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Electrospun nanofibers based on plant extract
bioactive materials as functional additives:
possible sources and prospective applications

Md Nur Uddin, @ +** Ayub Ali,*®> Md Jobaer,” Sajjatul Islam Mahedi,c
Anand Krishnamoorthy® and M. A. Rahman Bhuiyan () *®

Electrospun nanofibers based on plant extracts have garnered increasing interest as valuable bioactive
materials for medicinal and packaging applications. This concise review examines recent studies on
functional plant extract nanofibers, emphasizing their fabrication technigues, antimicrobial characteristics,
and potential applications. Plant extracts having bioactive compounds are generally obtained from diverse
natural sources that can be incorporated into electrospinning solutions to develop functional nanofibers
with enhanced germicidal activities. Key findings suggest that nanofibers integrated with natural bioactive
materials possess adequate antibacterial, antioxidant, anti-inflammatory, and anticancer properties and are
considered expedient biocompatible materials for use in biomedical and food packaging. The potential
biomedical applications of these nanofibers include wound healing, drug delivery, and tissue engineering
owing to their germicidal activity, biodegradability and biocompatibility, while packaging applications
leverage antibacterial and food preservation capabilities. However, some constraints, including insolubility
of some extracts, insufficient mechanical robustness for electrospinning, and lack of green solvents to
mitigate bio-toxicity, have hindered their diversified applications. The current review, therefore,
summarizes future research avenues concerning the scope of overcoming the limitations in this
burgeoning field. Overall, plant extract functional nanofibers demonstrate their potential for utilization in
biomedical and food packaging applications, but more research is needed to scale up production and
make these eco-friendly biocomposite materials commercially available.

collagen, starch, PVC, PEO, and PVA, have been used individually
and collectively in electrospinning, maintaining the required

The emergence of electrospinning technology to produce fibrous
structures with micro and nano dimensions has drawn signifi-
cant attention in recent years due to its predominant advantages
over other techniques." This electrofluidodynamic technique
involves the interaction of the polymer solution moving at a
constant flow rate with a high-voltage electric field at the tip of
the needle that is directly connected to a power supply.>
A significant number of natural and synthetic polymeric materials,
including polyamide, polyester, PCL, polyacrylonitrile, chitosan,
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processing parameters for particular application.>*

The formation of nano-inscribed biomaterials utilizing this
method is a contemporary issue because of their potential to
provide professional protection in health care, military person-
nel, and other day-to-day emergency response applications.”™*?
Electrospun nanofibers can also act as effective barriers against
microorganisms, particles, and liquids, as well as enhance the
mechanical, thermal, and chemical properties of the protective
products.'***> For example, electrospun nanofibers can be
used to fabricate masks, respirators, and personal protective
equipment (PPE) for medical and healthcare applications.
Conventionally, the development of nano biomaterials with
various functionalities, including germicidal activity, involves
the usage of metal nanoparticles and synthetic antibiotics.
However, their detrimental effects on the environment and
human health, and/or bacterial resistance issues have triggered
a surge in the use of natural antimicrobial compounds which
are expected to be non-toxic, sustainable, and less prone to
creating resistant bacteria.*®'”

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Plant extracts, with the advantage of their inherent medicinal
properties, have been used for numerous purposes, especially in
treating various diseases from time immemorial, and are consid-
ered to be the most prominent sources of biomolecules, which can
be screened from different parts of a plant, for example, seeds,
leaves, stems, flowers, etc.'® With the advent of various solvents
and advanced extraction methods, the extraction of such bio-
molecules from medicinal plants has become more effective
in terms of quantity and purity for their use in specific purposes.
The commonly used techniques for plant extraction include
maceration,'® digestion,'® decoction,*® infusion,>" percolation,*
Soxhlet extraction,> superficial extraction,> ultrasound-assisted

extraction,” and microwave-assisted extraction.”® Successful
extraction also involves employing various solvents of different
polarity, including polar to nonpolar, with a reasonable quantity
for appropriate and excellent yields of extracts and biomolecules.””

Several studies have proposed that solvents such as ethyl

acetate,”® hexane,”® dichloromethane,*® chloroform,*' acetone,*?
1’33

34 35
I, I,

ethanol,”” methanol,” and butanol,”” and/or a combination of
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solvents in suitable ratios are the best solvent systems for
extracting plant extracts. Because of improved biocompatibility,
biodegradability, low toxicity, and intrinsically large surface area,
nanofibrous mats are currently fabricated by incorporating
such medicinal extracts as functional additives for enhanced
biological activities and have emerged as novel materials for
various biomedical applications, such as wound dressing,*®
tissue engineering,’” and drug delivery.*®**° A significant num-
ber of research studies are therefore conducted on developing
plant extract-based nanofibers to explore their formation, char-
acterization, and potential applications in various fields. For
instance, preparation of electrospun nanofibrous mats incorpor-
ating Azadirachta indica,** Curcumin longa,** chitosan,** henna,**
Aloe vera,” moringa,®® sericin,"” lignin,*® honey,** ginger,*
keratin,* propolis,®® etc. in combination with various carrier
polymers for wound dressing and other biomedical purposes has
been rigorously investigated in several contemporary research
studies. Increasing efforts towards the process optimization
and functionalization of the nanomats are also being made to
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diversify their use. To date, fewer than 200 experiments have
focused on developing plant extract-based nanofibers, a small
number compared to the extensive research on electrospinning
post-commercialization (Fig. 1a). This figure is expected to grow
as interest in sustainable and bioactive materials increases.
Fig. 1b illustrates the diverse research interests in electrospin-
ning technology, with a significant emphasis on polymer science
(41%), highlighting its foundational role in nanofiber produc-
tion. The substantial focus on agricultural and food chemistry
(18%) and biomedical materials (16%) underscores the potential
of electrospun nanofibers in biodegradable packaging and
advanced medical applications, respectively. The notable por-
tions dedicated to biochemistry and pharmaceutics (15%) and
nanoscience (10%) indicate ongoing efforts to enhance pharma-
ceutical formulations and understand nanofiber properties at
the nanoscale, demonstrating the technology’s multidisciplinary
impact. The novelty of this paper lies in its comprehensive
examination of the integration of plant extracts into electrospin-
ning solutions, highlighting the innovative techniques used for
fabricating advanced functional nanofibers and their potential
applications in biomedical and packaging fields. Additionally, it
provides a detailed discussion of the benefits of green electro-
spinning as a sustainable alternative to metallic nanoparticles.

Considering the current research gap, the purpose of the
present review is to compile the existing research on plant
extract bioactive materials and their integration into electro-
spinning solutions for creating functional nanofibers. This
review aims to highlight the fabrication techniques, potential
applications, and challenges in developing plant extract-based
nanofibers, offering insights into overcoming these limitations for
future advancements. Besides, the adverse effects of metallic
nanoparticles and the importance of green electrospinning, fol-
lowed by the formation and characterization of functional nano-
fibers, have been explained meticulously. Various challenges in
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fabricating plant extract-based nanofibers and potential scopes to
overcome the limitations have also been discussed in detail.

Electrospinning fundamentals

Electrospinning is defined as a process of fabricating ultrafine
nanofibers (nanometer size) by ejecting a charged polymer
solution or melting through a spinneret under a high-voltage
electric field, followed by its solidification in the form of
filament.”>* Key steps include preparing the polymer solution,
loading it into a syringe, applying high voltage to create a Taylor
cone, forming nanofibers as the solution is ejected towards a
grounded collector, and collecting the fibers on a non-woven
mat.>® Challenges such as controlling fiber diameter and
morphology, scalability, and ensuring uniform nanoparticle
distribution are crucial considerations. The electrospinning
technique was initially invented by J. F. Cooley in 1900, and
W. J. Morton improved the design of the electrospinning setup
immediately thereafter, in 1902.°®*” Later on, J. Zeleny
described the behavior of fluid droplets at the extremity of
metal capillaries, and since then, the utilization of needle-
equipped spinnerets has become a common practice.”® The
work of A. Formhals, who patented 22 improvements of the
electrospinning technique between 1931 and 1944, signifi-
cantly enhanced the field.**"®" This work not only dealt with
the process itself but also resulted in an improved apparatus for
preparing nanothreads. In 1938, N. Alber, N. D. Rosenblum,
and I. Kurchatov promoted the first commercial application of
nanofibers.®> They developed filter materials known as “Pet-
ryanov filters” from electrospun fibers and were awarded the
Stalin Prize for their efforts.>®°%%

The theory behind electrospinning was developed by Sir G. L.
Taylor in 1969 and was the first mathematical modeling of
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Fig. 1 Published research articles relevant to plant extract-based nanofibers: (a) quantity of papers published based on year and (b) data analyses
according to subject area (data obtained from SciFinder, searching for “plant extract nanofibrous”).

electrified fluids.®* He modeled the behavior of fluid droplets
under the effect of an electric field and mathematically
explained the formation of the cone, later named the Taylor
cone.*® In the last 20 years, a number of patents and patent
applications have been developed on the topic of electrospinning
by large industry players such as Elmarco, Dienes, eSpin Technol-
ogies, Nano Technics, KATO, Donaldson Company, Freudenberg
Tech, etc. As of now, around fifty thousand (50000) articles,
patents, and books have been published on electrospinning.®®
The incorporation of plant extracts into nanofibers presents
significant challenges and limitations, primarily due to the
potential for variability in extract composition and concen-
tration, which can affect the consistency and reproducibility
of the nanofibers’ properties. Additionally, the stability of plant
extracts during the electrospinning process and their long-term

© 2024 The Author(s). Published by the Royal Society of Chemistry

stability within the nanofibers are critical issues. Various
electrospinning techniques also pose challenges, including
controlling fiber diameter and morphology, scalability for
industrial production, and ensuring uniform distribution of
nanoparticles within the fibers.®® These limitations necessitate
ongoing research and optimization to fully leverage the benefits
of plant extract nanofibers.

Classification of electrospinning

The electrospinning process can be classified into four broad
types: solvent-free electrospinning, electrospinning from
solution, electrospinning from ionic liquids (ILs), and colloid
electrospinning, also known as suspension electrospinning.

Mater. Adv,, 2024, 5, 7862-7890 | 7865
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Several techniques of electrospinning are illustrated in Fig. 2
(with needle) and Fig. 3 (needleless). Solvent-free electrospinning
is particularly well suited for tissue engineering and wound
dressing materials since the produced fibrous materials are
suitable for further treatment. However, only a few researchers
have paid attention to this solvent-free electrospinning process.®”

Melt electrospinning, supercritical CO,-assisted electrospin-
ning, anion-curing electrospinning, UV-curing electrospinning,
and thermo-curing electrospinning are all examples of solvent-
free electrospinning. The most significant benefits of these sys-
tems are efficient, controlled, and environmentally friendly pro-
cesses that produce harmful residue-free ultrafine fiber. As a
result, it is very engaged in biomedicine, tissue engineering, and
textile engineering. However, because of the high setup require-
ments due to the precursor’s comparatively greater viscosity, large
diameter fibers due to no solvent evaporation, and electrical
bending instability, this technique is not widely employed.®”

Solution electrospinning, the most extensively used method,
requires the use of suitable solvents to solubilize the polymers
and form homogeneous polymer solutions. It has a number of
distinct advantages, including the availability of solvents, an
elevated level of interest in biomaterial manufacturing, and the
ability to commercialize the technique for bulk nanofiber
manufacture.*®*® Because most biopolymers do not dissolve in
water, this method of electrospinning requires the use of appro-
priate solvents. Even though some polymers are dissolvable in
water, the surface tension of water might make it difficult to
obtain smooth nanofibers. However, this method has notable
drawbacks, including challenges related to the dielectric con-
stant, conductivity, and volatility of the solvents used.®®

View Article Online

Review

Green solvents, such as ionic liquids (ILs), are an emerging
research area in biopolymer dissolution. Environmentally
friendly nature, effective dissolving of carbohydrate materials,
good thermal stability, low vapor pressure, and variable viscos-
ity are only a few of the benefits of ILs.®*”> The different types
of ionic liquids result from how various forces work together,
such as coulombic, van der Waals, and hydrogen bonding
forces. These bonds and forces allow properties including
viscosity, density, solubility, melting temperature, and hydro-
phobicity to be tailored to fulfill a variety of processing needs.”®
These solvents also have the benefit of being able to be
separated and recovered fast, unlike traditional solvents.

In addition to the abovementioned electrospinning methods,
colloid or suspension electrospinning is a unique method of
producing nanofibers. Like the solution electrospinning, this
system requires three essential components: application of
high voltage, needle, and collector. The fundamental benefit of
this technique is that it keeps colloids in fibers immobilized.
Colloids in the electrospinning feed, on the other hand, compli-
cate the prediction of a system’s theoretical features of physico-
chemical parameters.”*

Physiological and ecological aspects of
metal nanoparticles

In healthcare applications, such as cosmetics, pharmaceuticals,
and food industries, synthetic antibiotics and metallic compounds
utilized in biomedical nanofibers have been linked to elevated
health and environmental risk.’” To date, several investigations on
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metal particle-based nanofibers for biomedical applications have
been conducted. Silver, gold, and zinc particles are the most
used metal particles, as shown in Table 1. These particles have
no negative impact on the human body when used in moderate
amounts.”>”® Nonetheless, these nanoparticles have a number
of distinct advantages when used in biomedical electrospun
nanomats. Silver nanoparticles (AgNPs) are the most extensively
employed substance in nanomats. The efficacy and antibacterial
and bactericidal effects of AgNPs have been studied in a number
of investigations. The efficiency of these nanoparticles
against multi-resistant and biofilm-forming bacteria was their
main advantage.””””® Bergin and Adhaya et al showed that

Table 1 Health hazards associated with metallic nanoparticles

AgNPs and silver sulfadiazine were beneficial in treating chronic
wound and burn infections.?**"

However, despite these benefits, metallic compounds have
several detrimental impacts on health and the environment.
According to Adhaya et al., these chemicals could cause tissue
toxicity.®" Furthermore, some researchers claim that silver-
based biomedical nanomaterials cause blue-gray coloration
on the skin after a prolonged time due to increased melanin
production caused by silver, resulting in skin diseases such as
argyria’® and reoccurrence of silver-resistant bacteria.'**"*%
Szmyd et al. reported that high AgNP concentrations impair
keratinocyte viability, metabolism, and migration by activating

Metallic particles Potential adverse effects

Ref.

Silver nanoparticles and silver nitrate

Zinc oxide nanoparticles
Gold nanoparticles
Iron oxide nanoparticles

Piroxicam

Titanium dioxide nanoparticles
Silicon dioxide nanoparticles
Copper oxide nanoparticles

© 2024 The Author(s). Published by the

Tissue toxicity, skin diseases such as argyria, cell death, and dose-dependent DNA  81-89
damage, highly toxic to mammalian cells, sperm cell damage

Hazardous to mammalian cells 83, 84, 90 and 91

They can easily enter the cell membrane and assemble into vacuoles 84,92 and 93
DNA damage, oxidative stress, mitochondrial membrane dysfunction, and chan- 88 and 94
ges in gene expression

Ulcers, bleeding, or holes in the stomach or intestine 95

Vesicle formation after internalization, apoptosis, cytotoxic 96

Reactive oxygen species (ROS) generation, lipid peroxidation - oxidative stress 97
Dose-dependent oxidative stress, genotoxic effects, kidney, liver, and spleen are 98 and 99

the target organs
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caspase 3 and 7, which are implicated in cell death and dose-
dependent DNA damage.®*

A series of studies have demonstrated that AgNPs are highly
toxic to mammalian cells’®*™*°® including brain cells,'®” liver
Ce113’107 104
significant investigation that AgNPs harmed male reproduction
due to their high toxicity. According to this study, AgNPs pass
the blood-testes barrier and are deposited in the testes, causing
sperm cell damage.'%® Takenaka et al. found in their studies
that AgNPs can cause damage to the cardiovascular system.
They looked at the pulmonary and systemic distribution of
inhaled ultrafine elemental AgNPs in rats and discovered silver
in the lungs after the exposure had finished. They also dis-
covered that Ag was present in significant amounts in the
blood, kidney, spleen, nose, brain, and heart.'®® Because of
their large surface area and small particle size, AgNPs can
interact with membrane surfaces and propagate throughout
the human body. This contact with membranes may produce
extremely reactive and harmful radicals, such as reactive oxygen
species, which can induce inflammation and damage mito-
chondrial cells. It has also been connected to neurological
issues, gastrointestinal distress, headache, and fatigue.*°

Similarly, ZnONPs are widely used in various hydrogel-based
wound dressing materials.’>''* ZnONPs, on the other hand,
have been reported to be less hazardous to mammalian cells
than AgNPs."'>'"® Coatings, cosmetics, packaging, and medic-
inal applications are only a few of the applications of these
nanoparticles."**'™ Most investigations looked into the cyto-
toxicity of ZnONPs concerning their extracellular dissolution.'"
This occurs because of an increased level of [Zn**]. A study
revealed that 300 mg kg~ " ZnONPs cause cellular damage in the
liver of mice after 14 days of subacute oral therapy. In addition to
high alanine aminotransferase and alkaline phosphatase levels,
there were pathological lesions in the liver. ZnONPs increase
lipid peroxidation to demonstrate oxidative stress. The liver was
subjected to oxidative stress, which generated Fpg-specific DNA
damage.'"”

AuNPs are also employed in nanofiber fabrication. These
particles are used in wound therapy because of their chemical
stability. They have antibacterial and healing properties both
in vitro and in vivo, as investigated by Arafat et al.'*®''® AuNPs
are usually considered to be bioinert, but questions have been
raised regarding their safety. However, Lu et al. found that these
particles’ cytotoxicity is linked to their high concentration. AuNPs
trapped in the liver can affect the function of this organ.** The
deleterious consequences of AuNPs were investigated by Nadine
et al., who showed that particles as small as 14 nm could easily
enter the cell membrane and assemble into vacuoles. In dermal
fibroblasts, this penetration resulted in aberrant actin filaments
and extracellular matrix constructs.'”’ Research indicates that
cells can endocytose nanoparticles of gold and form cytotoxic
aggregates. HL7702 cells were used to study the interaction
between gold nanoparticles and glutathione, and the impact of
this interaction on apoptotic signaling (human liver cell line)."*>

Titanium dioxide nanoparticles (TiO,NPs) exhibit unique phy-
sical and chemical properties in cosmetics and pharmaceuticals

and stem cells.”™ McAuliffe et al. revealed in another
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because of their high surface-to-mass ratio. However, researchers
used TiO,NPs on rat and human glial cells to study the activities of
the nervous system (C6 and U373). They found that the immuno-
localization of F-actin is inhibited by TiO,NPs.'** Long-term
inhalation of TiO,NPs may harm the brain.’® Animals exposed
to TiO,NPs develop lung inflammation. The effects of intratracheal
TiO,NPs on chronic pulmonary injury were evaluated for ninety
days. The results suggested that the usage of TiO,NPs irritated the
lungs and caused hemorrhage. TiO,NPs increased lung antioxi-
dant capacity and lipid peroxidation in rats."**

Copper oxide nanoparticles (CuUONPs) are widely employed
in material development, including nanofabrication. CUONPs are
lethal to mammalian cells due to the induction of oxidative stress.
It is still unknown whether CuONPs constitute a genotoxicity risk
to people. There is a correlation between p53 and the lung
epithelial cell toxicity of CuONPs (A549). CuONPs reduced, in a
dose-dependent manner, the viability of cells exposed to them.
CuONPs result in glutathione depletion, lipid oxidation, an
increase in catalase activity, and the activation of superoxide
dismutase. They promoted the activation of the inflammation
detecting Hsp70 protein. CuONPs had a similar positive effect on
Rad51 and MSH2 DNA repair proteins. CuUONPs have been shown
to induce A549 cells to perish as a result of oxidative stress.”® The
Hodge and Sterner scale classifies CUONPs as moderately hazar-
dous. They target the kidneys, liver, and spleen, among other
organs. These nanoparticles damaged the kidneys, liver, and
spleen of mice; however, micro copper particles had no effect.”

Despite the health issues, these nanoparticles are linked to
threats to the environment and biological organisms.">® The
utilization of nanoparticles has enhanced artificial synthesis.
Increased exposure of modified nanoparticles to biotic and
abiotic ecosystem components will result from their rapid
production and utilization. While nanomaterials are widely
used, their long-term presence and prolonged exposure can
be harmful to the environment. To examine the environmental
implications of nanoparticles, it is crucial to comprehend their
negative effects, how their dissolution in water influences their
toxicity, their propensity to aggregate or settle, and their fate
during wastewater treatment and incineration. However, it is
necessary to study the acute and long-term effects of customized
nanoparticles on the skin, gastrointestinal