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Abstract

Protein design and directed evolution have separately contributed enormously to protein 
engineering. Without being mutually exclusive, the former relies on computation from first 
principles, while the latter is a combinatorial approach based on chance. Advances in ultrahigh 
throughput (uHT) screening, next generation sequencing and machine learning may create 
alternative routes to engineered proteins, where functional information linked to specific 
sequences is interpreted and extrapolated in silico. In particular, the miniaturisation of 
functional tests in water-in-oil emulsion droplets with picoliter volumes and their rapid 
generation and analysis (>1 kHz) allows screening of >107-membered libraries in a day. 
Subsequently decoding the selected clones by short or long-read sequencing methods leads 
to large sequence-function datasets that may allow extrapolation from experimental directed 
evolution to further improved mutants beyond the observed hits. In this work, we explore 
experimental strategies for how to draw up ‘fitness landscapes’ in sequence space with uHT 
droplet microfluidics, review the current state of AI/ML in enzyme engineering and discuss how 
uHT datasets may be combined with AI/ML to make meaningful predictions and accelerate 
biocatalyst engineering.  
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0. Introduction

Protein engineering has made remarkable progress over the last decades, based on advances 
in recombinant DNA technology and site-directed mutagenesis1, directed evolution2, 
mechanistic and structural analysis3 and computational design4. Nevertheless, the ambition of 
the original protein engineering, formulated as ‘designing tailor-made enzymes for every 
reaction”5, has not been fulfilled so far, still warranting Jeremy Knowles’ warning about the 
premature use of the term ‘engineering’ in 19876. Two potentially crucial contributions have 
emerged more recently: on the one hand, development of new assay formats that make it 
possible to gain quantitative insight not only into one enzyme mutant at a time, but at a large 
number of them.  When this comes at a low cost, by taking advantage of miniaturization - e.g. 
through microwells in microfluidic chambers7 or in in vitro compartments in microfluidics8 - 
much larger fractions of amino acid sequence space can be explored and functionally 
evaluated. On the other hand, machine learning offers increasingly capable algorithms suitable 
for interpreting such large datasets. Will it be possible to decipher complex combinatorial 
scenarios contained in these data and access mechanistic scenarios that would defy 
hypothesis-driven approaches, to enable extrapolations to inform biocatalyst engineering? Are 
these two approaches a natural match?  Where do they synergise and how might they be 
combined to obtain insights on enzyme function and evolution that thus far have remained 
elusive?

1. Microdroplets as in vitro compartments generated and screened 
in microfluidic devices – three examples for screening workflows

Screening diversity is central to protein engineering efforts and scale is crucial to identify rare 
hits in the vastness of sequence space. Water-in-oil emulsions promise several orders of 
magnitude higher throughput compared to traditional microtiter plate screening approaches by 
massively reducing the volume of an experiment without use of plasticware (> 107-fold volume 
reduction compared to the regular 96-well plate format with a ~200 µl volume) (Figure 1). A 
large body of work in soft matter physics has equipped us with the ability to generate water-in-
oil emulsion droplets in microfluidic devices at >kHz rates that allow analysis of >107 variants 
per day9. Analytical interfaces exist to measure reaction progress at comparable scales, e.g. 
via detection by fluorescence10 or absorbance11,12 (or even label-free based on mass changes, 
albeit at lower throughput)13. When single emulsions are converted into double emulsions, 
commercial flow cytometers can be used for detection of fluorophores14. Further, lab-on-a-chip 
devices miniaturise more complex liquid handling operations and coupled assays enlarge the 
range of reactions that can be assayed11,15,16,17. Indeed, functional assays for all E.C. classes 
are already available 8. The abovementioned scale and cost benefits of droplet experiments 
match recent advances in next generation sequencing technologies: thus large sequence-
function datasets can be generated at much lower cost and with shorter lead times than 
conventional experimental formats (Figure 1). Although sequence space is notoriously vast 
(for a 100 amino acid protein there are 1.3*10130 possible combinations), data in which 
sequence and function are correlated may contribute to rough descriptions of ‘fitness 
landscapes’ that track and inform the navigation across more or less interesting sections of 
sequence space18 19. 
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Figure 1: Profiles of low to ultrahigh throughput experimentation systems (tubes, 
multiwell liquid handling systems, HT-MEK7 and emulsion droplets8) that may be used as data 
generation tools for machine learning with their specific benefits and limitations. 

Three examples show this technology in action, taking library screening experiments in 
droplets (Figure 2) all the way to ‘maps’ of sequence space (Figure 3). Each example 
illustrates a distinct workflow (Figure 2) in which large scale screening allows to infer 
information on fitness landscapes, generating substantial datasets that may be useful for AI/ML 
interpretation: 

(A) Evolution of an amine dehydrogenase (AmDH), a valuable biocatalyst for the synthesis of 
chiral amines. Zurek et al.20 screened libraries of AmDH variants generated by error-prone 
PCR mutagenesis. Libraries were transformed into E. coli for expression. Single cells were 
encapsulated into droplets with substrates for a coupled assay using the dye WST-1 as a 
turnover sensor (Figure 2A). Positive variants were selected based on an absorbance 
measurement (>105 droplets per hour, but faster systems are now available12,21) and DNA was 
recovered and sequenced using UMI-linked Oxford Nanopore sequencing (UMIC-seq) to 
achieve high-quality. 

(B) Mutational scanning of a protein kinase involved in signaling networks. The human protein 
kinase MKK1 is an example of a broad class of phosphate transfer enzymes involved in 
signalling networks. In order to explore how these evolve, MKK1 (which targets ERK2) was 
randomised with a focus on six residues in its docking domain (D-domain), which mediates 
interaction with the downstream kinase ERK, activating its kinase activity. Each MKK1 variant 
was tested for its ability to bind and phosphorylate ERK2 in a coupled assay (Figure 2B) 
exploring a scenario of neutral roaming in sequence space (i.e. a non-adaptive evolution 
experiment). The library was expressed (using a commercial in vitro transcription/translation 
system) in a polydisperse emulsion containing monoclonal magnetic beads. This cell free 
approach alleviates issues that frustrated previous in vivo kinase screens such as cellular 
background and functional redundancy, while it simultaneously benefits from the robust 
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expression of kinases in an in vitro transcription/translation system. Selections were carried 
out in polydisperse emulsions (not even necessitating the use of microfluidics) and the gene 
as well as the substrate (giving a GFP readout when a kinase target sequence was protected 
by successful kinase action against proteolysis) were immobilized on a bead, so that flow 
cytometric sorting (FACS) could be used to identify active clones. Using next-generation 
sequencing (NGS) of the D-domain to calculate enrichment scores, functional combinations of 
D-domain variants were mapped out. 

(C) Identifying promiscuous phosphotriesterases in metagenomic libraries. A metagenomic 
library with 1.25 million genomic inserts of mixed environmental origins (soil, degraded plant 
material and cow rumen) was screened using a fluorescent assay reporting on 
phosphotriesterase activity (Figure 2C). The brightest 0,001% of droplets were sorted, 
sequenced using Sanger sequencing and characterised to reveal novel, uncharacterised 
"bridgeheads" in sequence space which is now functionally annotated in areas where 
homology-based classification would not have predicted phosphotriesterase activity. 

Figure 2: Ultra-high throughput screening workflows coupled to sequence data 
generation. (A) Single cells can be encapsulated in droplets with substrates and lysis agent. 
The amine dehydrogenase reaction is coupled to WST-1 reduction forming a colorimetric 
readout. Active variants are sorted using AADS (absorbance-activated droplet sorting) and the 
output is sequenced using high-quality Nanopore sequencing (UMIC-seq). (B) Monoclonal 
beads carrying GFP linked via a chymotrypsin cleavage sequence are encapsulated and the 
kinase cascade is expressed via IVTT. A phosphorylated linker sequence is resistant to 
chymotrypsin cleavage. Active variants are sorted by FACS of the beads with multiple gates 
and the D-domain sequence and enrichment is read out via next generation sequencing 
(NGS). (C) Single E. coli cells expressing metagenomic library members are encapsulated into 
droplets along with a fluorogenic phosphotriester substrate. Phosphotriesterases hydrolyse the 
phosphotriester releasing fluorescent fluoresceine. Droplets containing active variants are 
sorted at >1 kHz using FADS (fluorescence-activated droplet sorting) and hits are revealed by 
Sanger sequencing of the selected clones. 
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2. What kind of data do we generate in large scale droplet 
experiments?
Our objective is to reveal fitness landscapes to visualize the exploration of sequence space 
and ultimately steer ‘walks’ towards zones in which new or improved activities are more likely. 
Droplet experiments inform the maps by providing sequence information on individual variants 
correlated to a specific functional label (i.e. a qualitative or quantitative assessment of activity). 
While the variant sequence can be easily read out at the end of a screening workflow, 
functional labels can often only be obtained indirectly and require creative experimental design. 
Examples for such functional labels are variant identification after passing a set threshold for 
sorting in directed evolution or quantitative enrichment scores by deep mutational scanning22, 
which has recenty been integrated with high throughput screening and machine learning 
treatment58. More generally, these labels can be categorized as binary data (e.g. selection is 
either successful or unsuccessful)23,24 versus binned quantitative data (with granular 
enrichment scores)25. (These approaches are referred to as ‘categorically quantitative’ in 
Figure 1.)

The type of label that can be obtained from a large-scale droplet experiment is highly 
dependent on the chosen library size and design, the microfluidic workflow, and the choice of 
the sequencing strategy. NGS offers high enough sequencing depth to generate binned 
quantitative data (granular enrichment scores) for sequence-function mapping: reporting how 
often a variant occurs in the input vs. the output library. The technology used for sequencing 
determines the information content further. Short reads with only up to 600 bp read length (with 
2x300 paired end sequencing) adequately describe mutational patterns in small proteins26 or 
functionally defined regions of proteins25 well. However, long read sequencing technologies 
are necessary to reveal long-range epistatic effects in larger proteins. Corresponding datasets 
can be obtained with PacBio or Oxford Nanopore instruments. Oxford Nanopore sequencing 
is cheap (<1.1¢ per sequence)20 and can be carried out in any lab at low cost, while the capital 
expenditure for a PacBio (250,000$ for PacBio vs <1000 for a Minion device) makes this 
impractical. The two technologies differ in their read quality, with PacBio giving high quality 
reads at single nucleotide resolution. Oxford Nanopore devices suffer from high error rates 
and are unable to pin-point single nucleotide mutations, but a workaround – consisting of UMI 
(unique molecular identifier) labelling followed by clonal amplification and consensus 
generation from multiple sequences (that are tagged by the same UMI)20 – exists to produce 
high quality sequence of even single amino acid mutants. While short-read NGS can be used 
to generate binned quantitative data with granular enrichment scores, long-read sequencing 
technologies operate at lower scale (90 Gb for PacBio, 50-110 Gb for Oxford Nanopore 
compared to up to 3000 Gb with Illumina sequencing) and are currently limited to the 
generation of binary data on variant identification per round of selection in directed evolution. 

Each of the three studies reviewed here (Figure 3) uses different experimental designs, so the 
sequencing strategies are correspondingly different, but all three arrive at representations of 
hits in sequence space that can be interpreted as fitness landscapes.

(A) AmDH screening (Figure 3A). In AmDH evolution long-read Nanopore sequencing (in a 
commercial MinION flow cell; Oxford Nanopore) was used to sequence 3000 hits with an activity 
higher than the threshold chosen for screening. A crucial accuracy improvement is achieved by 
tagging variants with unique molecular identifiers (UMIs): these are then amplified clonally, 
multiple nanopore sequences are generated and finally evaluated by deriving a consensus from 
many reads per amplified variant. In this way the sequencing accuracy was dramatically 
increased to > 99.99%. The improved accuracy for cost efficient long-read Nanopore sequencing 
is crucial for confidently resolving multiple mutations per variant and thus mapping evolutionary 
trajectories. The resulting dataset gives a fitness landscape shown in Figure 3A that illustrates 
the evolution of a functional protein through three generations of ultrahigh throughput screening 
in directed evolution, in which the 3000 best hits of 250,000 variants were sorted and sequenced.  
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The apparent clustering reveals intra-gene cooperativity of mutations (epistasis), for which 
accurate long read sequencing was necessary and provided experimental evidence for sign 
epistasis. Information from multiple rounds of directed evolution would constitute a dataset 
conditioned by the combinability of mutations. The analysis of evolutionary trajectories in this 
way may help to extract features for further labelling and reconstructing or extrapolating 
functional evolution. Such features will be identified by their acquisition and conservation through 
rounds of evolution and may include residues with a catalytic function (near the active site), but 
also enhancing solubility (on the outside of the protein), stability (e.g. residues allowing improved 
packing or better hydrophobic interactions in the core of a globular protein), introduction of 
conformational flexibility or disorder (e.g. in order to facilitate recognition of new substrates or 
remove steric clashes) and finally patterns of the aforementioned epistatic interactions (i.e. long 
range interactions between often distant residues). 

(B) Kinase screening (Figure 3B). The narrow focus on the well-known docking domain (D-
domain) of kinases made it possible to use the short reads provided by Illumina sequencing to 
draw up a fitness landscape.  A starting library of 500,000 mutants was generated from 
randomising six residues in the MKK1 docking domain (synthesised on beads by spit-and-mix 
assembly, with high quality and equal representation of nucleotides27). Library members were 
sorted into three bins according to activity. 2.9×104 MKK1 variants are functional, providing a 
rich dataset to explore cooperativity between the different randomised positions. Enrichment 
analyses identified patterns of interdependence between the randomized positions, 
highlighting the role of cooperative hydrophobic effects and charge balance. Taken together, 
the patterns are displayed in a fitness landscape in which transitions from one sequence motif 
to another are generally possible. Many well-connected variants capable of substrate binding 
and phosphorylation suggest high evolvability. The extensive well-labeled sequence dataset 
(Figure 3B) carries information about implicit positive epistasis and may be further 
interpretable by ML in the future. 

(C) Triesterase screening (Figure 3C). Screening of a metagenomic library (in binary mode 
for overcoming a phosphotriesterase activity threshold) yielded 8 hits, the majority of which 
had not been recognized as phosphotriesterases before. These new enzymes will constitute 
bridgeheads in sequence space for further annotation, being selected for function rather than 
found by sequence homology. New functional motifs were recognized, e.g. an a/ß hydrolase 
fold, in which a catalytic triad (with a cystein nucleophile) served as a multiple turnover catalyst, 
despite its similarity to the target of phosphotriester as a toxin, an active site catalytic triad 
(containing serine) that is suicide-inhibited by the triester. Newly identified enzymes from this 
approach will be useful as binary activity label for ML-based functional annotation  to further 
annotate sequences in large metagenomic databases such as MGnify28.

The three campaigns provide examples for sequence space explorations, in which the 
experimental design and selection criterion shapes both, the area of sequence space that is 
explored and the functional readout that ultimately completes a fitness landscape by adding a 
third, functional dimension to sequence space (as represented by two notional dimensions).  
(A) The case of kinase MKK1 is producing a dataset (Figure 3B) focused on the small fraction 
of sequence space represented by docking domain mutagenesis and functionally annotated 
with granular enrichment scores that map a smooth fitness landscape with many overlapping 
functional motifs.  
(B) The data on AmDH (Figure 3A)20 covers mutations across the entire protein (being derived 
from an epPCR library) and thus samples a larger area of sequence space. The dataset can 
be interpreted as an exploration of sequence space in all directions, as long as the selection 
criterion of increasing AmDH activity is fulfilled (measured by a binary assay). The resulting 
fitness landscape is more complex and shaped by long-range epistatic effects that define 
founder mutations, with considerable ‘ruggedness' of the fitness landscape (resulting in some 
mutational paths closed off due to sign epistasis), but also with evidence for positive epistasis 
across the protein structure (where the combined effect of two mutations can be larger than 
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the sum of their individual contributions). Ruggedness in the fitness landscape with fewer paths 
for evolution suggests that transitions are more difficult and the evolvability potentially reduced 
due to intrinsic response of this protein to mutations. 

(C) Finally the sequence context in which new phosphotriesterases are found is much broader 
(Figure 3C)23, starting from a diverse metagenomic library (rather than a randomised single 
protein) and identifying peaks only in a binary screen. Additional surrounding sequences can 
be derived from sequence repositories, but as their function is inferred rather than tested, no 
inference about the shape of a fitness landscape can be made: it is simply annotated. 

Interpreting large sequence collections rather than individual single mutants (e.g. a ‘winner’ of 
a selection or screening experiment) may offer additional insight. It is tempting to hope that the 
data can be used to reliably extrapolate from experimentally characterized variants and predict 
new ones with higher fitness. Cooperative epistatic effects define an evolutionary trajectory 
and may be inferred from information on groups of mutants (either as long-range intra-gene 
effects in ‘founder mutants’ of AmDH20 or as short range effects focused on the MKK1 kinase 
D-domain25) and its analysis may allow predictions29.  Even for metagenomic explorations23,30, 
functionally annotated data can be the basis prediction.

Figure 3: Functional annotation of sequence space. (A) Exploring productive trajectories 
on the fitness landscape of an amine dehydrogenase in three rounds of directed evolution20. 
(B) Scanning the fitness landscape of a short kinase docking domain (D-domain) with 
increasing thresholds for comprehensive epistasis mapping25. (C) Identifying islands of 
sulfatase and phosphotriesterase function in an unexplored landscape through functional 
metagenomics23.
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3. The current state of AI for enzyme engineering

Figure 4: Breakdown of key aspects of AI enzyme engineering efforts. We distinguish 
between the pre-training (training on general data) and assay specific training (training on data 
from the targeted assay), which gives rise to three usage regimes: (i) Zero-shot = pre-training 
only. (ii) Assay supervised = training only. (iii) Assay aligned = pre-training + training. Note that 
multiple pre-training steps are possible. Further details are explained in the text.

Given the demand for green, carbon neutral biocatalytic processes that require new or 
improved enzymes, it is tempting for protein engineers to dream of an algorithmic black box 
that automatically and reliably produces instructions for enhanced activity improvements as 
easily as AlphaFold231 comes up with a structural model.  However, structure is easier to 
predict than activity, with the latter requiring sub-Angstrom precision in the active site and 
orchestrating a number of catalytic effects just in time to cross the transition state. Furthermore, 
the input dataset for AlphaFold2 is the well-established, rigorously quality-controlled, and 
systematically organized PDB which was built up in a community effort over years. In contrast, 
there is no such systematic framework for functional characterisation of large enzyme libraries 
yet. While substantial organizational effort has been put into EnzymeML32, this data exchange 
format is based on STRENDA, ready to receive high quality data on a few enzymes (or 
mutants) rather than necessarily shallower ultrahigh throughput data on fitness in larger 
libraries. 
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To discuss the interface between ultrahigh-throughput experiments and AI, we must must 
understand the AI enzyme engineering landscape (Table 1). AI models differ in the extent to 
which they rely on rules derived from prior knowledge or autonomously identify statistical 
patterns in data without user input. A useful distinction can be made between expert systems 
that make decisions based on rules drawn up by a human expert (e.g. gravy hydrophobicity33 
or BLOSUM substitution34). In contrast, machine learning is an umbrella term for techniques 
that do not rely on such rules, but instead derive rules from data (the “learning” aspect in 
machine learning) (e.g. linear regression, random forest, etc.). Deep learning is a subclass of 
machine learning and loosely distinguished from general machine learning by its large count 
of learnable parameters: often of similar  or larger order of magnitude to the available 
datapoints (or beyond). Many contemporary neural network approaches, such as 
Transformers35 (the main component of modern language models36), AlphaFold231 and 
convolutional networks37 belong to this category. The amount of data available is a first criterion 
in the choice of a model, with deep learning approaches being more data hungry, while general 
machine learning techniques can live with smaller fewer data inputs. The parameters of these 
models are then tuned in one or more ‘training’ steps. 

The training steps determine the data used and how it informs the model's parameters. We 
distinguish between pre-training steps, which use general data such as observed sequences 
on UniProt or general thermostability annotations from FireProtDB38, and assay specific 
training, which uses data from the targeted assay. A pre-training step may proceed self-
supervised or supervised: In the self-supervised mode only sequence or structure are 
available, while a functional label, e.g. an activity measurement is absent. Instead of functional 
labels, "pseudo-labels" unrelated to function are created by masking parts of the sequence or 
structure and predicting the amino acids that should occupy the masked positions. This 
approach is called “self” supervised, because the labels are generated from the datapoint itself, 
through a masking process. This pre-training mode is used e.g. for protein language models39 
and also for methods that take the structural environment into account40,41.  By integrating this 
information, the model learns to pick up on common sequence or structural motifs. 
Alternatively, when we have access to a experimental mapping of sequence to function or a 
relevant proxy, a model may be pre-trained in a supervised way given the annotation. In 
contrast to general pre-training, assay-specific training, requires labels from the assay of 
interest and is therefore only possible a supervised mode. 

Pre-training steps and assay-specific training can be combined. Workflows may include pre-
training steps (self-supervised or supervised) along with assay-specific training. The 
combinations of pre-training and assay specific training give rise to three broad usage 
regimes for a model to predict a target property (or generate a sequence with a desired target 
property value) that is probed by a specific assay run in the lab:
(i) zero-shot: In this case a model is only pre-trained on general data and is used “as is” 
without supervised training on any assay labelled data to predict a target property. For 
example, a language model (such as ESM) might be trained through self-supervision 
(sequence masking) on all sequences observed in UniProt, and subsequently used in a “zero-
shot” way by evaluating the probability that ESM assigns to a sequence containing a given 
mutation vs the probability of the wildtype sequence. This assumes that the target property 
correlates with the self-supervision task that was used during training (e.g. thermostability, 
because ‘natural’ motifs in UniProt must be at least marginally thermostable to be observed in 
living organisms). As another example, we might pre-train a linear regression model 
“supervised” on cDNA display proteolysis data42 from general proteins, and then task the 
model to predict thermostability of our target protein “as is” (zero-shot).
(ii) Assay aligned (also referred to as ‘transfer learning’ or ‘task-specific fine-tuning’ in the ML 
community): In the assay aligned regime, a model that was previously trained (= “pre-trained 
model”) on general data through self-supervision or supervision is “aligned” to the assay 
specific data through additional supervised training on a, commonly smaller, assay specific 
dataset. For instance, this may be achieved by using the same model (e.g. ESM) and updating 
its parameters slightly based on the assay labelled sequence-to-function data (‘fine-tuning’). 
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As another example, one may use another model which uses representations or outputs from 
the pre-trained model as some of its inputs and train it on the assay labelled data (‘feature 
extraction’). This process is illustrated for example in Hsu et al.43. where the output of ESM is 
used as input to a smaller linear regression. In essence, “assay aligned” usage takes an 
existing pre-trained model and trains it further with assay specific data. The loose idea is that 
this allows “motifs” and “patterns” that can efficiently be represented by the pre-trained model 
to be “re-mapped” to the assay data and thereby better extract which motifs might improve or 
decrease the targeted property.
(iii) Assay supervised: In this case the given model is trained in a supervised way directly on 
assay data without pre-training on other data. Since the amount of available assay data is often 
very low, the types of models in this approach tend to be general machine learning (not deep-
learning) models.

The functional coordinate defined by the assay determines the target property that is to be 
predicted, e.g. thermostability, solubility and expression, enzyme activity and cumulative 
characteristics (i.e. a mixed set of properties including general fitness, growth rate in the 
presence of antibiotic or lysate activity). 

Finally design space restrictions can be incorporated, e.g. by explicitly restricting options based 
on expert knowledge, such as evolutionary or structural data at the following levels: (a) 
assignment to a specific class of proteins, e.g. an EC category or a particular fold; (b) 
sequences derived from a specific protein: starting from the WT sequence improvements in 
the target property are sought by mutating any position or combination of positions in the 
wildtype enzyme; (c) specific regions of a starting protein are considered preferentially – e.g. 
mutations in a subregion of the wildtype defined from an evolutionary conservation threshold 
from an MSA, expert knowledge of key positions or an enzyme structure.
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Table 1: Overview of machine learning studies for enzyme engineering. We summarize studies in which engineered enzymes are predicted 
directly by the ML model and evaluated experimentally.

Enzyme Data AI model specification Achievement

Enzyme 
class Reaction Library 

screening
Library 

type Data type
Total 
Data 

points

Data 
points 

used for 
ML

Model type Training 
regime

Usage 
regime

Design 
space Target property Improvement 

top variant
% 

Success 
(>wt)

Reference

20 random 
singles1

20*
Random forest 

Specific 
region4 

specific activity: ~ 
wt

conversion: 4.6-
fold

Mixed 
(singles + 
1 EPCR 
round)1

~5’000 Random forest
Specific 
protein 

specific activity: 
1.3-fold

conversion: 8.3-
fold

Imine reductase
(IRED)

Robotic 
screening (plate)

Mixed 
(singles 2 

EPCR 
rounds)1

conversion 11303

~8’000 
Random forest & 

Structure-
informed

Supervised6
Assay 

supervised

Specific 
protein4 

Specific activity & 
conversion

specific activity: 
1.3-fold

conversion: 7.1-
fold

n.a.5 44

Oxido-
reductases

(EC 1)

Malate dehydro-
genease Zero shot (UniProt) Deep learning 

(Protein GAN)

Self-
supervised Zero-shot Class of 

proteins Specific activity Wild-type like 
specific activity 22%2 45

Glucose Oxidase Spectro 
photometer 

(plate)

Focused - 
from a 

previous 
campaign 

Michaelis Menten 16 7 16 7
Machine 
Learning

(Partial least 
squares) 

Supervised Assay 
supervised

Specific 
region

Michaelis Menten
kcat/KM: 12.1-fold7

kcat: 4.8-fold One 
Variant 

46

Halogenase LC-MS
(plate)

Focused (3 
sites) conversion 504 504

Machine 
Learning

(Gaussian 
Process)

Supervised Assay 
supervised

Specific 
region8 Conversion

conversion: 16-
fold

kcat/KM: 82-fold
kcat: 93-fold

100% 47

Hydroxylase XylM Biosensor
(plate)

Focused (5 
sites)

Sensor coupled to 
fluorescent 

protein

Round 
1: 126 

Round 
2:

126 + 
50

Round 1: 
126 

Round 2:
126 + 50

Machine 
Learning

&
Deep Learning9

Supervised
&

Self-
supervised 

Assay 
supervised

&
Assay 
aligned

Specific 
region9 Sensor / Yield Yield: 15-fold Sensor: 

94%
48

Transfe-
rases
(EC2)

Nitric oxide 
dioxygenase Plate assay Focused Enantiomeric 

excess

Round 
1: 124
Round 

2: 
155/166 

Round 1: 
124

Round 2: 
155/166 

Machine 
Learning3

Supervised Assay 
supervised11

Specific 
region Lysate activity 

and 
stereoselectivity

lysate activity: 
3.2-fold;

e.e.: 1.2-fold and 
reversed10

n.d.
360 

predictions 
49
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1

Luciferase Bioluminescence 
(plate)

Focused 
(non-cons 
regions)

Bioluminescence 164 164

Machine 
Learning 

(Gaussian 
process & 
self-play 

reinforcement 
learning)

Supervised Assay 
supervised

Specific 
region Bioluminescence Specific activity: 

7.8-fold
72%

(26/36)
50

Methyltransferase zero-shot (Structure-based)
Deep Learning
(MutComputeX)

Self-
supervised 

& 
Supervised

Zero-shot
Specific 
protein Product titer Conversion: 1.6-

fold 13 n.d. 51

Beta lactamase zero-shot (Structure-based) Deep Learning
(MutCompute)

Self-
supervised Zero-shot

Specific 
protein BLA activity

Antibiotic 
resistance > wt, 

no quant 
measurement

30% 52

Beta lactamase Antibiotic 
resistance

error-prone 
PCR

Antibiotic 
resistance

96 and 
24

96 and 
24

Deep Learning
(LSTM language 

model)

Self-
supervised

Assay 
aligned Specific 

region  
Enrichment under 

Amp selection

Enrichment up to 
~40-fold vs 

wildtype
2.5% 53

TEV protease zero-shot (deep learning-based design) Deep Learning
(Protein MPNN)

Self-
supervised Zero-shot Specific 

region
Fluorogenic 
substrate

kcat/KM: 26-fold 
(but mainly tied to 

solubility / 
thermostability)

3 out of 
144 

designs 
54

PETase zero-shot (structure-based) Deep Learning
(MutCompute)

Self-
supervised Zero-shot

Specific 
protein PET Hydrolysis 

Activity
Specific activity: 

29-fold 80% 40

Endonuclease 
(Ago Proteins – 

KmAgo)
zero-shot Deep Learning

(CPDiffusion)

Self-
supervised 
(on family-
focussed 
dataset)

Zero-shot
Specific 
protein1

2

ssDNA cleavage 
assay

DNA cleavage 
activity: up to 8.6-

fold
75% 55

Hydrolases
(EC 3)

Lysozyme zero-shot (UniProt pre-training)

Deep Learning
(ProGen 

language model)

Self-
supervised Zero-shot

Class of 
proteins 

 

Michaelis Menten 
kinetics

Wildtype-like 
activity n.a. 56

1 Training data heavily biased towards single mutations. A more sophisticated structure guided model that is less biased on single mutation data is also presented 
and shows similar improvements in conversion but no specific activity is reported. 
2 no wild type comparison available, % active variants used, all ordered (not only soluble) enzymes considered; Engineering for pH stability.
3 Starting with a panel of models from scikit-learn, the top three model types were selected and used to identify the top 1,000 sequences in each predicted library.
4 Presumably doubles/triples of the 20 input singles were considered.
5 Possible to express 168/200 ordered double/triple mutants.
6 Random forest on UniRep 1900 descriptors. Note: UniRep1900 is in principle a self-supervised trained language model, so it could be argued the training 
regime was supervised + self-supervised and the usage regime was assay aligned rather than assay supervised. 
7 Training data: (9 single mutants + 7 higher order combinations of those 9 singles from a previous DE campaign); Improvement for same pH as training data 
(claimed 121-fold improvement at different pH).
8 The selection of these 3 sites was based on (1) docking studies with the structure and (2) previously published literature results and (3) Previous knowledge of 
the enzyme. This is not trivial to replicate for any enzyme. 
9 This study used 2 models: A more shallow machine learning based one and a deep learning based one. specific region: 5 determined via alanine scan and 50 
variants were tested in each round.
10 Two variant engineered (S) & (R) specific: 93% ee / 79% ee for (S/R) respectively, starting from 76% ee (S).
11 Two rounds of evolution performed, while most other studies listed here perform one round.
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2

12 Based on endonuclease structure and sequence conservation data.
13 direct AI prediction is a single mutant (A53M) leading to 3-fold reduced side product formation, which was then combined with other predictions 
(rationally/assuming additivity) to get their 17-fold reduced off product formation.
14 Self-supervised: masked AA prediction in microenvironment; supervised: model selected based on correlation of zero-shot fitness with DeltaTM of single mutants 
in FireProtDB.
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4. Recent machine learning studies in enzyme engineering 

The large datasets emerging from ultrahigh throughput screens will be prime candidates for 
machine learning analyses. Especially unbiased datasets with large coverage of design space 
promise to hold solutions for problems that are difficult to access with traditional hypothesis 
driven research. However, the current studies on enzyme engineering that involve ML are 
using far smaller datasets. Nevertheless, even with smaller datasets remarkable progress has 
been made, highlighting what the use of ML has achieved and what one may expect if more 
data can be fed into the algorithms. 

Four groups of common workflows have been tested experimentally (see Table 1) and can be 
characterized by their primary variations in usage regime and design space (Figure 3B). We 
classify these as zero-shot approaches with focused (ZSF) or broad design space (ZSB) on 
the one hand, and, on the other hand, assay labeled regimes with focused (ALF) or broad 
design space (ALB). Assay labelled regimes with focused design space are usually informed 
by data from focused libraries targeting selected positions or regions in the protein only, in 
contrast to modes with a broader design space which, among others, include random 
mutagenesis (e.g. by error-prone PCR) across the entire protein. 

4.1 Zero-shot regime without assay-labeled data (yellow sections in Table 1)

4.1.1 Zero-shot with focused design space (ZSF)

Zero-shot ML only requires knowledge of the wild type sequence or structure and has been 
successful for identifying expressible and active variants in large design spaces, when 
restricted to select regions outside the active sites and highly conserved regions. Current 
successful zero-shot designs consistently tend to exhibit thermostability and solubility 
improvements. These biophysical improvements themselves can lead to activity 
improvements, e.g. when improved stability increases the lifetime of the biocatalyst or when 
improved solubility makes the biocatalyst bioavailable54,40,55, even without necessarily 
addressing the efficiency of the catalytic machinery itself. At the time of writing only structure-
based approaches in this workflow were wet lab validated for enzymes, so we focus on two 
prominent structure-based examples.

(i) MutCompute. MutCompute is a deep learning approach (3D convolutional network) that 
was pre-trained in a self-supervised way based on structures in the Protein Database, by 
masking out amino acids in a given structure and predicting the identity of the masked amino 
acid based on the local context (a structural microenvironment defined by a 20 Å cube centered 
around the masked amino acid). MutCompute was successfully applied to the improvement of 
a plastic-degrading PETase by Lu et al.40 in zero-shot mode, coming up with 159 variants that 
were experimentally tested. Combinability studies of the best mutations from this panel yielded 
FAST-PETase, improved by more than an order of magnitude. Enhancements are larger at 
higher temperatures, suggesting that temperature adaptation is the main source of catalytic 
improvement. Additionally, MutCompute was successfully applied with a methyltransferase51 
and a -lactamase52.

(ii) Protein MPNN (Figure 4A).  Protein MPNN is another deep learning model (graph neural 
network) originally created for sequence-redesign given a backbone structure. It is pre-trained 
in a self-supervised mode by ‘deleting’ the side-chain and amino acid information in a given 
structure and then re-predicting the correct sequence -- position by position (autoregressively) 
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1

-- based only on the backbone and C coordinates, as well as the amino acid types that it 
already predicted41.  At usage time, a wildtype backbone structure, and optionally the amino 
acid types for a few fixed positions in the sequence, can be used as input and the remaining 
sequence is re-designed to fold into that target backbone. ProteinMPNN’s pre-training has 
been shown to correlate with solubility and thermostability41 (Figure 4A). The rationale is that 
ProteinMPNN’s pre-training was based on general protein structures in which certain 
backbone fragments and motifs re-appear with slightly varied amino acids, such that for a given 
backbone fragment plausible (but diverse) amino acids are inferred at usage time. Since 
Protein MPNN has been trained on structures in the PDB, which predominantly come from 
crystals and therefore need to be at least modestly stable and soluble, it is thought to predict 
stable and soluble solutions. Existing protein structures are biased towards these properties 
simply by virtue of being stable enough to be observed.
A successful zero-shot application of ProteinMPNN for enzyme engineering is the work of 
Sumida et al.54, who improved the solubility and stability of TEV protease. In order not to disturb 
the functionally relevant constituents of the protein, evolutionarily conserved and active site 
residues were exempted from randomization (Figure 5A). 129/144 designs exhibited higher 
levels of soluble expression than the starting point and 64/144 designs showed some activity 
with a model substrate. The top three designs were further characterised on the model 
substrate and all showed higher catalytic efficiencies than the parent (up to 26-fold 
improvements) and the top hit (hyperTEV60) has 40 °C increase in melting temperature Tm. At 
30 °C, hyperTEV60 retains 90% of its activity over 4h, while the parent enzyme only retains 
15% activity (Figure 5B). These observations are consistent with the studies involving 
MutCompute40, namely that biophysical robustness brings about an increased ability to form 
product. Observing an effect on reaction kinetics (with the actual native protease substrate) 
would provide more direct evidence for transition state stabilization (as opposed to improving 
the availability of a “competent state”, either by increased Tm or backbone rigidification). 

The studies provide evidence that, when used in a focussed zero-shot way, models such as 
Mutcompute and ProteinMPNN can yield catalysts able to generate more reaction product. 
While biophysical characteristics are improved, the current data is less clear on improvements 
to the catalytic machinery. It is possible that the emphasis on stability in the pre-training data 
for self-supervision, which is from the general PDB and may not contain much signal on 
catalytic proficiency, is responsible for generating  proteins mainly improved in structural 
integrity or solubility. If this is so, then initially unstable proteins should benefit most from these 
approaches and would make promising targets for ZSF machine learning approaches, 
although other excellent stability-enhancing algorithms already exist57). However,  such an 
approach will miss out on potentially destabilizing mutations that may nevertheless be crucial 
for catalytic activation. Mutations at sites in the protein that were often deliberately excluded in 
these models (first shell residues, conserved residues) will not be suggested. This 
conservative bias in the designs may decrease the chance to find designs with improved 
catalysis, and may be overcome by feeding data on directed evolution trajectories (e.g. from 
droplet screens) into the algorithms. Higher throughput data from catalytic selections (e.g. in 
microdroplets) may enhance the value of models currently used in ZSF packages.  It remains 
to be seen whether learning input from comprehensive activity screens (Figure 3) would give 
less conservative solutions, overcoming a possible learning bias from the preponderance of 
stable structures in the training data, and allow better extrapolation towards solutions for 
catalysis beyond the conditio sine qua non of stability.

4.1.2 Zero-shot with broad design space (ZSB)

Family-based, zero-shot ML has demonstrated the ability to create new sequences that still 
have comparable activity to a representative reference sequence, despite exhibiting sequence 
similarities as low as ~60% to any known protein in the targeted family. Madani et al.56, for 
example, employ a GPT-like language model to generate lysozymes via next-token-prediction 
which have comparable activity to hen egg-white lysozyme. Interestingly, they  found that their 
most active, designed sequence folds into a structure that closely mimicks that of known 
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proteins in that family despite the moderate 60% sequence similarity. However, beyond 
exploring sequence space functionally neutrally, catalytic improvements over wildtype are still 
elusive45 56. It is also unclear if the results carry over to protein families for which we only know 
few representatives, as current successful studies relied on the availability of many bona fide 
representatives of a family: for lysozyme and MDH there are >10k sequences known in each 
family. Further, current models in the ZSB regime only have information about family 
membership, but the activity of most members in a family is largely unknown. In such cases, 
accumulating additional functional screening data may be important for the success of ZSB to 
find improved variants for more exotic families. 

4.2 Models incorporating assay-labelled data (red in Table 1) 

Studies using assay-labelled data are most likely to benefit from larger amounts of screening 
data, especially when their design space is large. Screening datasets – the larger the better 
(e.g. obtained in microdroplets) – will drive the success of this area. However, compared to 
the entirety of possible solutions the “coverage of the problem space” is still small. Focussing 
on a few sites for randomization may cover a large part of the relevant space, so even when 
less training data are available, solutions may be found. The number of datapoints used thus 
far varies between 7 (InnovSar46) and 500044. These numbers are small, even when making 
optimistic assumptions about the hit rates of functional proteins in sequence space. More high-
quality data (covering the relevant space through a good amount of diverse datapoints that are 
individually reliable) might be needed, although no natural threshold for reliable predictions 
seems to exist (Table 1). 
 
4.2.1 Models based on assay-labels in focused design space (ALF)

Assay supervised ML with small input datasets has been successful when randomization can 
be restricted to small regions of the protein based on previous knowledge46,47,50. Figure 5 
shows how assay-labelled data was used to engineer the activity and regioselectivity of 
halogenase WelO5*47. The empirical dataset was generated by fully randomizing three 
positions identified in a docking study (yielding an 8000-membered library) (Figure 5C) and 
screening 504 variants (6% of the theoretical diversity) in plates for product formation (Figure 
5D). This assay-labelled data was used for supervised training of a Gaussian process model. 
Seven predicted variants from this model were tested and four variants showed a higher total 
halogenation activity than the best variant from the dataset (up to 16-fold higher than the 
starting point). Again, the question of what was optimized here arises: while the total turnover 
number (TTN) was highest for the best ML construct, Michaelis-Menten parameters were 
actually more improved for some of the 504 mutants from the experimental screen (93-fold 
improvement in kcat for the best experimental candidate vs.75-fold improvement in kcat for the 
best ML candidate). This observation is consistent with improvements in stability for the ML-
improved mutant, which correlates with the improved TTN parameter that measures long-term 
availability of an active enzyme, while catalytic activity (monitored in the initial rate reaction 
kinetics of the Michaelis-Menten treatment) was less improved.

4.2.2 Models based on assay-labels in broader space (ALB)

When limited or no knowledge about the target protein is available, no limits on regions and 
positions for randomization can be imposed and a broader space must be sampled.  For 
example, two studies44 53 incorporate single site saturation mutagenesis and error-prone PCR 
data in their training based on robotic screening assays and interpret these data (up to 8000 
variants in case of Ma et al.44 and 96 in case of Biswas et al.53, respectively) using random 
forest and structure-informed models. As above, improvements to better conversion are 
substantial (8-fold) in the best predicted mutant, while changes related to enzymatic activity 
are less pronounces (1.3-fold improved specific activity). Again biophysical factors seem to be 
easier to improve than features related to the catalytic machinery.  Nevertheless, the open-
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ended nature of this approach – in input (no library design necessary) as well as output 
(revelations not limited to targeted residues or regions) - makes ALB attractive as an innovative 
discovery tool.  The lack of working hypothesis and vast design space, however, will make it 
important to generate large datasets:  integration with ultrahigh throughput screening will 
ensure that sufficient information output is achieved describing high activity regions. Starting 
with a breadth of the input mutations helps to achieve coverage and efficient high throughput 
screening compensates for a lower hit rate in such a library, so that a sufficient number of hits 
is made available for ML interpretation.  

Figure 5: Machine learning informed engineering of a TEV protease (54) and an halogenase (47). (A) Design strategy 
for TEV protease engineering. Based on structural and evolutionary constraints as input, the design space was 
defined by fixing the amino acid identities of the active site residues and conserved residues. ProteinMPNN was 
used to redesign the remaining residues and generate designed sequences as output. (B) Stability assay. The best 
design hyperTEV60 shows improved benchtop stability compared to the native TEVd when incubated at 30°C over 
time. (C) Identification of engineering sites for WelO5* halogenase. The target substrate soraphen A was docked 
into WelO5* and three positions were chosen for generating a full randomization library. (D) Activity assays for 
WelO5* variants. Hits from the combinatorial library (red) and from the ML predictions (green and blue) were tested 
in biotransformations with cell lysate. Results are displayed as fold increase compared to the parent GAP. The best 
hit in the combinatorial screen was SLP and the best hit in the ML predictions was VLA.

5. Implications and conclusions

More data are always better, but library design, screening technology, labeling method 
and sequencing approach determine interpretability

‘Smart’ libraries limit the design space to a few randomized residues that can be oversampled, 
but rely on a reductionist model of protein function that might not reflect reality: Mutations away 
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from the active site or unknown hotspots are often playing unanticipated roles and proteins are 
typically cooperative (highlighted by the relevance of intra-gene epistasis). ML approaches will 
play a key role in uncovering these complex higher order phenomena that are often overlooked 
in traditional experiments. Instead of deep and focused, broad and unbiased coverage of 
sequence space may be more valuable input data for such ML endeavors. 
The experimental approach used for screening determines what type of label can be attached 
to library members evaluated in a screening experiment. Fully quantitative datasets require 
cumbersome plate screening or use of high-throughput microfluidic enzyme kinetics (HT-
MEK): information on multiple parameters (e.g. activity, specificity, stability) provides excellent 
input for ML, but the numbers of library members that can be characterized in such detail is 
practically limited to a few thousands.  Higher throughput may aid better predictions, because 
the increased coverage of sequence space will give ML interpretation and extrapolation a 
better grounding. Experimental binning of survivors in ultra-high throughput screenings is 
practically straightforward (e.g. when using FACS25) and provides a ranking based on 
‘quantitative categories’. Experimental noise (e.g. overlap of separate bins) may compromise 
the data quality, but the high throughput and coverage in a microfluidic screen will mitigate this 
problem to some extent. Binary data, where survivors are merely measured against a threshold 
activity, avoids possibly experimentally elusive differences between bins and simply labels 
survivors based on occurrence. Binned and binary data can be obtained straightforwardly in 
ultrahigh throughput droplet screening, where multimillion membered libraries can be 
interrogated to come to grips with the combinatorial explosion of higher order interactions. The 
nature of the quantitative data plays a role: rankings based on lysate assays vs expression-
normalised assays, long-term conversion vs initial rates, turnover of (undemanding) model 
substrates vs (unreactive) natural substrates etc will be different, so ML interpretations will be 
biased accordingly. Interpretations of these datasets need to deconvolute the combined effects 
of stability and activity that contribute differently to the range of quantitative descriptors outlined 
above. Finally, the experimental approach for sequencing determines the information content 
further: short reads neglect long-range interactions, but provide deeper information on limited 
complexity. One objective  in this phase of research at the interface of ML and experiment will 
be to reflect on how these set-up considerations impact interpretations, even though more data 
must always be best. 

Both approaches discussed here, ultrahigh throughput screening and machine learning, have 
thus far mainly been used as a powerful discovery engines of new and improved proteins. To 
be more than discovery tools, the current challenge is to coordinate the ability of ultrahigh 
throughput screening to generate large datasets with ML’s potential to read and interpret 
complex messages, be it on catalysis, molecular recognition or protein evolution. To be useful 
in this respect datasets need to be large, well-labelled, diverse and of good quality. Noisy data 
needs to be paired with robust ML algorithms, to avoid overfitting the noise inherent in the 
data. Open access protocols for both ML and uHT screening should be made available, to 
make data compatible and interpretations comparable.  
Once the screening/ML interface becomes more established it will be interesting to probe 
whether alternative models applied to the same dataset lead to similar molecular conclusions: 
if current predictions already reliably yield robust and stable proteins (e.g. with higher Tm), will 
the molecular patterns that lead to higher catalytic efficiency also be revealed? The two 
properties are intertwined (e.g. stability enables catalytic improvement through epistatic 
interactions) and may be difficult to disaggregate. However, obtaining multiple datasets under 
different conditions – at varying temperatures or pH or with different substrates – would lead 
to sequence-function relationships familiar from traditional lower throughput research (e.g. pH-
rate profiles, temperature denaturation curves, physical organic analysis of molecular 
recognition of substrates with varying reactivity or steric requirements), but apply them to many 
many enzyme mutants in one go. If it becomes possible to isolate and understand the 
molecular responses to such variations, then ML will have made ultrahigh throughput 
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screening a mechanistic tool, able to deal with the challenge of enormous complexity that thus 
far has made protein engineering more difficult than the original protein engineers envisaged. 
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