
Chemical
Science

PERSPECTIVE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ja

nu
ar

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
6.

10
.2

02
5 

12
:1

9:
28

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Biocompatible st
Junming He

J
(
f
i
i
S
N
C
e
a
i
f

Research School of Chemistry, Australian

Australia. E-mail: christoph.nitsche@anu.ed

† These authors contributed equally.

Cite this: Chem. Sci., 2024, 15, 2300

All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 27th October 2023
Accepted 4th January 2024

DOI: 10.1039/d3sc05738k

rsc.li/chemical-science

2300 | Chem. Sci., 2024, 15, 2300–2
rategies for peptide
macrocyclisation

Junming He, † Pritha Ghosh † and Christoph Nitsche *

Peptides are increasingly important drug candidates, offering numerous advantages over conventional

small molecules. However, they face significant challenges related to stability, cellular uptake and overall

bioavailability. While individual modifications may not address all these challenges, macrocyclisation

stands out as a single modification capable of enhancing affinity, selectivity, proteolytic stability and

membrane permeability. The recent successes of in situ peptide modifications during screening in

combination with genetically encoded peptide libraries have increased the demand for peptide

macrocyclisation reactions that can occur under biocompatible conditions. In this perspective, we aim to

distinguish biocompatible conditions from those well-known examples that are fully bioorthogonal. We

introduce key strategies for biocompatible peptide macrocyclisation and contextualise them within

contemporary screening methods, providing an overview of available transformations.
Introduction
Macrocyclic peptides as therapeutics

The discovery of insulin therapy in the 1920s marked a major
milestone in peptide therapeutics. Banting & Best were able to
isolate insulin from the pancreatic isles of animals and used it
for the treatment of type 1 diabetes.1 Other examples of early
peptide therapeutics include, for example, adrenocorticotropic
hormone (ACTH) for the ACTH stimulation test,2 salmon
calcitonin for the treatment of Paget's disease and osteopo-
rosis,3 oxytocin for inducing childbirth,4 vasopressin for the
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treatment of vasodilatory shock,5 and octreotide for the treat-
ment of acromegaly and neuroendocrine tumours.6 Over time,
an increasing number of peptide therapeutics successfully
transitioned into the clinic. Between 2017 and 2023, approxi-
mately one in ten drugs approved by the FDA were peptides and
peptidomimetics, with macrocyclic peptides accounting for
nearly half of this category (Table S1† and Fig. 1).7–12

One reason why macrocyclic peptides have gathered such
increasing attention within the pharmaceutical industries is
due to their superior properties, frequently surpassing those of
their linear counterparts.13–19 Peptide macrocycles may have
enhanced bioactivity and lower toxicity along with improved
affinity for their targets. Unlike random-coil (linear) peptides,
macrocycles are constrained by their ring structure, reducing
the number of conformations which in turn reduces the
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Fig. 1 Peptide macrocycles approved by the US Food and Drug
Administration (FDA) between 2017 and 2022. Each � represents a CH2

(methylene) group.
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entropic penalty upon binding, thereby increasing selectivity
and affinity at the target binding site. Additionally, macrocyclic
peptides may exhibit greater resistance to proteolysis and
enhanced cell-penetrating activity. In summary, simple
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macrocyclisation may lead to improved affinity, selectivity,
stability and membrane permeability, which are four crucial
parameters for successful drug candidates. Furthermore,
macrocyclic peptides can be generated for virtually any drug
target, thanks to the rapidly expanding toolbox for de novo
discovery of macrocyclic ligands.

Types of macrocycles and examples from nature

Peptide macrocycles commonly exhibit distinct cyclisation
patterns, which can be categorised into head-to-tail, side chain-
to-side chain and termini-to-side chain (Fig. 2). Head-to-tail
cyclic peptides are characterised by forming a closed loop that
connects the C- and N-termini of the peptide. The points of
cyclisation can usually not be determined in such a macrocycle.
Prominent examples include cyclosporin A, gramicidin S and
yunnanin A. While a homodetic bond refers specically to such
a loop formed through a head-to-tail macrolactam cyclisation,20

all other macrocycles formed between two functional groups are
considered heterodetic.21 Side chain-to-side chain cyclisation
involves connecting two side chain residues, as observed in
somatostatin, oxytocin, salmon calcitonin and the crustacean
cardioactive peptide. Moreover, termini-to-side chain cyclisation
connects either the C- or N-terminus to one of the side chain
residues, as observed, for example, in the antibiotic polymyxin
B.22,23 There are special cases where a peptide macrocycle
containsmultiple loops or is connected atmultiple points within
the peptide sequence, which are referred to as bicycles and
tricycles (Fig. 2). Naturally occurring peptide macrocycles have
been isolated from various organisms, including marine
resources (invertebrates),24,25 bacteria,26–28 plants,29 fungi30 and
mammals.31,32 These peptides serve as hormones, growth factors
or defensive mechanisms against competing microbes (i.e.,
antibiotics and toxins). We recently reviewed contemporary
methods to synthesise bicyclic peptides.33

The importance of biocompatible macrocyclisation strategies

The innovation of solid-phase peptide synthesis (SPPS) by Merri-
eld in the 1960s radically revolutionised the chemical synthesis
of peptides via a facile, efficient and automated platform,
enabling large scale production of bioactive peptides.34,35 Chem-
ical synthesis has long been the cornerstone for establishing
structure–activity relationships well before genetically encoded
peptide libraries gained prominence. It has been a fundamental
tool in understanding the relationship between the chemical
structure and the biological activity of peptides. The modication
of peptides in the presence of their target protein has enabled the
in situ generation and selection of peptide ligands.36–38 Further-
more, peptide display techniques, such as phage or mRNA
display,39,40 have the capability to screen billions of peptides
against drug targets. However, these screenings require chemical
conditions that support the structural and functional integrity of
biopolymers (e.g., proteins, nucleic acids) involved.

Commonly used strategies for peptide macrocyclisation are
highlighted in Fig. 3, covering a wide range of chemical linkages
and reactions discussed in this perspective. Certain approaches
require rather harsh and nonselective conditions, while others
Chem. Sci., 2024, 15, 2300–2322 | 2301
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Fig. 2 Examples of peptide macrocycles found in nature categorised by their cycle type and chemical linkage. Each � represents a CH2

(methylene) group.

Fig. 3 Various types of cyclic peptides and selected synthetic strate-
gies for cyclisation.
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can proceed under very benign and selective conditions, even
within a complex cellular environment. The latter chemical
transformations are usually considered bioorthogonal, with the
[3 + 2]-cycloaddition reaction between azide and alkyne motifs
being the most prominent example.41 The importance of this
click reaction and bioorthogonal chemistry more generally was
recently recognised by The Nobel Prize in chemistry awarded to
Bertozzi, Meldal and Sharpless.42

While bioorthogonal chemistry plays a crucial role in
numerous applications,43,44 not every reaction used to modify or
cyclise peptides needs to be fully bioorthogonal. Inspired by
Zhou & co-workers from the Chemical Abstracts Service (CAS),43
2302 | Chem. Sci., 2024, 15, 2300–2322
who recently reported criteria for bioorthogonal reactions, we
dened the following characteristics for biocompatible and
bioorthogonal reaction used throughout this perspective:

In fact, fullling only the rst criterion listed above –

a reaction that occurs in water at physiological pH and
temperature – deems a reaction already biocompatible, as
dened in this perspective article. Furthermore, it is highly
desirable for a biocompatible reaction to meet the second
criterion as closely as possible. Peptide display techniques oen
require robust reactions with minimal side products. Selectivity
for certain amino acids in peptides and proteins, or even
complete orthogonality to common endogenous nucleophiles
and electrophiles, can be of great benet. When screenings are
performed in cells, considering toxicity and redox stability
becomes an additional important factor. While reaction rate at
low concentrations is a crucial factor for transformations used
in bioconjugation, it is of lesser importance for macro-
cyclisation. Intramolecular reactions typically proceed faster
than intermolecular reactions, and they are independent of
concentration. In fact, lower concentrations can be desirable in
macrocyclisation to suppress the formation of oligomers.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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In this perspective article, our main objective is to highlight
the most important strategies employed in peptide macro-
cyclisation with a particular focus on biocompatible methods.
While some of these methods are routinely used for modifying
peptides and proteins in biological environments, others hold
potential for future applications. We will adhere to the deni-
tions mentioned above, labelling reactions as biocompatible
and bioorthogonal if they broadly meet the criteria. However, it
is not our intention to clearly distinguish between biocompat-
ible and bioorthogonal reactions, as current classications are
not denitive. Comprehensive reviews that consolidate current
developments and challenges in this eld are unavailable.
Therefore, we have undertaken the task of reviewing conven-
tional methods and highlighting emerging trends in biocom-
patible strategies for peptide macrocyclisation.
Strategies for peptide macrocyclisation
Macrolactam cyclisation

As outlined above, homodetic cyclic peptides are cyclised via an
amide bond, resulting in a macrolactam ring. Ribosomes
facilitate the biosynthesis of polypeptides (proteins) through
Scheme 1 Amide bond formation and macrolactam cyclisation. [A] Ribo
to the growing peptide chain in the ribosome. [C] Chemical synthesis o
methods for macrolactam cyclisation. [E] Split-intein circular ligation.

© 2024 The Author(s). Published by the Royal Society of Chemistry
a complex biomolecular machinery that forms amide bonds by
linking a-amino acids as illustrated in Scheme 1A and B.45,46 In
this process of translation from RNA to proteins, nature utilises
an ester bond between the terminal amino acid of the growing
peptide chain and its corresponding tRNA for activation (P-site)
in order to react with the amine of the incoming amino acid (A-
site). While translation proceeds with fully unprotected amino
acids under physiological conditions with a speed of 20 amino
acids per second,47 synthetic chemistry usually requires bulky
protecting groups, additives, sensitising coupling reagents and
excessive volumes of toxic organic solvents to generate peptide
chains over many hours if not days.48–51

Given its signicance in translation and the formation of
naturally occurring cyclic peptides, amide bond formation is
a widely employed and important method for constructing
macrocyclic peptides;52–55 however, most of these chemical
strategies are bioincompatible (Scheme 1C). For example,
Smith & co-workers used diphenylphosphoryl azide (DPPA) as
coupling agent in DMF to form a tricyclic homodetic peptide.56

Peptide macrocyclisation using DPPA also tolerates backbone
modications like N-methylation or thioamides, as demon-
strated by Kessler, Chatterjee & co-workers.57,58 The bicyclic
somal translation from mRNA to proteins. [B] Addition of an amino acid
f peptides via activation of carboxylic acids. [D] Examples of synthetic

Chem. Sci., 2024, 15, 2300–2322 | 2303

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc05738k


Chemical Science Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ja

nu
ar

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
6.

10
.2

02
5 

12
:1

9:
28

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
octapeptide celogentin C was synthesised using HBTU as the
coupling agent in DMF,59 and the antibiotic peptide lysobactin
was accessed by treating the linear peptide with DEPBT in
DMF.60 The process of macrolactamisation is slow, as illus-
trated in these examples, taking from ten hours to three days
to form the macrolactam ring. Alternatively, macrolactam
cycles can be generated using the Dawson linker (Fmoc–Dbz)
introduced in 2008.61 Oishi & co-workers furnished a head-to-
tail macrolactam cyclised peptide using this versatile linker.62

Following C-terminal activation, head-to-tail macrocyclisation
was achieved in only 2 h at room temperature in DMF
(Scheme 1D).

The lack of biocompatible synthetic approaches for macro-
lactam cyclisation is one of the main reasons why peptide
display technologies like phage or mRNA display rely on non-
canonical cyclisation methods, as discussed below. An alter-
native strategy for genetically encoded macrocyclic peptide
libraries that supports pure head-to-tail macrocyclisation is the
split-intein circular ligation of peptides and proteins
(SICLOPPS), which uses protein splicing to generate cyclic
peptide libraries (Scheme 1E).40,63,64
Scheme 2 Disulfide bridge formation. [A] The cyclotide kalata B1 is an
example for a highly constrained macrocyclic peptide with three
disulfide bonds. [B] Examples of biocompatible chemical conditions to
induce disulfide bridge formation by oxidation. [C] Formation of cyclic
peptides in phage display using disulfide bonds.
Disulde bond formation

An alternative way to cyclise peptides commonly observed in
nature is through the formation of disulde bonds between
cysteine residues. Examples include oxytocin, which forms
a cyclic peptide from one disulde bond (Fig. 1),4 and cyclo-
tides, which are macrolactam cyclic peptides that possess
three internal disulde bonds, making them a highly con-
strained class of peptides (Scheme 2A).65,66 Disulde bond
formation is dependent on the spatial proximity of the two
cysteine residues, the pH and the redox environment. Alkaline
pH promotes disulde formation due to increased cysteine
nucleophilicity (pKa = 8.5). Air is sufficient for oxidation to
disuldes; however, since the intracellular environment is
mostly reducing (e.g., glutathione), most disulde bonds are
unstable in the cytosol.

Despite their susceptibility to reducing conditions, including
enzymes like reductases,67,68 disulde-bridged peptides have
received widespread attention due to their diverse bioactivity,
ability for cell penetration, proteolytic stability and resilience to
some harsh conditions such as high temperature, acidic pH and
chaotropic agents.69

Synthetic methods to form disuldes rely on the simple
oxidation of cysteine residues. Oen, these methods can
proceed in buffer at near-neutral pH and room temperature,
deeming them highly biocompatible (Scheme 2B). For example,
oxidative folding of cysteine-rich peptides can be accomplished
in Tris buffer at pH 8.0, as illustrated in the folding of the 63-
mer snakin-1 peptide at room temperature over 21 h.70 The
oxidative folding of a CXCR4 antagonist peptide followed
a similar approach using NH4HCO3 buffer.71 Alternatively, using
iodine as an oxidising agent, cysteine-rich peptides can rapidly
cyclise within only a few minutes.72–74 The liability of disulde
bonds to reducing conditions hasmotivated chemists to explore
various bioisosteric crosslinks.75–78
2304 | Chem. Sci., 2024, 15, 2300–2322
An area of signicant importance where disulde bonds
have been used routinely to form macrocyclic peptides under
biocompatible conditions is phage display (Scheme 2C).40,79 As
the panning and modication of the phage occur outside the
cellular environment, the disulde bond is useful to constrain
peptides for screening purposes. Recently, the strategy was
expanded to highly constrained disulde-directed multicyclic
peptide libraries.80

Thio- and selenoether formation

A modication involving cysteine (and occasionally selenocys-
teine) that forms chemically more stable conjugates than the
previously discussed disulde bond is thioether formation.
Naturally occurring antimicrobial peptides like lanthipeptides
and sactipeptides feature such a thioether bridge.81 In nature,
phosphorylated serine or threonine residues undergo enzy-
matic dehydration and subsequent Michael reaction with
a cysteine residue to form the lanthipeptide bridge (Scheme
3A).82,83 In the past, lanthipeptides were synthesised using
Fmoc-SPPS compatible building block strategies;77,84–87 however,
with the advent of biocompatible strategies, libraries of
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 3 Thioether macrocyclisation. [A] Biosynthetic formation of the lanthionine bridge. [B] Examples of biocompatible strategies used to
form thioethers in macrocyclic peptides. [C] Macrocyclic Organo-Peptide Hybrid Phage Display (MOrPH-PhD). [D] Example for alternative
selenoether formation.
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lanthipeptides with multiple thioether crosslinks can be
generated using phage and yeast display platforms.88,89

Brunel and Dawson90 synthesised helical peptides with thi-
oether staples by alkylating a cysteine residue with a primary
alkyl halide in aqueous buffer at pH 8.4 and room temperature
(Scheme 3B). This biocompatible methodology was later
adapted in the seminal works of Suga & co-workers that
combine an engineered ribozyme (exizyme) with the in vitro
mRNA display technique in the Random Nonstandard Peptides
Integrated Discovery (RaPID).39,91–94 The RaPID platform allows
reprogramming the genetic code to introduce noncanonical
amino acids, for example, displaying a-N-chloroacetyl groups
that spontaneously form thioethers with a downstream cysteine
residue during in vitro translation (Scheme 3B).95–98

A related chemical approach was recently integrated into the
phage display platform by Fasan & co-workers, in which they
screened combinatorial libraries of thioether-bridged macro-
cycles against multiple protein targets and identied high
affinity binders.99 In this strategy titled Macrocyclic Organo-
Peptide Hybrid Phage Display (MOrPH-PhD), macrocyclisation
of peptide libraries is aided by the regioselective and biocom-
patible reaction between a cysteine residue and O-(2-
bromomethyl)-tyrosine (O2beY) (Scheme 3C). The approach
requires three plasmids, one of which encodes the tRNA/
aminoacyl-tRNA synthetase pair necessary for incorporation of
the unnatural amino acid carrying the electrophile.

The alkylation of selenocysteine presents an intriguing
alternative to using cysteine; however, it is important to
consider the increased susceptibility of selenocysteine (pKa =

5.4) to oxidation and dimerisation compared to cysteine (pKa =
© 2024 The Author(s). Published by the Royal Society of Chemistry
8.6). Alewood & co-workers successfully constructed a sele-
noether bridge in oxytocin using biocompatible conditions
(Scheme 3D).100 Importantly, the cysteine analogue failed to
form the same linkage, highlighting the valuable applications
of selenocysteine alkylation.
Dithiol bisalkylation

Thioether modication of cysteine residues can also be
accomplished in a dual manner through bisalkylation of two
cysteines. This two-component peptide stapling approach has
been employed to access various ring sizes, tackle metabolism,
improve bioactivity and stabilise a-helical conformation.101,102

Cornish & co-workers103 prepared a series of cyclic amylin-(1–8)
analogues with various linkers under biocompatible conditions
(Scheme 4A). Dithiol bisalkylation was performed by incubating
the linear peptides with two reduced cysteine residues in
various aqueous buffers ranging from pH 7.8 to 8.8 with yields
between 10% and 67%.

Derda & co-workers introduced decauoro-biphenylsulfone
(DFS) as a new peruoroarene (fAr) for biocompatible peptide
and protein modication (Scheme 4A).104 While many SNAr-
reagents suffer from nonselective nucleophilic substitution,
low reactivity and poor water solubility,105–107 DFS and per-
uoropyridine are capable of site-selective modication in the
presence of only low ratios of organic co-solvents, e.g., Tris-
buffer with 5% DMF or 10% acetonitrile. DFS reacts quicker
with cationic peptides (rate constant of 100–180 M−1 s−1) than
uncharged peptides (50–80 M−1 s−1) and modied 35–45% of
thiols in a library of >109 disulde heptapeptides displayed on
Chem. Sci., 2024, 15, 2300–2322 | 2305
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Scheme 4 Peptide dithiol bisalkylation. Bridging two cysteine residues using [A] haloalkyl connectors or [B] di-enes to perform thiol–ene
chemistry. [C] Cysteine stapling with a 3-bromo-5-methylene pyrrolone derivative. [D] S,S-Tetrazine staples allow further modifcation under
bioorthogonal conditions. [F] Cysteine stapling during phage display with DBMB.
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intact M13 bacteriophage. To select chemically stable peptide
binders on phage, Heinis & co-workers have also explored
cysteine alkylation using a,a′-dibromo-m-xylene (DBMB)
(Scheme 4F).108 Peptide stapling with DBMB resulted in high-
affinity ligands of b-catenin with a-helical conformation.

The thiol–ene reaction is an alternative way to alkylate
cysteine residues using UV irradiation.109–111 Examples that
implemented thiol–ene chemistry into peptide synthesis
include the works of Wang and Chou109,112 and Beyermann & co-
workers.113,114 Wang and Chou used a radical initiator in NMP as
the solvent to afford various dithiol-bisalkylated peptide mac-
rocycles in excellent yields (Scheme 4B). Beyermann & co-
workers demonstrated that the thiol–ene reaction can proceed
under biocompatible conditions using a photoswitchable
amino acid with a vinyl handle. Spring & co-workers used
divinyltriazine staples for biocompatible cysteine modica-
tion.115 Buchwald, Pentelute & co-workers further expanded the
toolbox of staples by introducing a biocompatible Pd-mediated
cysteine arylation.116

Another approach for selective cysteine modication in
peptides and proteins utilises the thia-Michael addition.117

Zhou & co-workers introduced 5-methylene pyrrolone and its
halo-derivatives as Michael acceptors which form cysteine
conjugates at physiological pH (Scheme 4C). This
2306 | Chem. Sci., 2024, 15, 2300–2322
bioconjugation strategy has been used for protein modication
and disulde replacement in the hormone somatostatin
(Scheme 4C).118,119

Based on the Staudinger phosphonite reaction (SPhR),
Hackenberger & co-workers recently introduced vinyl-
phosphonite to cyclise peptides between azide and cysteine
residues.120 They cyclised an azido containing BCL-9-derived
peptide and investigated its stability and biophysical proper-
ties. At neutral to basic pH, the phosphonamidate was stable,
helicity of the stapled peptide was successfully increased, and
the stapled peptide inhibited the interaction between native
BCL-9 and b-catenin. They further extended this strategy to
labelling monoclonal antibodies and GFP.

Smith & co-workers developed a facile incorporation of s-
tetrazine into peptides containing two unprotected cysteine
residues.121 Peptides can be unstapled with UV light and the
Diels–Alder reactivity of S,S-tetrazine provides a bioorthogonal
handle for the installation of probes (Scheme 4D). Neumann &
co-workers have recently reported a related selective tetrazine–
thiol exchange (TeTEx) strategy for peptide macrocyclisation
which is SPPS compatible and effective without any activation
reagents.122 We reported a peptide staple inspired by the natural
product lanthionine ketenamine.123 This reaction between 1,2-
aminothiols and a-bromopyruvates is a combination of cysteine
© 2024 The Author(s). Published by the Royal Society of Chemistry
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alkylation and imine formation and allows for the use of various
aliphatic or PEG-based linkers (Scheme 4E).

Macrolactone cyclisation

An alternative to the formation of amide bonds is the creation of
an ester bond, for example, between serine/threonine and the C-
terminal carboxylate. Depsipeptides are natural products with
such a characteristic bond in the peptidyl backbone. It has been
suggested that replacing the –NH with an O distorts the a-
helical and b-sheet structures by decreasing hydrogen
bonding.124–126 Depsipeptides display antimicrobial,127,128 anti-
tumour129 and antiviral activity.130 A prominent example is the
antibiotic teixobactin (Scheme 5A).

Esterication does not spontaneously occur by mixing
a carboxylic acid with an alcohol at neutral pH. Typically, acti-
vation of the carboxylate is necessary to allow for ester forma-
tion to occur in solution phase.131 Oen this is difficult to
perform during Fmoc-SPPS chemistry with many factors
Scheme 5 Macrolactone peptides. [A] Teixobactin is a natural anti-
microbial depsipeptide with a macrolactone ring. [B] In vitro synthesis
of macrolacton peptide libraries using S-to-O acyl shift.

© 2024 The Author(s). Published by the Royal Society of Chemistry
impacting acylation, making the synthesis of depsipeptides
challenging tasks.132

Recently, Suga & co-workers introduced a biocompatible
approach to prepare cyclic depsipeptides in line with their work
to create macrocyclic libraries for RaPID (Scheme 5B).133,134 The
strategy exploits the spontaneous S-to-O acyl shi in N-acety-
lated peptides comprising an N-terminal Ser/Thr–Pro–Cys–Gly
motif and a C-terminal thioester. The linear peptide is subjected
to buffer at pH 7.5 where it undergoes esterication via a two-
step mechanism. An initial trans-thioesterication between
the cysteine and thioester is followed by a rapid S-to-O acyl shi
from the nucleophilic alcohol of Ser/Thr to establish an ester
crosslink (Scheme 5B). Although, the methodology is compat-
ible with peptides of diverse ring sizes and sequences, the Ser/
Thr–Pro–Cys–Gly motif is pivotal for acyl transfer.
Serine/threonine ligation

A way to use serine or threonine to form backbone amide
linkages instead of esters involves the serine/threonine ligation
(STL), which involves the reaction between an N-terminal serine
or threonine residue and a C-terminal salicylaldehyde ester
(Scheme 6A).135 This technique has been predominantly used to
couple two or more peptide fragments to chemically synthesise
proteins.136 Li & co-workers have contributed signicantly to
developing this technique and could successfully synthesise
several well-folded proteins, such as the ACYP enzyme,135 MUC1
Scheme 6 Serine/threonine ligation (STL) as an alternative to native
chemical ligation (NCL) to [A] conjugate peptide fragments and [B]
construct macrocyclic peptides.

Chem. Sci., 2024, 15, 2300–2322 | 2307
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glycopeptide antigen,136 IL-25 137 and nuclear protein
HMGA1a.138 The ligation proceeds at rather mild conditions in
pyridine–acetate buffer (1 : 1) without any metal additives. As
a complementary strategy to native chemical ligation (NCL)
discussed below, STL has certain advantages such as the rela-
tively high abundance of serine and threonine in proteins
(12.7%) compared to cysteine (1.5%), no need for N-terminal
modication, and compatibility with most of the amino acids
at the C-terminus.139

Since STL leads to native amide linkage in the peptide, this
strategy has also been explored in the total synthesis of peptide-
based antibiotics like daptomycin,140,141 yunnanin C,142 (Scheme
5B) cyclomontanin B143 and their analogues. Liu & co-workers
investigated the scope of STL for the synthesis of small and
large macrocycles and observed minimal oligomerisation.144

STL is a two-step process in which a C-terminal aldehyde reacts
with the a-amine of N-terminal serine or threonine to from an
oxazolidine intermediate. Spontaneous O-to-N acyl transfer
then forms an N,O-benzylidene acetal which upon acidolysis
generates the amide linkage (Scheme 6A). The preferred pH
range for the reaction is 4 to 6. Despite some rather harsh
conditions, like the nal acidolysis, there might be scope for
further optimisation to make this strategy biocompatible.
Native chemical ligation

A related technique that uses N-terminal cysteine instead of
serine/threonine to form amide bonds is native chemical liga-
tion (NCL), which is broadly employed for protein synthesis but
also useful for peptide macrocyclisation. While SPPS is widely
used, there remain some technical drawbacks, such as diketo-
piperazine (DKP) and aspartimide formation, epimerisation of
a-carbons and b-elimination of cysteine thiols due to repeated
exposure to organic base.145,146 Another drawback is aggregation
Scheme 7 Native chemical ligation (NCL). [A] Fundamental N-to-S acyl s
and C-terminal thioester. [C] Examples of NCL using safety catch linkers

2308 | Chem. Sci., 2024, 15, 2300–2322
from inter-/intramolecular b-sheet formation during SPPS,147

which can lead to incomplete solvation of the resin-bound
peptide and subsequently reduce coupling efficiency. There-
fore, it is extremely challenging to efficiently construct peptides
comprising more than 50 amino acids through standard SPPS,
unless advanced ow chemistry is implemented as shown by
Pentelute & co-workers.148

Addressing this challenge, Kent & co-workers149 devised NCL
which involves a pair of peptide precursors, one fashioned with
a C-terminal thioester and the other with the N-terminal
unprotected cysteine. In NCL an initial trans-thioesterication
takes place as the nucleophilic cysteine thiol undergoes an
SN2 reaction with the corresponding carbonyl of the thioester
fragment, establishing the new thioester crosslink. The prox-
imity of the peptide permits the free amine to undergo an
intramolecular rearrangement, which subsequently forms an
amide bond and restores a thiol residue (Scheme 7A).149–153

Selenocysteine has proven an important addition in the
synthesis of long polypeptides.154–157

The introduction of NCL laid the foundations for con-
structing larger linear polypeptides linked via a native amide
backbone, and has inspired researchers like Tulla-Puche and
Barany,158 Olsen & co-workers,159 Stockdill & co-workers,160 and
Hojo & co-workers161 to adopt the strategy to generate peptide
macrocycles with a native amide crosslink (Scheme 7B).

Gless and Olsen generated a peptide macrocycle in aqueous
solution using the Dawson linker (MeNbz).159,162 Aer trans-
formation to the urea intermediate, the activated C-terminus
reacts with N-terminal cysteine at 50 °C and pH 6.8 to release
the cyclic peptide from the resin (Scheme 7C). Surrogate linker
systems have also been explored by Hojo & co-workers.161 The N-
ethylcysteine linker forms a thioester bond via N-to-Smigration
to enable intramolecular NCL (Scheme 7C).
hift mechanism. [B] Biocompatible NCL with an N-terminal aminothiol
for direct on-resin C-terminal modification.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Thiazoline and thiazole formation

Another method that relies on the unique properties of N-
terminal cysteine is the nitrile-aminothiol click reaction used
to form thiazolines.163 Oxidation of the thiazoline leads to
thiazole, which is a small heterocycle that appears in a variety of
bioactive compounds, including peptides.164 The unique archi-
tecture of the thiazole ring in azole-based peptides makes it an
attractive motif in drug discovery.165 The thiazole unit in the
peptide backbone can inuence the folding architecture of
peptides.166–169 Flow-on effects from the small thiazole gra can
stabilise the 2D structure by improving the intramolecular H-
bond networks,164,170 as well as increasing cell membrane
permeability by reducing the number of H-bond donors and
minimise water solvation of amide bonds.171 In nature, thiazole
crosslinks are formed through a post-translational trans-
formation of cysteine via the mechanism shown in Scheme
8A.172,173 While no biocompatible synthetic methods for thiazole
formation have been reported yet, several peptides containing
thiazoles have been synthesised using building blocks with
the pre-installed thiazole motif (Scheme 8B), for example,
Scheme 8 Thiazole and thiazoline peptidemacrocyclisation. [A] Biochem
oxidation to the thiazole ring. [B] Thiazole-based peptides prepared fro
cyclisation and stapling using the condensation reaction between 1,2-a
TAMM. [D] Phage display peptide stapling with TAMM.

© 2024 The Author(s). Published by the Royal Society of Chemistry
dolastatin 3,174,175 cyclodidemnamide B,176 didmolamides A and
B,177 obyanamide,178 scleritodermin A,179,180 aeruginazole A,181

sanguinamide A,182 marthiapeptide A183 and venturamides A
and B.184

The thiazoline heterocycle is yet another amide bioisostere
that is part of bioactive natural products and synthetic
peptides.185–188 Inspired by the biosynthesis of rey luciferin
from 2-cyano-6-hydroxybenzothiazole and L-cysteine,189 the
condensation reaction between electrophilic nitriles and 1,2-
aminothiols has been exploited for biocompatible macro-
cyclisation of synthetic and genetically encoded peptide
libraries alike (Scheme 8C).190–193

Cyanobenzothiazole (CBT) and m-cyanopyridine (Scheme
8C) are the two most commonly used moieties. The reaction of
2-cyanobenzothiazole and related nitriles with 1,2-aminothiol
has been extensively explored in bioconjugation, enabling
applications ranging from nanoparticle design to imaging
techniques.194–203 Most recently, this reaction was employed in
the in vitro translation of genetically encoded peptide
libraries.204
ical transformation of cysteine via a stepwise addition, dehydration and
m diamino diacid building blocks. [C] Biocompatible peptide macro-
minothiols and heteroaromatic nitriles or the malononitrile derivative

Chem. Sci., 2024, 15, 2300–2322 | 2309

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc05738k


Chemical Science Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ja

nu
ar

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
6.

10
.2

02
5 

12
:1

9:
28

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
The alternative m-cyanopyridyl-alanine (Cpa) can be used
directly in SPPS to construct macrocyclic peptides,205 or the
cynaopyridine motif can be constructed on a peptide side chain
during SPPS.206 Cpa has recently also found application in
genetically encoded libraries.207 Additionally, dicyanopyridine
reagents can be employed for peptide stapling or to generate
bicyclic peptides.37,208 Cpa can also be selectively incorporated
into proteins.209

Wu, Tsai & co-workers reported that 2-((alkylthio)(aryl)
methylene)malononitrile (TAMM) can also be specic for 1,2-
aminothiols.210 Combination with a chloroacetamide for classic
cysteine alkylation delivered a biocompatible handle to staple
an N-terminal cysteine and a central cysteine residue which was
also applied to phage display (Scheme 8D). Jongkees, Nitsche &
co-workers recently reported a similar strategy where they
combined the selective reactivity of N-terminal cysteine and
non-N-terminal cysteine to construct bicyclic peptide
libraries.211
Aldehyde and ketone modication

The lack of reactive carbonyl species in canonical amino acids
renders aldehydes and ketones alternatives for selective peptide
and protein modication. While oxime ligation has been
Scheme 9 Peptide macrocyclisation techniques based on ketone and a
amination and “CyClick”. [D] OPA stapling. [E] Ligation chemistry base
reduction to produce a pyrrole ring with lysine.

2310 | Chem. Sci., 2024, 15, 2300–2322
extensively investigated for bioconjugation, it remains relatively
underexplored in the context of peptide macrocyclisation,
especially concerning genetically encoded peptide libraries.
Oxime ligation involves the reaction between an aldehyde or
ketone with a hydroxylamine to create a stable oxime bond (C]
N–O) in E and Z isomers (Scheme 9A).212,213 Compared to general
bioconjugation and peptide conjugation,214,215 examples of
peptide stapling and macrocyclisation via oxime ligation are
scarce in the literature.216–218 We have demonstrated a peptide
cyclisation strategy utilising intramolecular oxime ligation
between an alkoxyamine amino acid and an N-terminal a-
ketoamide (Scheme 9A).219

A related approach involving the use of a-ketoacids at the C-
terminus and hydroxy- or alkoxyamines at the N-terminus is the
a-ketoacid-hydroxylamine (KAHA) ligation, a method that has
been extensively investigated by Bode & co-workers for the
chemical synthesis of proteins (Scheme 9B).220 KAHA ligation
offers the advantage of forming a stable amide bond without
requiring any additives or coupling reagents. In the context of
synthesising peptide macrocycles, Bode & co-workers described
the in situ cyclisation of linear, unprotected peptides using
KAHA ligation, employing (S)-5-oxaproline as the hydroxyl-
amine moiety (Scheme 9B).221 Although KAHA ligation has not
yet been integrated into display screening platforms, its ability
ldehyde reactivity. [A] Oxime ligation. [B] KAHA ligation. [C] Reductive
d on oxidation of furan to an aldehyde (keto–enal) and subsequent

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 10 Ring closing metathesis. [A] All-hydrocarbon-crosslink
strategies using ruthenium-based catalysis (Grubbs). [B] Simplified
catalytic mechanism of a Ru-catalysed RCM reaction.
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to operate under mild aqueous conditions holds promise for
biocompatible peptide macrocyclisation.

While imines formed through the reaction of aldehydes or
ketones with amines are typically transient under biocompat-
ible conditions, they can serve as crucial intermediates for the
creation of more stable linkages. Baran, Malins & co-workers
have harnessed this phenomenon to synthesise macrocyclic
peptides through reductive amination, employing the biocom-
patible reducing agent sodium cyanoborohydride (Scheme
9C).222 If the imine intermediate is not trapped by hydride or
other externally added nucleophiles, it can engage in a selective
intramolecular macrocyclisation with the N-terminus, as re-
ported by Raj & co-workers.223,224 This “CyClick” strategy forms
a 4-imidazolidinone heterocycle from the N-terminal amine of
a peptide and an aldehyde (Scheme 9C). Raj & co-workers have
further expanded on the use of nitroalkane tethers for the site-
specic stapling of aldehydes within peptide chains. This
reaction occurs under physiological temperature and pH
conditions and has been applied for late-stage peptide bio-
conjugation and cyclisation.225 Recently, the same group re-
ported an arene triazene peptide macrocyclisation strategy
which is rapid, reversible and biocompatible.226 Furthermore,
this technique introduces an inherent chromophore at the
cyclisation site, facilitating peptide detection by UV absorption.

Chen & co-workers have also explored peptide stapling
through the utilisation of aldehydes and basic amino acid side
chains. Initially, they devised a macrocyclisation method that
involves lysine residues in an unprotected peptide, using an
excess of formaldehyde with the assistance of nearby tyrosine or
arginine residues in close proximity (referred to as KaY/KaR
stapling).227 Although not totally biocompatible, the reaction
proceeds under milder conditions and has excellent residue
and position selectivity. Further progress towards biocompat-
ible macrocyclisation by Chen & co-workers led to amine
crosslinking in a peptide chain using o-phthalaldehyde
(OPA).228 This method, an adaptation of the classic OPA–amine–
thiol condensation, leverages either two lysine residues
arranged side chain-to-side chain or one lysine residue in
combination with an N-terminal amine (head-to-side chain)
within a peptide chain. Both amines readily condense with OPA
to generate an isoindolin-1-imine linker in aqueous buffer at pH
8 (Scheme 9D). Bell & Malins recently reported lysine stapling
with 2,6-pyridinedialdehyde linkers and reductive amination.229

Furan-based side chains in peptides can undergo oxidation
and ring-opening to generate aldehydes or ketones, which can
subsequently be further modied, such as for macrocyclisation.
Madder, Suga & co-workers developed an in vitro translation
system for furylalanine, which can react with a lysine side chain
to eventually form a pyrrole ring in the absence of competing
nucleophiles (Scheme 9E).230 Recently, this strategy was further
expanded by incorporating hydrazine or alkoxyamine-based
amino acids in close proximity to the furan moiety.231
Ring closing metathesis

Like the example involving furylalanine, incorporating non-
canonical amino acids offers an additional level of chemical
© 2024 The Author(s). Published by the Royal Society of Chemistry
orthogonality, enabling, for example, ring closing metathesis
(RCM) and azide–alkyne cycloadditions between peptide side
chains. Peptide macrocycles with all-hydrocarbon crosslinks
accessed by RCM have emerged as useful surrogates of
disulde-bonds and for site-selective peptide stapling (Scheme
10). In pioneering studies, Miller and Grubbs232,233 installed
a rigid substructure into a peptide framework and Clark and
Ghadiri234 prepared b-sheet-like cylinders to explore supramo-
lecular structures that exploit self-assembly of peptide aggre-
gates. Yoshiya & co-workers235 utilised a water-soluble Ru-
catalyst called AquaMet236 to transform this chemistry towards
biocompatible conditions. RCM was performed by incubating
unprotected peptides in a neutral buffer followed by the addi-
tion of AquaMet at 60 °C for 2 h. While 60 °C might prevent
certain applications, this work certainly lays the foundation for
biocompatible peptide macrocyclisation using RCM. Work
towards olenic ligation in protein models have been a research
of interest of Davis & co-workers237–239 and have previously been
reviewed.240,241
Azide–alkyne cycloaddition

The pioneering work of Meldal & co-workers242 and Sharpless &
co-workers243 on the Cu-catalysed [3 + 2]-azide–alkyne cycload-
dition (CuAAC) has evolved into an important synthetic strategy
to link molecules via a [1,2,3]-triazole heterocycle. The triazole
heterocycle itself has made signicant contributions to
a diverse array of bioactivities and has generated substantial
interest as a distinctive bioisostere.244,245 Bertozzi & co-workers
Chem. Sci., 2024, 15, 2300–2322 | 2311
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Scheme 11 The azide–alkyne cycloaddition in peptide macro-
cyclisation and bioconjugation. [A] Cu-catalysed azide–alkyne cyclo-
addition (CuAAC) [B] The mechanism of CuAAC. [C] Strain-promoted
azide–alkyne cycloaddition (SPAAC) on the cell surface. [D] Examples
for CuAAC and SPAAC in biocompatible/bioorthogonal peptide
stapling.
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developed a copper-free, strain-promoted [3 + 2]-azide–alkyne
cycloaddition (SPAAC), which has emerged as immensely
important reaction in the eld of bioconjugation, particularly
involving living systems.246 Meldal, Sharpless and Bertozzi were
jointly recognised for the development of ‘click chemistry and
biorthogonal chemistry’ with The Nobel Prize in Chemistry in
2022 (Scheme 11).41,247–249

In its classic form, the 1,3-cycloaddition reaction involves
a 1,3-dipole and a dipolarophile motif, where the dipolarophile
and 1,3-dipole participate in a concerted pericyclic mechanism
to form a ve-membered ring via a [3 + 2]-cycloaddition.250 In
CuAAC, an alkyne and azide serve as the dipolarophile and 1,3-
dipole, respectively, catalysed by Cu(I) to selectively form the
1,4-substituted product heterocycle (Scheme 11B).242,243 While
CuAAC is commonly used for conjugation, its reliance on
copper makes it incompatible with living systems.251 Further-
more, copper can non-specically bind to and precipitate
proteins,252,253 hence, complicating protein conjugation and
peptide modications for screenings in the presence of drug
targets. To address these challenges, Bertozzi & co-workers246

developed copper-free SPAAC inspired by the early works of
Wittig and Krebs.254 They demonstrated that live cells display-
ing N-azidoacetyl sialic acid (SiaNAz) on the cell surface can be
2312 | Chem. Sci., 2024, 15, 2300–2322
conjugated to a cyclooctyne–biotin probe (Scheme 11C). Further
advancement of SPAAC employed diuorinated cyclooctyne
(termed DIFO) to dramatically accelerate the reaction rate.255,256

CuAAc and SPAAC have been used extensively in macro-
cyclisation and stapling of exible peptides to render them with
dened bioactive conformations (Scheme 11D). Spring & co-
workers have stabilised linear diazido peptides in dened a-
helical conformations by reacting them with dialkynyl linkers in
the presence of Cu-catalyst.257 This ‘double click’ stapling
approach conferred improved biophysical and pharmacological
properties of peptides. Further, they have employed the SPAAC
reaction for the in situ generation of stapled p53-derived
peptides binding to MDM2 in cell culture (Scheme 11D).36,258

The prototype double-SPAAC derived peptide displayed
improved helicity, proteolytic stability and binding affinity. A
follow-up study aimed at improving the water solubility of the
staples by introducing permanent charges.259 These peptides
displayed low nanomolar affinity and were also found to pene-
trate cells, thus highlighting the versatile utility of this bio-
orthogonal macrocyclisation chemistry.

Conclusion & future perspectives

Peptides, whether in their linear or macrocyclic forms, have
evolved into promising pharmaceuticals. The discoveries of
insulin, ACTH, salmon calcitonin, oxytocin and other con-
strained peptides ignited signicant interest in macrocyclic
peptide therapeutics during the early days of drug discovery.
The successful translation of numerous peptide drugs into
clinical use in recent decades has driven advances in peptide
chemistry beyond natural amide and disulde bond formation.

Researchers have directed their efforts towards alternative
strategies for macrocyclisation and late-stage modication to
enhance the pharmacokinetic properties of peptides. With the
recent broad recognition of click chemistry and bioorthogonal
chemistry, we anticipate a surge in research in the years to
come, driving further advancements in biocompatible tech-
niques for peptide macrocyclisation and expanding the toolkit
of chemical methods for protein and cellular ligation.

With the rise of biological platforms employing mRNA, yeast
surface and phage display, there is a growing demand for
biocompatible chemistry to synthesise large libraries of cyclic
peptides. Attaining mild, selective and orthogonal cyclisation
on the nano- and picomolar concentration scale has become an
essential requirement. Fortunately, signicant progress has
been made in the development of biocompatible ligation tech-
niques which we have highlighted here.

In addition to the primarily chemical strategies discussed in
this perspective, there has been signicant interest in enzyme-
mediated macrocyclisation,260,261 expressed protein liga-
tion262,263 and SICLOPPS for peptide macrocyclisation within
living cells.40,63 The eld of chemoenzymatic ligation has expe-
rienced rapid advancements, notably with non-ribosomal
peptide synthetases,264 asparaginyl endopeptidases265 and sub-
tiligase derivatives,266 allowing for the cyclisation of various
classes of peptides under physiological conditions. While the
details of these biochemical methodologies are beyond the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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scope of this perspective, it is evident that they carry signicant
potential for broadening the horizons of biocompatible peptide
macrocyclisation.
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M. Álvarez, Total synthesis of aeruginazole A, Org. Lett.,
2011, 13, 4648–4651.

182 D. S. Nielsen, H. N. Hoang, R.-J. Lohman, F. Diness and
D. P. Fairlie, Total synthesis, structure, and oral
absorption of a thiazole cyclic peptide, sanguinamide A,
Org. Lett., 2012, 14, 5720–5723.

183 Y. Zhang, M. A. Islam and S. R. McAlpine, Synthesis of the
natural product marthiapeptide A, Org. Lett., 2015, 17,
5149–5151.

184 Y. Liu, P. He, Y. Zhang, X. Zhang, J. Liu and Y. Du, One-pot
enantiomeric synthesis of thiazole-containing amino acids:
total synthesis of venturamides A and B, J. Org. Chem., 2018,
83, 3897–3905.

185 Z. Lu, M. K. Harper, C. D. Pond, L. R. Barrows, C. M. Ireland
and R. M. Van Wagoner, Thiazoline peptides and a tris-
phenethyl urea from Didemnum molle with anti-HIV
activity, J. Nat. Prod., 2012, 75, 1436–1440.

186 E. H. White, F. McCapra and G. F. Field, The structure and
synthesis of rey luciferin, J. Am. Chem. Soc., 1963, 85,
337–343.

187 B. A. Johnson, H. Anker and F. L. Meleney, Bacitracin: a new
antibiotic produced by a member of the B. subtilis group,
Science, 1945, 102, 376–377.

188 Q.-Y. Chen, Y. Liu, W. Cai and H. Luesch, Improved total
synthesis and biological evaluation of potent apratoxin S4
based anticancer agents with differential stability and
further enhanced activity, J. Med. Chem., 2014, 57, 3011–
3029.

189 K. Niwa, Y. Nakajima and Y. Ohmiya, Applications of
luciferin biosynthesis: bioluminescence assays for
L-cysteine and luciferase, Anal. Biochem., 2010, 396, 316–318.

190 A. Berteotti, F. Vacondio, A. Lodola, M. Bassi, C. Silva,
M. Mor and A. Cavalli, Predicting the reactivity of nitrile-
carrying compounds with cysteine: a combined
computational and experimental study, ACS Med. Chem.
Lett., 2014, 5, 501–505.

191 O. V. Maltsev, V. Walter, M. J. Brandl and L. Hintermann,
Medium buffer effects on the condensation of l-cysteine
and aryl nitriles to (R)-2-aryl-4,5-dihydrothiazole-4-
carboxylic acids, Synthesis, 2013, 45, 2763–2767.

192 T. Toyama, T. Saitoh, Y. Takahashi, K. Oka, D. Citterio,
K. Suzuki and S. Nishiyama, Click reaction based on the
biosynthesis of rey luciferin, Chem. Lett., 2017, 46, 753–
755.

193 Y. Yuan and G. Liang, A biocompatible, highly efficient
click reaction and its applications, Org. Biomol. Chem.,
2014, 12, 865–871.

194 H. Ren, F. Xiao, K. Zhan, Y.-P. Kim, H. Xie, Z. Xia and J. Rao,
A biocompatible condensation reaction for the labeling of
terminal cysteine residues on proteins, Angew. Chem., Int.
Ed., 2009, 48, 9658–9662.

195 G. Liang, H. Ren and J. Rao, A biocompatible condensation
reaction for controlled assembly of nanostructures in living
cells, Nat. Chem., 2010, 2, 54–60.

196 Y. Deng, S. Liu, K. Mei, A.-M. Tang, C.-Y. Cao and
G.-L. Liang, Multifunctional small molecule for controlled
Chem. Sci., 2024, 15, 2300–2322 | 2319

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc05738k


Chemical Science Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ja

nu
ar

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
6.

10
.2

02
5 

12
:1

9:
28

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
assembly of oligomeric nanoparticles and crosslinked
polymers, Org. Biomol. Chem., 2011, 9, 6917–6919.

197 D. Ye, G. Liang, M. L. Ma and J. Rao, Controlling
intracellular macrocyclization for the imaging of protease
activity, Angew. Chem., Int. Ed., 2011, 50, 2275–2279.

198 Y. Yuan, J. Zhang, M. Wang, B. Mei, Y. Guan and G. Liang,
Detection of glutathione in vitro and in cells by the
controlled self-assembly of nanorings, Anal. Chem., 2013,
85, 1280–1284.

199 S. Sinha, D. Ahire, S. Wagh, D. Mullick, R. Sistla,
K. Selvakumar, J. C. Cortes, S. P. Putlur, S. Mandlekar
and B. M. Johnson, Electrophilicity of pyridazine-3-
carbonitrile, pyrimidine-2-carbonitrile, and pyridine-
carbonitrile derivatives: a chemical model to describe the
formation of thiazoline derivatives in human liver
microsomes, Chem. Res. Toxicol., 2014, 27, 2052–2061.

200 D. Ye, P. Pandit, P. Kempen, J. Lin, L. Xiong, R. Sinclair,
B. Rutt and J. Rao, Redox-triggered self-assembly of
gadolinium-based MRI probes for sensing reducing
environment, Bioconjugate Chem., 2014, 25, 1526–1536.

201 D. Ye, A. J. Shuhendler, L. Cui, L. Tong, S. S. Tee,
G. Tikhomirov, D. W. Felsher and J. Rao, Bioorthogonal
cyclization-mediated in situ self-assembly of small-
molecule probes for imaging caspase activity in vivo, Nat.
Chem., 2014, 6, 519–526.

202 Y. Wang, X. Hu, J. Weng, J. Li, Q. Fan, Y. Zhang and D. Ye, A
photoacoustic probe for the imaging of tumor apoptosis by
caspase-mediated macrocyclization and self-assembly,
Angew. Chem., Int. Ed., 2019, 58, 4886–4890.

203 Y. Cheng, H. Peng, W. Chen, N. Ni, B. Ke, C. Dai and
B. Wang, Rapid and specic post-synthesis modication
of DNA through a biocompatible condensation of 1,2-
aminothiols with 2-cyanobenzothiazole, Chem.–Eur. J.,
2013, 19, 4036–4042.

204 M. Liu, R. Yoshisada, A. Amedi, A. J. P. Hopstaken,
M. N. Pascha, C. A. M. de Haan, D. P. Geerke, D. A. Poole
and S. A. K. Jongkees, An efficient, site-selective and
spontaneous peptide macrocyclisation during in vitro
translation, Chem.–Eur. J., 2023, 29, e202203923.

205 C. Nitsche, H. Onagi, J.-P. Quek, G. Otting, D. Luo and
T. Huber, Biocompatible macrocyclization between
cysteine and 2-cyanopyridine generates stable peptide
inhibitors, Org. Lett., 2019, 21, 4709–4712.

206 N. A. Patil, J.-P. Quek, B. Schroeder, R. Morewood,
J. r. Rademann, D. Luo and C. Nitsche, 2-
Cyanoisonicotinamide conjugation: a facile approach to
generate potent peptide inhibitors of the Zika virus
protease, ACS Med. Chem. Lett., 2021, 12, 732–737.

207 S. E. Iskandar, J. M. Pelton, E. T. Wick, D. L. Bolhuis,
A. S. Baldwin, M. J. Emanuele, N. G. Brown and
A. A. Bowers, Enabling genetic code expansion and
peptide macrocyclization in mRNA display via
a promiscuous orthogonal aminoacyl-tRNA synthetase, J.
Am. Chem. Soc., 2023, 145, 1512–1517.

208 S. Ullrich, J. George, A. E. Coram, R. Morewood and
C. Nitsche, Biocompatible and selective generation of
2320 | Chem. Sci., 2024, 15, 2300–2322
bicyclic peptides, Angew. Chem., Int. Ed., 2022, 61,
e202208400.

209 E. H. Abdelkader, H. Qianzhu, J. George, R. L. Frkic,
C. J. Jackson, C. Nitsche, G. Otting and T. Huber, Genetic
encoding of cyanopyridylalanine for in-cell protein
macrocyclization by the nitrile–aminothiol click reaction,
Angew. Chem., Int. Ed., 2022, 61, e202114154.

210 X. Zheng, Z. Li, W. Gao, X. Meng, X. Li, L. Y. P. Luk, Y. Zhao,
Y.-H. Tsai and C. Wu, Condensation of 2-((alkylthio)(aryl)
methylene)malononitrile with 1,2-aminothiol as a novel
bioorthogonal reaction for site-specic protein
modication and peptide cyclization, J. Am. Chem. Soc.,
2020, 142, 5097–5103.

211 M. Liu, R. Morewood, R. Yoshisada, M. N. Pascha,
A. J. P. Hopstaken, E. Tarcoveanu, D. A. Poole, C. A. M. de
Haan, C. Nitsche and S. A. K. Jongkees, Selective
thiazoline peptide cyclisation compatible with mRNA
display and efficient synthesis, Chem. Sci., 2023, 14,
10561–10569.

212 S. Ulrich, D. Boturyn, A. Marra, O. Renaudet and P. Dumy,
Oxime ligation: a chemoselective click-type reaction for
accessing multifunctional biomolecular constructs,
Chem.–Eur. J., 2014, 20, 34–41.

213 D. K. Kölmel and E. T. Kool, Oximes and hydrazones in
bioconjugation: mechanism and catalysis, Chem. Rev.,
2017, 117, 10358–10376.

214 A. Hering, N. Braga Emidio and M. Muttenthaler,
Expanding the versatility and scope of the oxime ligation:
rapid bioconjugation to disulde-rich peptides, Chem.
Commun., 2022, 58, 9100–9103.

215 S. Duocq, J. Zhou, F. Huguenot, M. Vidal and W.-Q. Liu,
One-pot oxime ligation from peptides bearing
thiazolidine and aminooxyacetyl groups, RSC Adv., 2020,
10, 17681–17685.

216 C. M. Haney, M. T. Loch and W. S. Horne, Promoting
peptide a-helix formation with dynamic covalent oxime
side-chain cross-links, Chem. Commun., 2011, 47, 10915–
10917.

217 D. E. Streeerk, M. Schmidt, J. H. Ippel, T. M. Hackeng,
T. Nuijens, P. Timmerman and J. H. van Maarseveen,
Synthesis of constrained tetracyclic peptides by
consecutive CEPS, CLIPS, and oxime ligation, Org. Lett.,
2019, 21, 2095–2100.

218 K. D. Roberts, J. N. Lambert, N. J. Ede and A. M. Bray,
Preparation of cyclic peptide libraries using
intramolecular oxime formation, J. Pept. Sci., 2004, 10,
659–665.

219 L. J. Davies, L. M. Shuttleworth, X. Zhang, S. Peng and
C. Nitsche, Bioorthogonal peptide macrocyclization using
oxime ligation, Org. Lett., 2023, 25, 2806–2809.

220 J. W. Bode, R. M. Fox and K. D. Baucom, Chemoselective
amide ligations by decarboxylative condensations of N-
alkylhydroxylamines and a-ketoacids, Angew. Chem., Int.
Ed., 2006, 45, 1248–1252.

221 F. Rohrbacher, G. Deniau, A. Luther and J. W. Bode,
Spontaneous head-to-tail cyclization of unprotected linear
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc05738k


Perspective Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ja

nu
ar

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
6.

10
.2

02
5 

12
:1

9:
28

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
peptides with the KAHA ligation, Chem. Sci., 2015, 6, 4889–
4896.

222 L. R. Malins, J. N. deGruyter, K. J. Robbins, P. M. Scola,
M. D. Eastgate, M. R. Ghadiri and P. S. Baran, Peptide
macrocyclization inspired by non-ribosomal imine
natural products, J. Am. Chem. Soc., 2017, 139, 5233–5241.

223 V. Adebomi, R. D. Cohen, R. Wills, H. A. H. Chavers,
G. E. Martin and M. Raj, CyClick chemistry for the
synthesis of cyclic peptides, Angew. Chem., Int. Ed., 2019,
58, 19073–19080.

224 H. Shao, V. Adebomi, A. Bruce, M. Raj and K. N. Houk,
Intramolecular hydrogen bonding enables a zwitterionic
mechanism for macrocyclic peptide formation:
computational mechanistic studies of CyClick chemistry,
Angew. Chem., Int. Ed., 2023, 62, e202307210.

225 S. Mahesh, V. Adebomi, Z. P. Muneeswaran and M. Raj,
Bioinspired nitroalkylation for selective protein
modication and peptide stapling, Angew. Chem., Int. Ed.,
2020, 59, 2793–2801.

226 O. Nwajiobi, A. K. Verma and M. Raj, Rapid arene triazene
chemistry for macrocyclization, J. Am. Chem. Soc., 2022,
144, 4633–4641.

227 B. Li, H. Tang, A. Turlik, Z. Wan, X.-S. Xue, L. Li, X. Yang,
J. Li, G. He, K. N. Houk and G. Chen, Cooperative
stapling of native peptides at lysine and tyrosine or
arginine with formaldehyde, Angew. Chem., Int. Ed., 2021,
60, 6646–6652.

228 B. Li, L. Wang, X. Chen, X. Chu, H. Tang, J. Zhang, G. He,
L. Li and G. Chen, Extendable stapling of unprotected
peptides by crosslinking two amines with o-
phthalaldehyde, Nat. Commun., 2022, 13, 311.

229 H. J. Bell and L. R. Malins, Peptide macrocyclisation via
late-stage reductive amination, Org. Biomol. Chem., 2022,
20, 6250–6256.

230 K. W. Decoene, W. Vannecke, T. Passioura, H. Suga and
A. Madder, Pyrrole-mediated peptide cyclization identied
through genetically reprogrammed peptide synthesis,
Biomedicines, 2018, 6, 99.

231 A. Manicardi, A. Theppawong, M. Van Troys and A. Madder,
Proximity-induced ligation and one-pot macrocyclization of
1,4-diketone-tagged peptides derived from 2,5-
disubstituted furans upon release from the solid support,
Org. Lett., 2023, 25, 6618–6622.

232 S. J. Miller and R. H. Grubbs, Synthesis of conformationally
restricted amino acids and peptides employing olen
metathesis, J. Am. Chem. Soc., 1995, 117, 5855–5856.

233 S. J. Miller, H. E. Blackwell and R. H. Grubbs, Application of
ring-closing metathesis to the synthesis of rigidied amino
acids and peptides, J. Am. Chem. Soc., 1996, 118, 9606–9614.

234 T. D. Clark and M. R. Ghadiri, Supramolecular design by
covalent capture. Design of a peptide cylinder via
hydrogen-bond-promoted intermolecular olen
metathesis, J. Am. Chem. Soc., 1995, 117, 12364–12365.

235 S. Masuda, S. Tsuda and T. Yoshiya, Ring-closing
metathesis of unprotected peptides in water, Org. Biomol.
Chem., 2018, 16, 9364–9367.
© 2024 The Author(s). Published by the Royal Society of Chemistry
236 K. Skowerski, G. Szczepaniak, C. Wierzbicka, Ł. Gułajski,
M. Bieniek and K. Grela, Highly active catalysts for olen
metathesis in water, Catal. Sci. Technol., 2012, 2, 2424–
2427.

237 Y. A. Lin, J. M. Chalker, N. Floyd, G. J. Bernardes and
B. G. Davis, Allyl suldes are privileged substrates in
aqueous cross-metathesis: application to site-selective
protein modication, J. Am. Chem. Soc., 2008, 130, 9642–
9643.

238 J. M. Chalker, Y. A. Lin, O. Boutureira and B. G. Davis,
Enabling olen metathesis on proteins: chemical
methods for installation of S-allyl cysteine, Chem.
Commun., 2009, 3714–3716.

239 Y. A. Lin, O. Boutureira, L. Lercher, B. Bhushan, R. S. Paton
and B. G. Davis, Rapid cross-metathesis for reversible
protein modications via chemical access to Se-allyl-
selenocysteine in proteins, J. Am. Chem. Soc., 2013, 135,
12156–12159.

240 Y. A. Lin, J. M. Chalker and B. G. Davis, Olen metathesis
for site-selective protein modication, ChemBioChem,
2009, 10, 959–969.

241 M. S. Messina and H. D. Maynard, Modication of proteins
using olen metathesis,Mater. Chem. Front., 2020, 4, 1040–
1051.

242 C. W. Tornøe, C. Christensen and M. Meldal,
Peptidotriazoles on solid phase: [1,2,3]-triazoles by
regiospecic copper(I)-catalyzed 1,3-dipolar cycloadditions
of terminal alkynes to azides, J. Org. Chem., 2002, 67,
3057–3064.

243 V. V. Rostovtsev, L. G. Green, V. V. Fokin and
K. B. Sharpless, A stepwise Huisgen cycloaddition
process: copper(I)-catalyzed regioselective “ligation” of
azides and terminal alkynes, Angew. Chem., Int. Ed., 2002,
114, 2708–2711.

244 E. Bonandi, M. S. Christodoulou, G. Fumagalli,
D. Perdicchia, G. Rastelli and D. Passarella, The 1,2,3-
triazole ring as a bioisostere in medicinal chemistry, Drug
Discovery Today, 2017, 22, 1572–1581.

245 N. G. Aher, V. S. Pore, N. N. Mishra, A. Kumar, P. K. Shukla,
A. Sharma andM. K. Bhat, Synthesis and antifungal activity
of 1,2,3-triazole containing uconazole analogues, Bioorg.
Med. Chem. Lett., 2009, 19, 759–763.

246 N. J. Agard, J. A. Prescher and C. R. Bertozzi, A strain-
promoted [3+2] azide–alkyne cycloaddition for covalent
modication of biomolecules in living systems, J. Am.
Chem. Soc., 2004, 126, 15046–15047.

247 M. Meldal and C. W. Tornøe, Cu-catalyzed azide–alkyne
cycloaddition, Chem. Rev., 2008, 108, 2952–3015.

248 H. C. Kolb and K. B. Sharpless, The growing impact of click
chemistry on drug discovery, Drug Discovery Today, 2003, 8,
1128–1137.

249 V. D. Bock, H. Hiemstra and J. H. Van Maarseveen,
CuI-catalyzed alkyne–azide “click” cycloadditions from
a mechanistic and synthetic perspective, Eur. J. Org
Chem., 2006, 2006, 51–68.

250 R. Huisgen, 1.3-Dipolare Cycloadditionen Rückschau und
Ausblick, Angew. Chem., Int. Ed., 1963, 75, 604–637.
Chem. Sci., 2024, 15, 2300–2322 | 2321

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc05738k


Chemical Science Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ja

nu
ar

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
6.

10
.2

02
5 

12
:1

9:
28

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
251 B. Ashish, K. Neeti and K. Himanshu, Copper toxicity:
a comprehensive study, Res. J. Recent Sci., 2013, 2277, 2502.

252 E. H. Abdelkader, A. Feintuch, X. Yao, L. A. Adams,
L. Aurelio, B. Graham, D. Goldfarb and G. Otting, Protein
conformation by EPR spectroscopy using gadolinium tags
clicked to genetically encoded p-azido-L-phenylalanine,
Chem. Commun., 2015, 51, 15898–15901.

253 C.-T. Loh, B. Graham, E. H. Abdelkader, K. L. Tuck and
G. Otting, Generation of pseudocontact shis in proteins
with lanthanides using small “Clickable” nitrilotriacetic
acid and iminodiacetic acid tags, Chem.–Eur. J., 2015, 21,
5084–5092.

254 G. Wittig and A. Krebs, Zur Existenz niedergliedriger
Cycloalkine, I, Chem. Ber., 1961, 94, 3260–3275.

255 J. A. Codelli, J. M. Baskin, N. J. Agard and C. R. Bertozzi,
Second-generation diuorinated cyclooctynes for copper-
free click chemistry, J. Am. Chem. Soc., 2008, 130, 11486–
11493.

256 S. T. Laughlin, J. M. Baskin, S. L. Amacher and
C. R. Bertozzi, In vivo imaging of membrane-associated
glycans in developing zebrash, Science, 2008, 320, 664–
667.

257 Y. H. Lau, Y. Wu, P. de Andrade, W. R. J. D. Galloway and
D. R. Spring, A two-component 'double-click' approach to
peptide stapling, Nat. Protoc., 2015, 10, 585–594.

258 K. Sharma, A. V. Strizhak, E. Fowler, W. Xu, B. Chappell,
H. F. Sore, W. R. J. D. Galloway, M. N. Grayson, Y. H. Lau,
L. S. Itzhaki and D. R. Spring, Functionalized double
strain-promoted stapled peptides for inhibiting the p53-
MDM2 interaction, ACS Omega, 2020, 5, 1157–1169.

259 K. Sharma, A. V. Strizhak, E. Fowler, X. Wang, W. Xu,
C. Hatt Jensen, Y. Wu, H. F. Sore, Y. H. Lau, M. Hyvönen,
2322 | Chem. Sci., 2024, 15, 2300–2322
L. S. Itzhaki and D. R. Spring, Water-soluble, stable and
azide-reactive strained dialkynes for biocompatible
double strain-promoted click chemistry, Org. Biomol.
Chem., 2019, 17, 8014–8018.

260 I. Saska, A. D. Gillon, N. Hatsugai, R. G. Dietzgen, I. Hara-
Nishimura, M. A. Anderson and D. J. Craik, An
asparaginyl endopeptidase mediates in vivo protein
backbone cyclization, J. Biol. Chem., 2007, 282, 29721–
29728.

261 F. B. Rehm, T. J. Tyler, S. J. de Veer, D. J. Craik and T. Durek,
Enzymatic C-to-C protein ligation, Angew. Chem., Int. Ed.,
2022, 134, e202116672.

262 T. W. Muir, D. Sondhi and P. A. Cole, Expressed protein
ligation: a general method for protein engineering, Proc.
Natl. Acad. Sci. U. S. A., 1998, 95, 6705–6710.

263 H. Iwai and A. Plückthun, Circular b-lactamase: stability
enhancement by cyclizing the backbone, FEBS Lett., 1999,
459, 166–172.

264 L. Zhuang, S. Huang, W.-Q. Liu, A. S. Karim, M. C. Jewett
and J. Li, Total in vitro biosynthesis of the nonribosomal
macrolactone peptide valinomycin, Metab. Eng., 2020, 60,
37–44.

265 G. K. T. Nguyen, S. Wang, Y. Qiu, X. Hemu, Y. Lian and
J. P. Tam, Butelase 1 is an Asx-specic ligase enabling
peptide macrocyclization and synthesis, Nat. Chem. Biol.,
2014, 10, 732–738.

266 A. Toplak, T. Nuijens, P. J. L. M. Quaedieg, B. Wu and
D. B. Janssen, Peptiligase, an enzyme for efficient
chemoenzymatic peptide synthesis and cyclization in
water, Adv. Synth. Catal., 2016, 358, 2140–2147.
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc05738k

	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation

	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation

	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation
	Biocompatible strategies for peptide macrocyclisation


