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The increasing demand for intellectual computers that can efficiently process substantial amounts of

data has resulted in the development of a wide range of nanoelectronics devices. Reservoir computing

offers efficient temporal information processing capability with a low training cost. In this work, we

demonstrate a back-end-of-line SiC-based memristor that exhibits short-term memory behaviour and is

capable of encoding temporal signals. A physical reservoir computing system using our SiC-based

memristor as the reservoir has been implemented. This physical reservoir computing system has been

experimentally demonstrated to perform the task of pattern recognition. After training, our RC system

has achieved 100% accuracy in classifying number patterns from 0 to 9 and demonstrated good

robustness to noisy pixels. The results shown here indicate that our SiC-based memristor devices are

strong contenders for potential applications in artificial intelligence, particularly in temporal and

sequential data processing.

1. Introduction

Driven by the widespread permeation of artificial intelligence
and big data into our society and daily life, there has been a
surge in demand for computing systems that can process vast
amounts of data quickly and efficiently.1 However, the inherent
limitations of digital computing systems where the computing
and memory are separated into different units have stimulated
a growing interest in developing alternative computing para-
digms. Inspired by the human brain where the data processing
and storage are unified within the synapses and neurons, the
concept of neuromorphic computing has been recognised as
one of the most promising solutions for energy-efficient data
processing.2

Novel two-terminal solid-state memristor devices have been
identified as ideal candidates to emulate the synaptic behaviours
of synapses and neurons and realize neuromorphic computing. A
wide range of materials has been proposed as the electrolyte
medium for the memristor-based artificial synapse. Noticeable
candidates include chalcogenides,3,4 metal oxides,5,6 and perovs-
kite materials.7,8 In general, the memory model in the human

brain can be categorised into long-term memory (non-volatile)
and short-term (volatile) memory based on the conductance
decay over time.9,10 In long-term memory, the conductance
remains constant unless another stimulus is applied. Memristors
demonstrating such behaviour have been widely used in con-
structing feed-forward neural networks for non-temporal data
processing.11,12 On the other hand, short-term memory features
temporally stored conductance states that decay over time. This
volatile switching can be observed in several types of memristor
systems with different mechanisms.13 It can be used to directly
process temporal data in recurrent neural networks (RNNs) and is
particularly attractive for applications such as speech recognition,
classification and time series forecasting.14,15 Several memristor
devices that demonstrate short-term memory features have been
applied in neuromorphic computing for temporal signal proces-
sing using functional materials such as WOx,14,16,17 mesoporous
silica,18 TaOx,19,20 TiOx,21 HfO2,22 SnOx,23 and perovskite.24

Amorphous silicon carbide (SiC) is a back-end-of-line material
in the CMOS industry and is regarded as the interconnection
dielectric material for third-generation semiconductors due to its
superior electrical properties such as large band gap, high break-
down voltage, and good thermal conductivity.25–27 The develop-
ment of functional electronic devices based on SiC can be
extremely advantageous in consideration of easy integration
and large-scale manufacturing in future. Over the past decade,
several works have been conducted to develop SiC-based mem-
ristors and demonstrate promising resistive and neuromorphic
switching behaviours.28–31 Our group also recently developed a
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SiC-based memristor from a chemical vapour deposition (CVD)
process and demonstrated promising short-term memory proper-
ties such as short-term potentiation (STP) and spike rate depen-
dent plasticity (SRDP).32 However, neuromorphic computing
systems based on the short-term synaptic behaviour of SiC
memristors have never been demonstrated before.

In this work, we will report the unique short-term memory
behaviour of SiC memristor for neuromorphic computing
applications through constructing a physical reservoir comput-
ing (RC) system. Reservoir computing, a subset of RNN, is a
unique computational framework that is specifically suited for
temporal/sequential data processing. The physical reservoir
maps the temporal input signals into a high dimensional space
using its nonlinear dynamics and the temporal memory feature
which can then be processed using a simple readout network.
Comparing with other neuromorphic computing implementa-
tion, RC has a key advantage of simplicity as the reservoir itself
does not require training whereas only the readout weights are
trained with a simple learning algorithm such as linear
regression.33 Such simple and fast training process makes it
possible to drastically reduce the computational cost of learn-
ing. We will demonstrate that our SiC memristor is capable of
serving as the physical reservoir in the RC system to perform
the task of pattern recognition. After a short training process,
the system demonstrates excellent classification performance
with an accuracy of 100% as well as good tolerance to the
potential input noise. This work paves the way for back-end-of-
line SiC memristor devices to be used in the construction of
physical RC systems for neuromorphic computing.

2. Results and discussion
2.1 Restive and neuromorphic switching

Fig. 1a displays the schematic of the SiC memristor in this
work. The patterned Cu top layer serves as the active metal
electrode while the W layer underneath acts as the bottom,
inert electrode which is adhered to the Si/SiO2 substrate via a Ti
adhesion layer. The SiC layer sandwiched between two electro-
des serves as the switching electrolyte layer. The Cu/SiC/W/Ti/
SiO2/Si structure is confirmed by the transmission electron
microscopy (TEM) cross-sectional image (shown in Fig. 1b). It
can be observed that the SiC is amorphous with a thickness of
ca. 25 nm. The resistive switching properties of the SiC mem-
ristor were investigated by DC I–V measurements. The pristine
device demonstrates an initial high resistance state (HRS)
which can be transformed to a low resistance state (LRS) upon
a positive DC sweep from 0 V to 5 V as shown in Fig. 1c. A
negative DC sweep from 0 V to �5 V can reset the memristor
from LRS to HRS. The subsequent set process manifests a
similar pattern with the electro-forming, suggesting an
electro-forming-free feature of our SiC memristor. In addition,
the memristor also presents itself with compliance-free, self-
rectified behaviours, both of which are beneficial for its large-
scale integration in 3D cross-bar arrays. The switching perfor-
mance of devices at different device areas was also investigated

as shown in Fig. 1d. While similar I–V characteristics were
obtained, the device currents at both ON and OFF states decrease
with the scaling of the device area (shown in Fig. 1e). Such area
dependence, especially at LRS, suggests that the resistive switching
in this memristor is interfacial rather than filamentary. Similar
behaviour was also reported in other works.34,35 It is worth noting
that these behaviours are different to some of the previously
reported SiC-based memristors which feature typical filamentary
switching properties with abrupt switching, high ON/OFF ratio
and asymmetrical SET and RESET characteristics.29,36 Such differ-
ences are likely to be induced by the different composition of the
SiC film – while our previous work used stoichiometric SiC film
(i.e. 1 : 1 Si to C ratio)29 the SiC film in the current work is silicon-
rich with a Si to C ratio of 7 : 3.32 To further explore the current
conduction mechanism in our memristor, we fit the I–V character-
istics using the Schottky emission equation:

I ¼ AA�T2 exp
�qFB

kT
þ q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q=4pei

p
kT

ffiffiffiffi
E
p

" #

where A is the active device area, A* is Richardson’s constant, FB is
the Schottky Barrier Height (SBH), E is the electrical field, q is the
electronic charge, k is the Boltzmann’s constant, ei is the dielectric
constant of the film and T is the absolute temperature. Linear
fittings for both HRS and LRS in Fig. 1f imply that Schottky
emission is the dominating current mechanism for both ON and
OFF states. A similar mechanism in HRS was also observed in our
stoichiometric SiC memristor.37 However, the derived SBH in our
Si-rich SiC memristor is 0.624 eV at HRS, which is lower than that
in the stoichiometric one (0.79 eV). This is unsurprising as the
excess Si in the SiC layer could decrease the bandgap and subse-
quently reduce the SBH. On the other hand, the current conduc-
tion at LRS is very different. While the stoichiometric SiC
memristor exhibits an Ohmic conduction due to the formation
of Cu filament(s),37 the current conduction in our Si-rich memris-
tor is still Schottky emission dominating, but with a lower SBH of
0.416 eV. It is worth noting that other current conduction such as
thermionic emission and field emission may also occur simulta-
neously under such lowered barrier. Nevertheless, this suggests
that the memristive switching in our Si-rich SiC memristor is
achieved by the modulation of the Schottky barrier. It is therefore
reasonable to suggest that such modulation is a cause of con-
trolled Cu doping in the SiC film during the SET and RESET
process. Under a positive bias, the Cu atoms from the top electrode
will be oxidised and drift into the SiC layer. Cu ion has a much
higher diffusion coefficient in Si than that in SiC with a low
diffusion barrier of 0.18 eV.38,39 Compared with the stoichiometric
SiC, our Si-rich SiC can further facilitate the movement of Cu ions
in the SiC layer over the entire device area. This results in the SiC
film being partially doped with Cu, leading to reduced SBH and
the resistive switching from HRS to LRS. When a negative bias is
applied, the Cu ions will be attracted back to the top electrode and
the SBH resumes its original high value. This interfacial switching
mechanism also explains the unique switching characteristics of
the SiC memristor in this work.
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Fig. 1g and h illustrate the characteristics of multi-state
switching of the SiC memristor. In Fig. 1g, the memristor was
reset into HRS with �5 V sweeps while being switched on with a
series of positive sweeps from 1 V to 5 V. It is clear that multiple
ON states can be achieved by changing the SET voltages. This is
likely due to the controlled modulation of the SBH with
different SET voltages. Fig. 1h, the memristor was switched
ON into the LRS with 5 V sweeps while a series of negative
RESET sweeps with voltage from �1 V to �5 V was applied.
Similarly, the memristor can demonstrate multiple OFF states
upon different RESET voltages. The capability of gradually
tuning the memristor resistance is key for its application in
neuromorphic computing.

Synaptic plasticity in biology refers to a rise (potentiation) or
decrease (depression) in the synaptic weight for information

processing as shown in Fig. 2a. Such synaptic behaviour can be
emulated by a memristor device where the modulation of its
conductive channel by pulsing can precisely control its conduc-
tance to represent the change of synaptic weight.40 As shown in
Fig. 2b, the device’s analogue switching behaviour enables the
conductance to be gradually adjusted by applying a series of DC
sweeps. As the number of DC stimulus sweeps rises, the con-
ductance (measured at 0.5 V) shifts upwards gradually (shown in
Fig. 2c). This shows how the SiC memristor exhibits neuro-
morphic behaviour, whereby stimulus properties can accurately
control multi-state resistances to realise synaptic behaviours. The
fact that the conductance is lower before each stimulus than it is
after the previous ones is interesting to note. This may imply that
the modulated SBH between the electrode and SiC film experi-
enced a spontaneous change in the interval between two

Fig. 1 Characterization of the SiC film and Cu/SiC/W memristor. (a) Schematic of the Cu/SiC/W memristor structure. (b) Cross-sectional TEM image of
the memristor. (c) I–V characteristic of the SiC memristor. (d) I–V characteristic of the SiC memristor with different device areas. (e) HRS and LRS
(measured at 0.1 V) of the SiC memristor as a function of the device area. (f) Both HRS and LRS I–V data in ln(I)–V1/2 plots with linear fittings to the
Schottky emission equation. Multi-state switching is achieved at different (g) SET and (h) RESET voltages.
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subsequent DC sweeps, a feature of short-term plasticity (STP). To
verify this behaviour, the SiC memristor is subject to a series of
consecutive identical pulses with the current being monitored.
Consecutive identical pulses are preferred because it simplifies
the peripheral circuitry used to programme the memristor in
terms of expected synaptic performances. Fig. 2d shows the
typical current response after a series of 50 pulses were applied
to the SiC memristor. Each pulse has an amplitude of 5 V with a
duration of 50 ms and an interval of 50 ms. The current
increases gradually with increasing pulse number, representing
a typical potentiation process. However, after the pulse was
withdrawn, an automatic current relaxation was observed, con-
firming the STP behaviour. More detailed results including
different types of synaptic plasticity, such as spiking-rate-
dependent plasticity (SRDP), spiking-duration-dependent plasti-
city (SDDP), and spiking-voltage-dependent plasticity (SVDP) can
be found in our previously published work.32 In the research that
follows, this STP behaviour—the regular fall of current between

two stimuli—will be further explored for developing a physical
reservoir computing system.

2.2 SiC memristor-based physical reservoir computing system
for digit recognition

The unique STP property of our SiC memristor enables its
capacity to discriminate between input sequences with different
temporal orders. We demonstrate this on our SiC memristor by
stimulating it with a series of pulse trains. Each pulse train
consists of four pulse bits, each of which can be in either a high
state (6 V) or low state (0.1 V) of 1 ms duration and 99 ms
interval. The high state is denoted by the number ‘‘1’’, while the
low state is denoted by the number ‘‘0’’. A total number of 16
different types of input pulse streams can be achieved. Fig. 3a
presents examples of 4 pulse trains including 1110, 1101, 1001,
and 0011. The output current was measured immediately after
each pulse throughout the interval using the reading voltage of
0.1 V and is illustrated in Fig. 3b. The first reading (pulse 0)
represents the initial state of the memristor while the following
readings (pulse 1, 2, 3 and 4) are the currents after each pulse
number. It can be observed that the readings for all pulses at
high state are always higher than the last readings. This can be
understood as a typical potentiation process. On the other hand,
the current readings for all pulses of low state are lower than the
previous reading. This is the uniqueness of the STP behaviour
and the key to the separation of various states. For example, it
separates the ‘1110’ signal from ‘1101’ as the potentiation
caused by the first three bits in the signal of ‘1101’ attenuated
with time, resulting in a much lower final (pulse 4) current from
‘1110’ than that of ‘1101’. Such separation would not be possible
if the memristor possesses long-term plasticity instead. The
current outputs after pulse 4 for all 16 states are presented in
Fig. 3c where it can be observed that all of them are separated.
The capability of distinguishing 16 states is clearly beneficial for
its application in neuromorphic computing.41 The error bar in
Fig. 3c represents the cycle-to-cycle (C2C) variation of our mem-
ristor where each pulse was repeated and the statistical output
currents are plotted against each signal. The device-to-device
(D2D) variation is investigated in Fig. 3d where 4 memristors
were subjected to four identical pulse streams of 1110, 1101, 1001
and 0011. Although there are some variations among the devices,
all devices show the same trend when subjected to the different
input pulse streams. In addition, the reading can be well sepa-
rated for different inputs for all devices. Additional C2C and D2D
variation information of our SiC memristor under these 16 pulse
trains are provided in Fig. S1 (ESI†).

The capability of encoding temporal information is desirable
for the implementation of a reservoir computing system. Fig. 4a
shows the schematic for a typical RC system, which consists of an
input layer, a reservoir computing layer, and an output layer.16

The input layer interfaces the real-world information with the
reservoir network. The input and reservoir layers are connected in
a fixed way, but the neurons in the reservoir layer develop
dynamically in response to temporal signals. The reservoir layer
is made up of a network with randomly connected nodes that
nonlinearly maps the temporal time-dependent input signals

Fig. 2 Neuromorphic behaviours of the SiC memristor with resistance
state modulation via DC and pulse stimulation. (a) Schematic representa-
tion of a biological neural network and a memristor device showing the
correspondence between biological and electronic synapses. (b) I–V
characteristics of consecutive DC sweeps. (c) Current reading before
and after each sweep. The current was read at 0.5 V. (d) Gradual memristor
output current changes with a series of voltage pulses (+5 V) and the
subsequent relaxation shows the short-term potentiation behaviour.
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into a high dimensional space. The reservoir states, which may be
read out by a straightforward learning process through the output
layer, are recorded as the transient current responses based on
the input signals. In order to demonstrate how the STP behaviour
of a memristor can be used for neuromorphic computing, we
implemented a physical RC system based on our SiC memristor
to perform a task of number recognition.

The monochrome images of digits from ‘‘0’’ to ‘‘9’’ were
firstly translated into temporal input signals by treating the
pattern of numbers as pixels with a size of 5 rows by 4 columns
and encoding the pattern using the colour red and white as
1 and 0, respectively. For example, the number ‘‘6’’ can be
converted into a 5 � 4 pixel array as shown in Fig. 4b. Based on
the spatial distribution of the red and white pixels, the array
can be represented by five 4-bit sequences, of ‘‘1111’’, ‘‘1000’’,
‘‘1111’’, ‘‘1001’’ and ‘‘1111’’, respectively. This information was
then encoded into five temporal pulse sequences as the input of
our memristor-based RC system where the pulse with a high-
level voltage (6 V) represents 1 and a low-level voltage (0.1 V)
represents 0 (shown in Fig. 4c). The SiC memristor serves as a
physical reservoir that maps the temporal input signal into a
high dimensional space using its nonlinear dynamics and the
temporal memory feature. Upon the arrival of the pulse
sequences, the conductance of the SiC memristor will change
according to the temporal order from the pattern as shown in

Fig. 4b. The output current, therefore, carries the information
of a spatially distributed pattern. The current from the reservoir
was then sent to the output layer that consists of a readout
network. The readout network is a machine learning network
that requires training to read the current from reservoirs
(memristors) and perform the pattern classification. To be more
specific, the readout network determines how likely it is that the
input signal refers to each number by comparing the current
from reservoirs (memristors) with the specific details for each of
the 10 types of numbers received during the training phase. The
readout function then determines which of the 10 different
types of number patterns the incoming signal belongs to.

Fig. 5a plots the monochrome images of digits from ‘‘0’’ to
‘‘9’’ in this work. It is worth pointing out that only 6 out of 16
types of pulse trains (i.e. ‘‘0010’’, ‘‘1111’’, ‘‘0001’’, ‘‘1000’’,
‘‘1010’’ and ‘‘1001’’) were required for this task. The corres-
ponding reservoir states as well as their distributions measured
at the end of the submission of each input pattern are shown in
Fig. 5b. The findings demonstrate that, depending on the
particular pattern, the reservoir output currents differ substan-
tially despite occasional D2D variations. The final 5 � 1 output
state is clearly unique for each input digit, proving the reser-
voir’s capacity to distinguish these 10 situations with clarity.

Supervised training of the feedforward readout network was
achieved by using the dataset of Fig. 5b (see the Experimental

Fig. 3 Encoding temporal signals using SiC-based memristor. (a) Schematic of 4 pulse trains (1110, 1101, 1001, 0011) and (b) the current output of each
pulse bit in each pulse train. (c) The statistics of all 16 pulse trains in the 4-bit system, which is plotted from lowest to highest according to the value of the
mean value of each pulse stream. (d) The device-to-device (D2D) variation among 4 memristors that are subjected to four identical pulse streams of 0111,
1001, 0001 and 0010.
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section for the detailed training process). The training loss
curve is plotted in Fig. 6a. Within a few training epochs, a
dramatic reduction in loss can be obtained. This is accompa-
nied by the increase of the prediction accuracy as shown in
Fig. 6b. A training accuracy of 100% was achieved after only 300
epochs, supporting the claim that the RC system has a low
training cost than the conventional neural networks.33 After the
training process, we evaluate its performance by tasking it to
classify number patterns from the test dataset that the system
has never seen before. Fig. 6c displays the resulting confusion
matrix which compares the experimentally achieved classifica-
tion results from the RC system to the target outputs. A 100%
recognition accuracy rate was attained from the reservoir,
highlighting the excellent classification capability of our SiC
memristor-based RC system. It is worth noting that an accuracy
of 100% is perhaps not surprising in this experiment as the
pattern for each digit remains unchanged. The dataset differ-
ence mainly resides in the C2C and D2D variations of the
memristor rather than the pattern itself. However, this simple
pattern recognition task serves as a proof-of-concept experi-
ment, and the fact that our SiC memristor can recognise 10

different patterns with 100% accuracy pave the way for its
future application in reservoir computing for more advanced
tasks such as MNIST digits classification and voice recognition.

The robustness against the input noise was also assessed by
corrupting the monogram images with random noises. The noises
are introduced by randomly flipping 1, 2 or 3 pixels to the opposite
state (i.e. ‘‘1’’ to ‘‘0’’ or ‘‘0’’ to ‘‘1’’) in the pattern and converted to
the corresponding pulse trains. For example, in Fig. 7a, one
corrupted pixel is randomly introduced to the number ‘‘5’’ at the
bottom row. The original pulse train changes from ‘‘1111’’ to
‘‘1101’’, which leads to the drop of the corresponding input current
from device 5 (shown in Fig. 7b). Similarly in Fig. 7c where two
noisy pixels are introduced to the number ‘‘5’’, resulting in current
changes on devices 2 and 4 (shown in Fig. 7d). These situations,
where the noised pattern behaves like a different pattern without
noise, reduce the accuracy of the noise test. The predicted accuracy
is therefore greater than the measured value. Fig. 7e exhibits the
confusion matrix of number patterns with one flipped pixel where
an accuracy of 71% was obtained. By adding noisy pixels to the
original images, it was shown that the letters may still be recog-
nised by the RC system even though the output signal from the
reservoir is disordered. However, as the number of noisy pixels
increases to 2, the accuracy will drop to 52%, as shown in Fig. 7f. It
is worth mentioning that this reduced accuracy is partially due to
the design of the number pattern. For example, the number 5
could be mistaken as the number 6 with one badly placed noisy
pixel. Nevertheless, the success of this proof-of-concept experiment
has paved the way for the application of our SiC memristor in
reservoir computing for more advanced tasks such as MNIST digit
recognition, voice recognition and ECG classification.

3. Conclusions

In conclusion, we demonstrate in this work a back-end-of-line
SiC-based memristor that offers compliance-free, forming-free,
and multi-state resistive switching properties. More importantly,
the memristor exhibits a unique short-term plasticity behaviour
which is capable of encoding temporal signals. Utilising this
unique property, we have implemented a physical reservoir com-
puting system using our SiC-based memristor as the reservoir.
This physical reservoir computing system has been experimentally
demonstrated to perform the task of pattern recognition. After
training, our RC system has achieved 100% accuracy in classifying
number patterns from 0 to 9 and demonstrated good robustness
to noisy pixels. The results provide promising evidence in support
of our SiC-based memristor devices as strong contenders for
applications in artificial intelligence, particularly in temporal
and sequential data processing.

4. Experimental section
4.1 Device fabrication and characterisation

The Cu/SiC/W memristor was fabricated on top of a Si/SiO2

substrate. A Ti adhesion layer of 25 nm was first sputtered on
the substrate. A W bottom electrode with a thickness of 100 nm

Fig. 4 Reservoir computing system based on the SiC memristor. (a)
schematic of the RC system showing the reservoir with the input layer
and output layer. (b) Number 6 pattern as an example with a size of 5 � 4
for pattern recognition. The corresponding reservoir states that can be
clearly captured by the memristors corresponding to the rows. (c) Sche-
matic representation of the physical RC system including the inputs (pulse
streams), the SiC memristor reservoir and the readout network.
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Fig. 6 Training and performance evaluation of the SiC memristor-based reservoir computing system. (a) The training loss as a function of learning
epochs. (b) The validation accuracy as the function of learning epochs. (c) Confusion matrix showing the prediction results from the RC system against
the ground truth in the test dataset.

Fig. 5 (a) Images of 10 numbers used in this test. (b) Measured reservoir states after the memristors are subjected to the 10 inputs. The reservoir states
are reflected as the read currents of the 5 memristors forming the reservoir.

Materials Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
O

kt
ob

er
 2

02
3.

 D
ow

nl
oa

de
d 

on
 0

8.
10

.2
02

4 
22

:2
6:

33
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ma00141e


5312 |  Mater. Adv., 2023, 4, 5305–5313 © 2023 The Author(s). Published by the Royal Society of Chemistry

was subsequently sputtered to serve as the bottom electrode.
Using a plasma-enhanced chemical vapour deposition (PECVD)
method, the SiC electrolyte layer was formed on top of the W
layer. The reactive gases utilised were Silane (SiH4) and
Methane (CH4), and the flow rates were maintained at 15 sccm
and 85 sccm, respectively. A SiC film with a thickness of ca.
25 nm was obtained under a 70 s deposition time. Finally, the
top electrode made of the active metal Cu was deposited on the
SiC thin film by evaporation and patterned using photolitho-
graphy and lift-off processes. The dimension of the Cu top
electrode is 200 mm each side. Scanning electron microscopy
(SEM) has been used to characterize the composition and cross-
section of individual devices. The electrical characteristics were
measured at room temperature and ambient pressure using a
probe connected to a Keysight (B1500) system. For all measure-
ments, the voltage was applied to the top electrode while the
bottom electrode was grounded.

4.2 Read-out network training

The readout function is trained via the supervised learning
algorithm to minimize the cross-entropy loss. Before the train-
ing process, a dataset was generated by collecting the current
responses of the pattern encoded pulse sequence from different
devices for 6000 cycles. The number from 0 to 9 are represented
by the digits 0–9 in the dataset, respectively. This created a
dataset of 6000 number-current relations. The distribution of
the dataset is shown in Fig. S2 (ESI†). For the same number, the
output currents from the reservoir (SiC memristor) can still be
different due to the C2C and D2D variations. We then randomly
selected 5000 of these number-current relations for the readout

network training, while the remaining 1000 was used as valida-
tion (500) and testing (500). The training set is utilized to train
the neural network. The validation set works to monitor
whether the neural network is overfitting or underfitting. The
testing set, which has not been seen by the network, is used to
evaluate the network performance. All currents are scaled to the
value with the unit of microamperes (mA) in the dataset. The
previously discussed neural network training is processed on a
Windows PC with the CPE of Intel Core i7-3770 CPU by the
open-source machine learning package PyTorch. More informa-
tion on the training process can be found in the ESI.†
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Fig. 7 Recognition of noisy images. Distorted images of number 5 generated by adding (a) one and (b) two noises to the original data at locations
(marked by the dashed squares) together with the corresponding reservoir states. (c) Confusion matrix showing the prediction results from the RC system
against the ground truth with one noise in the pattern. (d) The test accuracy as a function of the number of noises.
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L. Frey, Thin Solid Films, 2011, 519, 5892–5898.

26 S. King, M. French, J. Bielefeld and W. Lanford, J. Non-Cryst.
Solids, 2011, 357, 2970–2983.

27 M. Cabello, V. Soler, G. Rius, J. Montserrat, J. Rebollo and
P. Godignon, Mater. Sci. Semicond. Process., 2018, 78, 22–31.

28 J. Fan, O. Kapur, R. Huang, S. W. King, C. de Groot and
L. Jiang, AIP Adv., 2018, 8, 095215.

29 L. Zhong, L. Jiang, R. Huang and C. De Groot, Appl. Phys.
Lett., 2014, 104, 093507.

30 Y.-L. Hsu, Y.-F. Chang, W.-M. Chung, Y.-C. Chen, C.-C. Lin
and J. Leu, Appl. Phys. Lett., 2020, 116, 213502.

31 L. a Liu, J. Zhao, G. Cao, S. Zheng and X. Yan, Adv. Mater.
Technol., 2021, 6, 2100373.

32 O. Kapur, D. Guo, J. Reynolds, Y. Han, R. Beanland, L. Jiang,
C. H. de Groot and R. Huang, Adv. Electron. Mater., 2022,
8, 2200312.

33 G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano and A. Hirose, Neural Net-
works, 2019, 115, 100–123.

34 K. Rudrapal, G. Bhattacharya, V. Adyam and A. Roy Chaud-
huri, Adv. Electron. Mater., 2022, 8, 2200250.

35 S. Bagdzevicius, K. Maas, M. Boudard and M. Burriel,
J. Electroceram., 2017, 39, 157–184.

36 K. A. Morgan, J. Fan, R. Huang, L. Zhong, R. P. Gowers,
L. Jiang and C. H. de Groot, AIP Adv., 2015, 5, 077121.

37 L. Zhong, P. Reed, R. Huang, C. de Groot and L. Jiang, Solid-
State Electron., 2014, 94, 98–102.

38 A. A. Istratov, C. Flink, H. Hieslmair, E. R. Weber and
T. Heiser, Phys. Rev. Lett., 1998, 81, 1243–1246.

39 A. Suino, Y. Yamazaki, H. Nitta, K. Miura, H. Seto, R. Kanno,
Y. Iijima, H. Sato, S. Takeda, E. Toya and T. Ohtsuki, J. Phys.
Chem. Solids, 2008, 69, 311–314.

40 A. K. McAllister, L. C. Katz and D. C. Lo, Annu. Rev. Neurosci.,
1999, 22, 295–318.

41 W. Zhang, B. Gao, J. Tang, X. Li, W. Wu, H. Qian and H. Wu,
Phys. Status Solidi RRL, 2019, 13, 1900204.

Materials Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
O

kt
ob

er
 2

02
3.

 D
ow

nl
oa

de
d 

on
 0

8.
10

.2
02

4 
22

:2
6:

33
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://doi.org/10.48550/arXiv.1512.08756
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ma00141e



