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The emergence of SARS-CoV-2, the causative agent of COVID-19, has highlighted the need for advanced

antiviral strategies. Targeting the coronaviral methyltransferase nsp14, which is essential for RNA capping,

offers a promising approach for the development of small-molecule inhibitors. We designed and

synthesized a series of adenosine 5′-carboxamide derivatives as potential nsp14 inhibitors and identified

coumarin analogs to be particularly effective. Structural modifications revealed the importance of the 5′-

carboxyl moiety for the inhibitory activity, showing superior efficacy compared to other modifications.

Notably, compound 18l (HK370) demonstrated high selectivity and favorable in vitro pharmacokinetic

properties and exhibited moderate antiviral activity in cell-based assays. These findings provide a robust

foundation for developing targeted nsp14 inhibitors as a potential treatment for COVID-19 and related

diseases.

Introduction

Viruses belonging to the family Coronaviridae (order
Nidovirales) pose a significant pandemic threat, as was
demonstrated by SARS-CoV, MERS-CoV and, most notably, by
SARS-CoV-2 in 2002, 2012 and 2019, respectively.1 The genetic
information of SARS-CoV-2 consists of a large (∼30 kb)
positive-sense, single-stranded RNA (+ssRNA), which encodes
4 structural proteins, 16 non-structural proteins and several
accessory factors.2 The virus replicates in double-membrane
vesicles (DMVs) derived from the host endoplasmic reticulum

and, therefore, does not have access to the host's mRNA
capping machinery.3 The 5′ end of the eukaryotic mRNA is
equipped with a cap-1 or cap-2 structure, which is important
for several cellular processes including translation and self-
recognition. The absence of this cap structure triggers the
activation of cytosolic sensors (e.g., IFIT1 or MDA5) and
subsequently initiates an immune response.4,5 To mimic the
host's mRNA cap, SARS-CoV-2 utilizes its own capping
enzymes, including two MTases – nsp14 (N7 methylation; cap-
0) and nsp16 (2′O methylation; cap-1). Both MTases are SAM-
dependent, which makes them a suitable target for small-
molecule inhibitors.6

Coronaviral MTases are a focal point of medicinal
chemistry research since the beginning of the SARS-CoV-2
pandemic.7–21 Otava et al. described SAH analogs with a
modified nucleobase (1) targeting the lateral cavity above the
SAM-binding site7 and various replacements of the amino acid
moiety on the 5′ end were explored by several groups.11,22–26 A
significant portion of this research has focused on
arylsulfonamides derived from 5′-aminoadenosine (2, 3), with
the sulfonamide moiety being crucial for the inhibitory activity
due to its specific geometry.24–28 Derivatives of adenosine-5′-
carboxylic acid represent an under-explored area in the search
for coronaviral nsp14 inhibitors. To date, only one such
compound (4) has been described in the literature11 and is
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considered inferior due to its poor inhibitory activity against
SARS-CoV-2 nsp14 (IC50 = 12 μM).

In this work, we synthesized a series of amides derived
from adenosine-5′-carboxylic acid leading to the development
of nanomolar inhibitors with general structures 5 and 6. We
further examined the importance of the amidic moiety for
inhibitory activity and tested our compounds in a cell-based
assay (Fig. 1).

Results and discussion
Synthesis

We started the synthesis from adenosine (7), which was
isopropylidene-protected to afford 8.29 Subsequent oxidation
of the 5′ carbon using TEMPO/PhI(OAc)2 yielded adenosine
5′-carboxylic acid 9.30 Treatment of 9 with SOCl2 afforded
highly reactive intermediate 10, which was used without any
purification in amidic coupling with a selected amine leading
to amides 11. Final removal of the isopropylidene protecting
group was achieved using 80% formic acid yielding 12.

Synthesis of analogs with a modified nucleobase started
from 2′,3′-protected 7-iodotubercidine 14, which was
prepared according to a published procedure.31 Oxidation of
the 5′ carbon was again achieved with TEMPO/PhI(OAc)2
yielding 15.30 A different approach was used for synthesis of
16, as some amines reacted poorly with acyl chloride 10.
Propanephosphonic acid anhydride (T3P) mediated peptide
coupling between the amine of choice and the acid 15
smoothly afforded products in 2 to 24 hours in moderate to
good yields. Installation of the 5-ethynylpyrimidine moiety in
position 7 of the nucleobase was achieved via the
Sonogashira cross-coupling,7 leading to 17 which was
subsequently treated with 80% formic acid to afford final
compounds 18 (Scheme 1).

To explore other linkers, we mesylated compound 8 and,
via nucleophilic substitution with NaN3, prepared compound
19. Subsequent hydrogenation yielded compound 20, which
was then used for the preparation of amides (21a, 21k) and
sulfonamide (22k).32 Finally, commercially available
compound 23 was treated with 7-mercapto-4-methylcoumarin
to afford compound 24. Oxidation of the sulfur linker using
Oxone® yielded sulfone 25 (Scheme 2).33

Inhibition of SARS-CoV-2 MTase nsp14

Initially, we focused on the synthesis of adenosine 5′-
carboxamides using simple mono- and disubstituted
anilines leading to 12a–f; however, these compounds
exhibited only negligible activity. We then attempted to
replace the ester moiety of 12a by decorating the para
position of the aniline with various 5-membered
heterocycles (compounds 12g–12j), but this resulted in
inactive molecules. Introduction of a bicyclic benzo-1,4-
dioxane core (compound 12k) led to an intriguing 1.8 μM
inhibitory activity. Based on this result, we decided to
explore further bicyclic cores via a scaffold hopping
approach. This led to a series of coumarin-based inhibitors
with exciting submicromolar potency (12l–12n).

In recent studies,7,8 we identified several aromatic C-7
substituents that enhanced the biological activity of our
ligands. Derivatives with the 5-ethynylpyrimidine substituent
demonstrated very good inhibitory properties in all cases and
our recent studies further revealed their superior solubility
and metabolic stability properties (unpublished data).
Consequently, we selected this substituent as our model and
prepared compounds 18l and 18n, which demonstrated a 10-
fold enhancement in activity in an enzymatic assay, with IC50

values of 30 nM and 43 nM, respectively (Fig. 2).

Fig. 1 Previously described nsp14 inhibitors and structural motifs explored in this work.
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Scheme 1 Synthesis of target compounds. (a) HClO4, acetone; RT, 4 h, 79%; (b) TEMPO, PhI(OAc)2, H2O, MeCN, RT, 6 h, 82%; (c) SOCl2, MeCN,
30 min, 40 °C; (d) i) R-NH2, Et3N, DCM, RT, 0.5–2 h, 18–95%, or i) and ii) RB(OH)2, Na2CO3, Pd(dppf)Cl2·CH2Cl2, 1,4-dioxane, water, 100 °C, 2 h, 61–
79%; (e) 80% formic acid, RT, 18 h, 29–77%; (f) RR′NH; T3P; Et3N; THF, RT, 2–24 h, 42–76%; (g) 5-ethynylpyrimidine, CuI, Pd(PPh3)2Cl2, THF, 60 °C, 1
h, 88–95%. ORTEP diagrams of 11f, 12c, and 17n drawn at the 50% probability level; hydrogens and solvent molecules are omitted for clarity.
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We also introduced a methyl group on the amidic nitrogen
(18q), which has previously been shown to be highly
beneficial in the case of sulfonamide 2.8,25,28 However, in this
particular case, this modification proved to be unfavorable,
resulting in a 20-fold decrease in inhibitory activity.

To better understand the role of the amidic linker, analogs
bearing a reversed amidic linker, as well as sulfonamide,
sulfide, and sulfone linkers, were prepared (21a, 21k, 22k, 24,
25). In all cases, this led to a significant decrease or complete
loss of the inhibitory activity and clearly demonstrated the
importance of the 5′-carboxyl moiety (Table 1).

Human cells rely on several MTases; therefore, it is
necessary to assess the possible off-target effect. Compounds
12l, 12n, 18l, 18n, and 18q were tested against human RNMT
which is an analog to coronaviral nsp14 as they both
methylate the cap at position N7.34 None of the tested

compounds exhibited any inhibitory activity against RNMT at
25 μM concentration of an inhibitor.

Docking study

To understand the binding mode of our inhibitors, we
performed extensive docking experiments using the crystal
structure of SARS-CoV-2 nsp14 in complex with SAH (PDB:
7R2V).35 Results from Glide36 docking show that our
inhibitors target both the SAM-binding site and the RNA-
binding site as the aromatic moiety on the 5′ end extends to
the cap-site and interacts with phenylalanine 426 via π–π

stacking interaction. This amino acid residue, F426, provides
one of the key interactions with the RNA cap and F426A
mutants lack MTase activity.37 In the case of the C7-modified
analogs (series 18), the alkynyl moiety extends into a lateral
cavity above the SAM-binding site as described by Otava
et al.7 The results of docking experiments (GlideScore XP;
Fig. 3) for 12k–n, 18l, and 18n generally correlate with the
measured IC50 values, except for compound 12m. This
discrepancy might be due to the presence of fluorine atoms,
as we have previously experienced that fluorinated
compounds can have their GlideScore values falsely
overestimated. This phenomenon has been reported by other
groups as well.38,39

Pharmacology

Enzymatic screening allowed us to advance our inhibitors in
terms of their activity; however, pharmacological evaluation
is a crucial step towards compounds capable of inhibiting
viral replication in cells. Compounds 12l, 12m, 12n, 18l,

Scheme 2 Synthesis of compounds with a modified linker. (a) MsCl, pyridine, 0 °C to RT, 1.5 h, 99%; (b) NaN3, DMF, 120 °C, 2 h, 70%; (c) H2, Pd/C,
EtOH, RT, 16 h, 79%; (d) RSO2Cl or RCOCl, Et3N, DMC, 1 h, then 80% formic acid, 18 h, 14–36% over 2 steps; (e) RSH, K2CO3, EtOH, RT, 16 h, 41%;
(f) Oxone®, H2O, RT, 4 h, 48%.

Fig. 2 Concentration-dependent inhibition of nsp14 MTase by 18l,
18n, and sinefungin.
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18n and 18q were evaluated for their stability in both
human and mouse plasma and liver microsomes (Table 2).
All tested compounds were stable in liver microsomes and
only 12m and 18n were metabolized in plasma. Inhibitor

12m was shown to be unstable in both human and mouse
plasma, potentially due to the strong electron-withdrawing
effect of –CF3 in conjugation with the lactone moiety. In the
case of 18n, metabolic instability was observed only in

Table 1 Inhibitory activity of synthesized compounds against SARS-CoV-2 nsp14 MTase. Sinefungin (SIN) was used as a reference inhibitor; IC50 (SIN) =
0.46 ± 0.05 μM; N.I., no inhibition

R IC50 [μM] R IC50 [μM] R IC50 [μM]

12a >25 12i N.I. 18l 0.031 ± 0.005

12b N.I. 12j N.I. 18n 0.043 ± 0.005

12c N.I. 12k 1.81 ± 0.25 18q 0.89 ± 0.12

12d >25 12l 0.36 ± 0.04 21a N.I.

12e N.I. 12m 1.47 ± 0.14 21k N.I.

12f N.I. 12n 0.35 ± 0.04 22k 15.35 ± 2.55

12g N.I. 12o 6.55 ± 1.44 24 3.67 ± 0.40

12h N.I. 12p 4.81 ± 2.54 25 >25

Fig. 3 Correlation between IC50 values and GlideScore XP (left). Docking pose of 18l in nsp14 (PDB: 7R2V;35 protein in blue, inhibitor in yellow)
overlaid with nsp14 with a cap analog (GpppA, gray) and SAH (PDB: 5C8S;40 gray) (right).
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mouse plasma with a half-life of 94 minutes (see the ESI‡
for graphs, Fig. S2).

Monolayers of differentiated Caco-2 epithelial cells were
used to simulate the intestinal absorption41,42 of selected
inhibitors and all tested compounds exhibited reasonable
transepithelial permeability. Two compounds exhibited an
efflux ratio (ER) above 2, 12l (ER: 3.4) and 12m (ER: 4.1),
suggesting their interaction with cellular efflux pumps
(Table 2).43

Inhibition of SARS-CoV-2 in vitro

We tested the cytotoxicity and the anti-SARS-CoV-2 activity of
compounds 12l, 12n, 18l, 18n, and 18q in two types of cell
cultures – Calu-3 and Vero E6. The compounds were prepared
in 2-fold serial dilutions, starting from a 50 μM solution.
Cells were pretreated with the inhibitors two hours prior to
the infection with the SARS-CoV-2 strain hCoV-19/Czech
Republic/NRL_6632_2/2020 at two different multiplicities of
infection (MOI ∼0.03 and MOI ∼0.01). Simultaneously, the
same experimental setup without virus was used to
determine the compounds' cytotoxicity. Cells were incubated
for three days at 37 °C in 5% CO2. Cell viability was then
assessed using the XTT assay.44 We detected an antiviral
effect for compounds 18l and 18n in the Calu-3 cell line, with

EC50 values of 12 ± 6 μM and 10 ± 3 μM, respectively, at an
MOI ∼0.01, without any observed cytotoxicity (CC50 > 50 μM;
Fig. 4). For compounds 12l, 12n, and 18q, the EC50 values
were determined to be above 50 μM in the Calu-3 cell line
(see the ESI‡ for graphs, Fig. S4). No antiviral effect was
observed in the Vero E6 cell line for any of the five inhibitors
which may be explained by the defective interferon response
of this cell line.45

Conclusion

In this work, we describe the discovery of SARS-CoV-2 nsp14
inhibitors with novel structural motifs based on adenosine
5′-carboxamides derived from bicyclic amines. Through
scaffold hopping, we found out that coumarin analogs are
particularly effective. We also explored the importance of the
5′-carboxyl moiety for inhibitory activity. Analogs bearing a
methylated amide, reversed amidic linker, sulfonamide,
sulfide, or sulfone showed a significant decrease or complete
loss of the inhibitory activity. Compound 18l (HK370), with
an IC50 value of 31 nM, exhibited high selectivity for nsp14
over human RNMT (IC50 (RNMT) > 25 μM; CC50 > 50 μM), a
favorable in vitro metabolic profile and good transepithelial
permeability. Notably, our inhibitors show moderate efficacy
in a cell-based assay (EC50: 12 ± 6 μM, Calu-3 cell line).

Table 2 Metabolic stability of selected compounds in plasma and liver microsomes and their Caco-2 permeability. Propantheline, verapamil, and
digoxin were used as control compounds for the respective assays. N.D., not determined

Plasma stability %
of the parent
compound after
120 min

Microsomal stability
% of the parent
compound after 45 min Caco-2 permeability

Human Mouse Human Mouse Papp (cm s−1) A–B × 10−6 Papp (cm s−1) B–A × 10−6 Efflux ratio

12l 103 ± 3.3 93 ± 2.7 104 ± 4.1 95 ± 5.0 3.1 ± 1.3 10.7 ± 2.5 3.4
12m 20 ± 1.4 67 ± 3.5 90 ± 9.1 93 ± 9.4 8.0 ± 2.9 32.9 ± 5.3 4.1
12n 97 ± 2.0 78 ± 0.3 95 ± 0.0 90 ± 2.9 4.4 ± 1.8 2.2 ± 0.4 0.5
18l 74 ± 0.2 89 ± 1.1 90 ± 4.2 84 ± 2.5 10.1 ± 4.0 8.3 ± 0.5 0.8
18n 93 ± 0.4 41 ± 0.7 90 ± 2.0 85 ± 0.6 11.3 ± 3.7 7.3 ± 1.3 0.6
18q 80 ± 1.1 86 ± 0.9 107 ± 6.6 117 ± 10.9 2.0 ± 0.3 2.1 ± 0.4 1.0
Propantheline 0.1 ± 0.0 9 ± 0.2 N.D. N.D. N.D. N.D. N.D.
Verapamil N.D. N.D. 32 ± 1.1 5 ± 0.2 N.D. N.D. N.D.
Digoxin N.D. N.D. N.D. N.D. 1.7 ± 0.2 13.8 ± 0.9 8.5

Fig. 4 Antiviral effect of compounds 18l and 18n against SARS-CoV-2 (black and gray lines) in the Calu-3 cell line. The cell viability without virus
in the presence of compounds is shown by the blue line. Plots were created in GraphPad Prism software version 10.2.3. and EC50 values were
calculated using nonlinear regression.
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Overall, this work provides a strong foundation for the
development of targeted nsp14 inhibitors as potential
treatments for COVID-19 and other coronavirus-related
diseases.

Abbreviations

SARS-CoV Severe acute respiratory syndrome-related coronavirus
MERS-CoV Middle East respiratory syndrome coronavirus
COVID-19 Coronavirus disease 2019
+ssRNA Single-stranded positive-sense RNA
MTase Methyltransferase
SAM S-Adenosyl-L-methionine
SAH S-Adenosyl-L-homocysteine
ER Efflux ratio
MOI Multiplicity of infection
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