to some 103 time steps. At longer times,
there occurs a crossover to a more pronounced subdiffu-
sive regime, which persists until approximately 105 time
steps. After that, terminal normal diffusion appears.
Such behaviour could also be interpreted as hindered dif-
fusion or as a process characterised by a time-dependent
diffusion coefficient [40, 41]. We note that both time and
ensemble MSD coincide at longer times, which confirms
the ergodic nature of the diffusion process. On shorter
time scales the EA MSD curve lies above the EATA MSD
curve due to the fact that, by construction, at the be-
ginning of each trajectory the particle is placed in the
middle of the channel. At such short times the probabil-
ity that the particle sticks to the wall is greatly reduced
compared to later times, and thus the EA MSD attains

larger values than the EATA MSD, which averages the
behaviour along the entire time series. The anomalous
behaviour displayed in Fig. 2 is one of the major results
of this study.
In the following we study the slowing-down of the par-

ticle diffusion in terms of two quantities. First, in the
normal diffusive behaviour beyond 105 time steps we fit
the EATA MSD data with a linear function in order to
obtain the effective long time diffusion coefficient Deff .
This quantity is then compared with the theoretical value
Deff,DP given by Eq. (4), since for each channel config-
uration we calculate DDP (x) via Dagdug and Pineda’s
formula (3), where w(x) is replaced by the effective chan-
nel width. We normalise the value of the effective long
time diffusivity by the corresponding value in absence of
walls, Drel = Deff/D0. Second, we obtain the anomalous
diffusion exponent α on time scales ranging from 103 to
105 time steps. Similar results are obtained by studying
the mean maximal excursion of the particle [42] (data
not shown). This somewhat arbitrary choice of the time
range in which α is fitted is motivated by the fact that
most of the curves showed the more pronounced subdiffu-
sive behaviour in this time regime. We use this averaged
scaling exponent as a characteristic for our system and
analyse its dependence on other parameters below. Al-
ternatively, a time-local scaling exponent can be defined
via α(t) = d log10(< δ2(t) >)/d log10(t). This quantity is
plotted in the inset of Fig. 2 for the ensemble of config-
urations described by the main figure (red symbols) and
two other ensembles with g = 6: M1 = 10 (black sym-
bols) and M1 = 70 (green symbols). The inset clearly
underlines our statement that normal diffusive behaviour
is only observed in the short-time and in the long-time
limit, whereas on intermediate time-scales transient sub-
diffusive behaviour of variable value occurs. Thus, the
fitted value of α studied in the remainder of this work
can be considered as an effective value of the exponent
for an intermediate time range.

IV. RESULTS

A. Fixed channel wall configuration

Before studying the effect of different parameter sets g
and M1 to characterise the diffusion through this class of
corrugated channels, we investigate in detail the features
seen in Fig. 2 from simulations with fixed channel wall
configurations.
We explicitly consider three exemplary configurations

to illustrate the effect of the sticky boundary conditions.
These configurations are characterised by the parameter
pairs g = 6 and M1 = 0, g = 4 and M1 = 30, and g = 6
and M1 = 50. The two configurations with non-flat walls
are shown in Fig. 3. The grey curves denote the actual
position of the channel walls, while the bold blue and
red curves mark the region, which is inaccessible for the
particle’s centre.
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FIG. 3: Channel wall configurations characterised by the gap
opening parameter g = 6 and the wall ruggedness parameter
M1 = 50 (upper panel) and g = 4, M1 = 30 (lower panel).
The actual upper and lower walls are plotted as grey lines.
The region bounded by the red and blue curves are accessible
for the particle.

While for a given wall configuration we make sure that
the particle finds sufficient space in the middle of the
channel where it is initially placed, it is a priori not cer-
tain that the particle can traverse the entire channel.
This is the case when at some point the upper and lower
walls are sufficiently close so that the finite-size particle
cannot pass through such a bottleneck. Strictly speaking
such a passage is impossible if there exists an horizontal
interval whose width is at least of the step size s2. Other-
wise, due to the finite step size the particle can actually
‘tunnel’ through such bottlenecks. The wall configura-
tion depicted in the upper panel of Fig. 3 does not allow
such a tunnelling for the given parameters g = 6 and
M1 = 50: the red and the black curve do not overlap.
The situation is different in the lower panel of Fig. 3
with g = 4 and M1 = 30: the channel is blocked for the
particle at x ≈ 12.

However, even if inaccessible regions in a given wall
configuration exist but the overlap of the walls stretches

 0

 0.5

 1

 0  20  40  60  80  100

n a
vg

x

g=6, M1=  0
g=6, M1=50
g=4, M1=30

FIG. 4: Mean number navg of unsuccessful attempts to move
to the next position along the channel as a function of the
position x along the channel, for the three wall configurations
characterised by g = 6 and M1 = 0 (green line), g = 6 and
M1 = 50 (blue line), and g = 4 and M1 = 30 (red line).

over less than the distance 2× s2, such a narrow straight
constitutes a severe entropic bottleneck for the diffus-
ing particle: there exists an appreciable possibility that
the particle repeatedly sticks to the channel walls. To
quantify the influence of the sticky walls we binned the
channels into 99 cells of length 1 and extracted from our
simulations how often the particle unsuccessfully tries to
move to a new position while being in the corresponding
bin.

We first study the mean number navg of unsuccessful
attempts for the three above sample configurations as
a function of the particle position along the channel in
Fig. 4. The green curve for the parameters g = 6 and
M1 = 0 shows that for flat walls navg is approximately
constant. The fact that this value is finite is a conse-
quence of the sticky boundary condition at the edges of
the system: namely, move attempts which would end at
a position which is forbidden due to the finite size of the
particle are not executed. If reflective walls or diffusion
in free space were considered, any step could be executed
and then navg = 0. In the present case, the value of navg

depends on the step size and the (constant) width of the
channel. From Fig. 4 we deduce that navg ≈ 0.1056.

The blue curve in Fig. 4 for g = 6 and M1 = 50 shows
some variation as function of x: where the channel is
narrow, e.g., around x ≈ 20 in the upper panel of Fig. 3,
navg is much higher than at locations where the channel
is wider, e.g., in the middle of the channel. Comparing
the minimum and maximum of navg along the channel,
the variation of navg makes up a factor of approximately
7. This effect is much more pronounced in the red curve
in Fig. 4 for the parameters g = 4 and M1 = 30, corre-
sponding to the lower panel of Fig. 3: the curve is broken
as two bins of the channel are inaccessible for the parti-
cle. In the bin to the right of the channel blockage the
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FIG. 5: Probability distribution for the number of subsequent
unsuccessful motion attempts, nuns, obtained with the wall
configuration corresponding to the lower panel of Fig. 3 with
parameters g = 4 and M1 = 30. We show the statistics for
the bins centred around: x = 12.5 (black symbols), x = 13.5
(red symbols), x = 57.5 (green symbols), and x = 69.5 (blue
symbols). The symbols for x = 57.5 are almost fully covered
by those for x = 69.5.

average number of unsuccessful tries is larger than 1. In
other regions of the channel navg attains values similar
to the ones in the other two configurations. Hence, the
mean number of unsuccessful motion attempts along the
channel directly reflects the effective channel width and
thus the local transport properties.
Additional information can be deduced from studying

the probability distribution p(nuns) of the number nuns

of unsuccessful motion attempts in a row shown in Fig. 5,
where we focus on the most distinct configuration with
parameters g = 4 and M1 = 30 corresponding to the
lower panel of Fig. 3. For better visibility we only con-
sider extreme cases: namely, only the two bins with the
highest and the two bins with the lowest mean number
of motion attempts. In all four cases, the probability to
find higher values of nuns decreases. In regions where the
channel is wide (green and blue symbols in Fig. 5) this
decay is very fast, such that within our simulation time
there were never more than 19 subsequent unsuccessful
attempts. Otherwise, it becomes obvious that near se-
vere bottlenecks the distribution of waiting times is much
more heavy-tailed (black and red symbols in Fig. 5). Up
to 100 unsuccessful attempts in a row are possible, with
a probability of about 10−6.
With this information, let us go back to the features

of Fig. 2. According to the Fick-Jacobs theory, whenever
the width of the channel changes in the form of a bot-
tleneck or a bulge, this slows down the diffusion of the
particle [9]: in the case of a bottleneck the particle may
be reflected back, while in the case of a bulge the parti-
cle may execute many motion events off the minimal path
along the channel. The effect of the entropic bottlenecks
in our present case is amplified by the presence of the

sticky boundary conditions. On all time-scales on which
the particle interacts with the walls, it is slowed down
in comparison to a particle moving in free space. At this
point, we have to differentiate between relatively flat and
rugged channel walls. In the former case it is expected
that an effective, constant diffusivity characterises the
motion along the entire channel, since there is no typical
bulge size. In particular, no transient subdiffusion should
occur. In the latter case, however, the combined effect of
entropic bottlenecks and sticky boundaries induces the
transient subdiffusion in the ensemble and time averaged
trajectories. This can also be understood when consid-
ering two very different representatives of channels char-
acterised by the maximal value of M1 (see appendix).
On very long time scales, when the configurations

shown in Fig. 3 are equivalent to a single step size in a
coarse-grained random walk on the whole periodic struc-
ture, normal diffusive behaviour is restored, but now with
a reduced diffusion coefficient. This reduced coefficient
takes into account all the intermediate contacts with the
channel walls. Thus, it is expected that more corrugated
and/or tighter channels, which imply more frequent in-
teraction with the walls should show reduced values of
α and a reduced effective diffusion coefficient on the en-
semble level. To study these effects, in the following we
systematically study the impact of the parameters g and
M1 on the transport through the channels in ensembles
of size 25,000, where for each configuration we generate
one random walk trajectory.

B. Simulations of channel ensembles

Two main simulations series were performed with the
fixed values g = 6 and g = 4 for the gap opening parame-
ter and 15 different values of the wall ruggedness param-
eter M1, spanning the whole possible range [0, 98]. The
fitted values of the normalised effective diffusion coeffi-
cient in the long-time regime, Drel, are depicted in Fig. 6
as function of M1. Here and in the following, solely the
EATA MSD values were used, as they supply the most
extensive data. The results obtained with the EA MSD
data are very similar (data not shown), which is not sur-
prising due to the ergodicity of the process at long times.
In both cases, an increase of the wall ruggedness (larger
M1 values) effects slower effective diffusion. The slope
of this decrease is steepest for small M1 values and then
gradually flattens off. Conversely, at fixed values of M1

the effective diffusion is always substantially faster for
g = 6 than g = 4.
To study the impact of the gap opening parameter g

in more detail, we took five different values at fixed val-
ues of the wall ruggedness parameter, namely, M1 = 0,
M1 = 10, and M1 = 50. Thus, we consider flat chan-
nels, slightly corrugated, and heavily corrugated chan-
nels. The corresponding results for the fitted values of the
normalised effective diffusion constant Drel are shown in
the inset of Fig. 6. For fixed value of g we see once more
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FIG. 6: Normalised effective long-time diffusion coefficient
Drel from fitting of the simulations results, as function of the
wall ruggedness parameter M1. Parameters: gap opening pa-
rameter g = 4 (black symbols) and g = 6 (blue symbols). In-
set: Drel as function of g for M1 = 0 (black symbols), M1 = 10
(blue symbols), and M1 = 50 (green symbols).

that the diffusion is quickest when the wall is smoother,
i.e., when M1 is smaller. As was already observed in the
preceding paragraph a wider gap opening at a fixed value
of M1 leads to faster diffusion. Thus, wider channels can
be traversed quicker.

At first sight surprisingly, we observe that even for
completely flat upper and lower channel walls (M1 = 0,
black line in the inset of Fig. 6) the diffusion in tighter
channels is slowed down in comparison to the situation
in free space. This is not expected in systems with re-
flecting boundaries, which are usually described with the
Fick-Jacobs equation. However, for the finite-size parti-
cles studied here it is the result of the sticky boundary
conditions at the channel walls: in a tighter channel the
particle is more often close to the walls and binds tran-
siently. Alternatively, the slow-down due to the interac-
tion with the walls can be quantified by measuring the
anomalous diffusion exponent α in the intermediate time
regime, on time scales 103 to 105 simulations steps. The
fitted values for α are depicted in Fig. 7 as function of
the ruggedness M1. The same trend as for the effective
diffusion coefficient is seen for the anomalous diffusion
exponent α of the transient subdiffusive regime. For in-
creasing contour lengths of the channel wall the motion
is increasingly subdiffusive. As expected, the transient
subdiffusion is heavier for the tighter channel (g = 4).

The dependence of α on the gap opening parameter
is shown in the inset of Fig. 7. In this case, only values
obtained with corrugated channels (M1 = 10 and M1 =
50) are shown. Note that in flat channels with M1 =
0 no transient subdiffusion occurs, see above. Again,
the curves for α are similar to the ones obtained for the
effective diffusion coefficient: α is an increasing function
of g and M1 = 10 leads to less pronounced transient
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FIG. 7: Anomalous diffusion exponent α as function of wall
ruggedness M1 from power-law fit of the EATA MSD data.
Parameters: g = 4 black) and g = 6 (blue). Inset: α as
function of g for M1 = 10 (black), and M1 = 50 (blue).
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FIG. 8: Anomalous diffusion exponent α of the transiently
subdiffusive regime as function of the long-time diffusion ex-
ponent Drel with gap opening parameters g = 4 (black) and
g = 6 (blue).

subdiffusion than M1 = 50. This analogy motivates the
study of the relation between α and Drel in more detail.

In Fig. 8 we plot all α values for gap opening g = 4
and g = 6 as function of the corresponding fitted values of
Drel. The results show that there is a strong (nonlinear)
correlation between both parameters. For increasing val-
ues of Drel the value of α also increases, with decreasing
slope. The relation between both parameters is bijective,
thus, both quantities are appropriate and sufficient to
quantify the slow-down of the motion along the channel.
For similar values of Drel the values for α obtained with
the tighter channels (g = 4) are slightly larger than those
for the wider channels (g = 6). However, this fact should
not be overstated: all data sets were fitted in the time
interval 103 to 105, irrespective of the exact shapes of the
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FIG. 9: Fraction fopen of unblocked configurations as func-
tion of the channel ruggedness M1 for channel opening g = 4
(black) and g = 6 (blue). Inset: fopen as function of g for
M1 = 10 (black) and M1 = 50 (blue).

curves. It is conceivable that a closer connection between
the values for α could have been obtained by choosing the
fitting time window for each curve individually. We note
that this relation between the scaling exponent α and
the effective diffusion coefficient was recently studied in
molecular dynamics simulations dealing with proton and
water mobility in (tetramethyl)urea solutions [43].

As mentioned above, in an ensemble of systems with
corrugated boundaries not all channels can be traversed
completely. If a channel is blocked somewhere, the cor-
responding squared displacement of the particle position
has an upper limit. On an ensemble level these trajec-
tories will reduce the average values of α and Drel, since
this is one of the main factors contributing to the anoma-
lous features of Fig. 2. Thus, it is important to extract
from our simulations solely the unblocked configurations.
The corresponding parameter fopen is plotted as function
of the ruggedness M1 for fixed gap openings g = 4 (black
symbols) and g = 6 (blue symbols) in Fig. 9, and as func-
tion of the gap opening g (for M1 = 10 and M1 = 50)
in the inset of Fig. 9. An inspection of Fig. 9 shows that
this fraction is a decreasing function of M1 and an in-
creasing function of g. Overall, the curves look similar to
the ones of the normalised effective diffusion coefficient
Drel (compare Fig. 6).

To better understand why above a certain threshold of
the boundary ruggedness parameter M1 the effective dif-
fusion coefficient only decreases slightly (see Fig. 6), it is
instructive to study the average weighted effective width
wwgt of the channels. Here, weighted means that for any
blocked channel the width is set to zero. The weighted
width is plotted as function ofM1 in Fig. 10. For increas-
ing, yet small values of M1 the effective weighted channel
width decreases, until it reaches a shallow minimum. For
larger values of M1 it rises to higher values than at the
origin, slowly approaching a plateau.

 1

 2

 3

 4

 0  20  40  60  80  100

w
w

gt

M1

FIG. 10: Weighted effective channel width wwgt as function
of channel ruggedness M1 for gap opening g = 6 (blue line
and symbols) and g = 4 (black line and symbols).

Due to the procedure to generate the wall configura-
tions, for those geometries with a low value of both g and
M1, there is a substantial probability that the passage is
blocked: after a displacement in one wall which decreases
the effective channel width to a critical value, there are
not many possibilities which could increase it again. At
the same time the maximum width is rather restricted
due to the low total number of displacements. The situ-
ation becomes different above a certain threshold: heav-
ily rugged walls which reach a critical value have many
more opportunities to become wider again and they can
reach far bigger widths. Thus, the average width of those
traversable channels is larger for more rugged wall con-
figurations. This facilitates the transport through these
configurations, as the sticky boundaries are further away.
However, as remarked earlier, more rugged walls slow
down the diffusion due to the occurrence of bulges and
constrictions [9], such that we have two opposing effects,
which mostly (almost) cancel each other. Consequently,
Drel remains nearly constant above a threshold value of
M1 (compare Fig. 6).

Fig. 11 shows the normalised effective diffusion coeffi-
cientDrel as function of the weighted channel width wwgt.
For better visibility data points with identical M1 values
are connected by lines (M1 = 0: black line, M1 = 10:
blue line, and M1 = 50: green line). While for a fixed
value of M1 more spacious channels allow faster diffu-
sion, the heavy scatter between values of Drel obtained
with similar values of wwgt (grey symbols) shows that
the knowledge of the mean channel width of an ensemble
of channels alone is insufficient to predict the transport
properties. At the same time an inspection of Fig. 6
shows that a single of the parameters g and M1 is not
sufficient to make such a prediction. At least two such
parameters are needed.
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FIG. 11: Normalised effective diffusion coefficient Drel as
function of the weighted effective channel width wwgt for
M1 = 0 (black), M1 = 10 (blue line), M1 = 50 (green line)
and other values of M1 (grey symbols).

C. Displacement autocorrelation function

Another possibility to assess the transport properties
of our channel systems is to calculate the velocity auto-
correlation function. This quantity is particularly inter-
esting since it is long known that in the case of two-
dimensional (hard-disk) fluids the diffusion coefficient
calculated via the Green-Kubo formula diverges due to
the power-law scaling of the autocorrelation function [44–
47].
Since, by definition, there is no velocity in our random

walk simulation we calculate the displacement autocorre-
lation function along the channel Cxx,i(t) for the i

th time
series, which is defined as:

Cxx,i(t) =
(xi(t′ + 1)− xi(t′))(xi(t+ t′ + 1)− xi(t+ t′))

(xi(t′ + 1)− xi(t′))2
.

(9)
This quantity can then be averaged over different realisa-
tions to obtain the ensemble-averaged displacement cor-

relation function, Cxx(t) = 1/Nconf

∑Nconf

i=1 Cxx,i(t). The
data shows that this function stays negative for small and
intermediate time regimes and slowly levels off to zero.
On longer timescales the function fluctuates around zero.
Thus, in order to conveniently create a log-log plot in
Fig. 12 we show the absolute value of this function for
two ensembles characterised by the parameters g = 4,
M1 = 30 (upper panel) and g = 6, M1 = 50 (lower
panel).
For t � 104 time steps both data sets are almost of

power-law form, however, on a closer look two shoulders
may be discerned around such a power-law trend. The
curves can be approximated very well by a fit function,
which is the sum of two stretched exponential functions:
Cfit(t) = c1 exp(at

b) + c2 exp(ct
d). The data are thus

consistent with a fast, exponential decay. Note that at
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FIG. 12: Absolute value of the ensemble-averaged displace-
ment correlation function for two ensembles of size Nconf =
10000 characterised by g = 4, M1 = 30 (upper panel) and
g = 6, M1 = 50 (lower panel.) The red symbols corre-
spond to the values obtained from our simulations, the dashed
lines to a fit consisting of the sum of two stretched expo-
nentials: Cfit(t) = c1 exp(at

b) + c2 exp(ct
d). Fit parameters:

a = −3.656, b = 0.1781, c = −1.621, d = 0.1479, c1 = 0.2387,
c2 = 0.005139 (upper panel) and a = −5.033, b = 0.1329,
c = −5.601, d = 0.07081, c1 = 0.9091, c2 = 0.3142 (lower
panel).

times shorter than 105 time steps the particle still has not
explored the entire channel. At longer times the corre-
lations will clearly be negligible so that the Green-Kubo
integral converges.

V. COMPARISON WITH DAGDUG AND

PINEDA’S FORMULA

In order to compare our results obtained from ensem-
bles of channel configurations with the result of Dag-
dug and Pineda, we make a simplifying assumption: for
all unblocked configurations, we determine DDP (x) from
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FIG. 13: Upper panel: normalised effective diffusion coef-
ficient Drel from our simulations in the sticky, corrugated
channel as function of the value Drel,DP obtained from the
result (3) of Dagdug and Pineda. Black: gap opening param-
eter g = 4, red: g = 6, green: g = 8, blue: g = 10, and
cyan: g = 12. The two grey lines mark the range of ±10%
around the theoretical value. Lower panel: distributions of ef-
fective diffusion coefficients for individual unblocked channel
configurations obtained with Dagdug and Pineda’s formula.
Parameters: g = 6 in all four cases. M1 = 6: black, M1 = 20:
red, M1 = 50: green, M1 = 98: blue.

Eq. (3) and subsequently Deff,DP from Eq. (4). For all
blocked configurations the effective diffusivity Deff,DP =
0 accounts for the fact that on long time-scales particles
in these configurations do not contribute significantly to
the MSD. Finally, we average over all configurations in
the ensemble and normalise through division by the dif-
fusion coefficient in free space, Drel,DP = 〈Deff,DP〉/D0.
We compare these values with our fitted values of the nor-
malised diffusion coefficient in the upper panel of Fig. 13,
where data points with the same value of the gap opening
g are represented in the same colour.

This is another major result of our study: As demon-
strated in the upper panel of Fig. 13, for fixed values of
the gap opening g there is a linear relation between Drel

and Drel,DP. Most of the data points are located within

a 10% confidence interval around Dagdug and Pineda’s
value. More explicitly, a linear fit of the data points ob-
tained in a simulation series yields the following results.
For g = 4, the fitted relation between the two is Drel =
(0.018± 0.004) + (0.853± 0.009)Drel,DP, while for g = 6
we find Drel = (0.032 ± 0.095) + (0.903 ± 0.007)Drel,DP.
For g = 8, 10, and 12 we did not fit the data as there
were only three values available.
The fact that the slope of the fits is somewhat below

1 shows that Dagdug and Pineda’s formula, which only
applies to systems with perfectly reflecting boundaries
slightly overestimates the diffusion coefficient compared
to our system with sticky boundary conditions. Thus, as
expected the additional interaction with the boundaries
further slows down the diffusion, which is already reduced
by the occurrence of entropic bottlenecks. This reason-
ing is further substantiated by the observation that in
tighter channels (with g = 4), where these surface effects
play a more important role, the slope of the conversion
formula is smaller, and the deviation from Dagdug and
Pineda’s formula is more pronounced. Given the quite
intricate form of the effective channel width (see Figs. 1
and 3) it is not feasible to quantify this effect analyti-
cally. However, in the future other values of s1 and s2
could be considered to study the magnitude of the cor-
rection terms numerically.
Deviations of our results from Dagdug and Pineda’s

formula are also based on the fact that their analysis ap-
plies to one given channel configuration. Driven by the
physical application we here consider an ensemble of dif-
ferent channel wall configurations, solely defined by the
fixed macroscopic parameters g and M1. Individual con-
figurations may therefore differ considerably, even if they
share the values of g and M1. This is illustrated in the
lower panel of Fig. 13, where for all unblocked config-
urations the expected effective diffusion coefficient was
calculated with Dagdug and Pineda’s formula. For g = 6
and four different values of M1 we see that the distribu-
tion of values ofDrel,DP is far from narrow. The values in-
creasingly scatter for more rugged conformations (higher
values of M1). Thus, the semi-quantitative agreement of
our data with the theoretical prediction on an ensemble
level is indeed remarkable.

VI. CONCLUSION AND OUTLOOK

We studied the motion of finite-size particles through
randomly corrugated channels with sticky walls, observ-
ing transient anomalous diffusion of the particles in their
passage of the channel. We also obtained the long-time
diffusion coefficient for this motion on time scales over
which normal Brownian diffusion is restored. The con-
trol parameters in our study were the gap opening pa-
rameter fixing the distance between the channel walls at
the entrance and exit of the channel, as well as the wall
ruggedness parameter setting the maximal variation of
the channel wall configuration. We quantified the depen-
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FIG. 14: Transport in two sample configurations with M1 =
98 and g = 4. We plot 〈δ2〉/t as function of time t for a V-
shaped channel (red curve) and a saw-tooth channel (black
curve). The results are averaged over Nconf = 10000 configu-
rations.

dence of the anomalous diffusion exponent and long-time
diffusion coefficient as function of the ruggedness and gap
opening, and showed that both quantities are in fact cor-
related. We especially analysed the blocked channels,
which the particle cannot fully traverse. The long-time
effective diffusion coefficient was shown to agree well with
the prediction for point-like particles in channels with re-
flecting boundary conditions by Dagdug and Pineda.
It will be interesting to study different models for the

construction of the random channel walls, for instance,
by adding correlations in the growth algorithm. More-
over it will be of relevance to replace the single particle
scenario and consider an ensemble of diffusing particles
with excluded volume.
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Appendix: V-shaped and saw-tooth channel

In order to illustrate that two channels with the same
values of g andM1 can have very different transport prop-
erties, we consider here two configurations with the max-
imal value of M1 = 98. One is a V-shaped channel for
which both upper and lower boundary move upwards in
the left half of the channel and back downwards in the
right half of the channel. Technically this means that for
both walls every vertical offset is plus one in the left half
and minus one in the right half. The other channel has
walls with a saw-tooth shape. Again the values of the
offsets are equal for the upper and lower wall, however,
this time the offsets alternate between +1 and −1. In
Fig. 14, which is analogous to Fig. 2, we plot the EATA
MSD divided by time of 10000 trajectories in these two
channels.

For the V-shaped channel (red curve), already on short
time scales the particle often encounters the channel walls
such that the time-local diffusion coefficient plotted here
attains values considerably smaller than that in free space
(0.18). The corresponding values decrease further until
around 50 time steps after which the value of the diffusion
coefficient remains nearly constant.

Even though the words saw-tooth seem to imply a
rather rugged wall shape, the bulges in the effective width
are rather small, such that the particle experiences a
nearly flat channel, beyond the time scale for crossing
a single tooth. Accordingly, the diffusion coefficient at
the shortest timescales is very close to the value in free
space and after a small decrease it is nearly constant on
all timescales. As for really flat channels, only the ef-
fective long-time diffusion coefficient is reduced, but no
transient subdiffusion is observed.

Thus, these two channels constitute extreme cases of
the distribution shown in the lower panel of Fig. 13,
where it can be seen that for M1 = 98 the distribution
of effective diffusivities is very broad.
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