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Air-stable and efficient electron doping of monolayer MoS,
by salt-crown ether treatment

Air-stable and highly efficient electron doping of monolayer
MoS, has been achieved by crown ether complexes
containing potassium ion.
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To maximize the potential of transition-metal dichalcogenides
(TMDC:s) in device applications, the development of a sophisticated
technique for stable and highly efficient carrier doping is critical.
Here, we report the efficient n-type doping of monolayer MoS,
using KOH/benzo-18-crown-6, resulting in a doped TMDC that is
air-stable. MoS, field-effect transistors show an increase in on-
current of three orders of magnitude and degenerate the n-type
behaviour with high air-stability for ~1 month as the dopant con-
centration increases. Transport measurements indicate a high elec-
tron density of 3.4 x 103 cm™2 and metallic-type temperature
dependence for highly doped MoS,. First-principles calculations
support electron doping via surface charge transfer from the
K/benzo-18-crown-6 complex to monolayer MoS,. Patterned doping
is demonstrated to improve the contact resistance in MoS,-based
devices.

Introduction

Two-dimensional (2D) transition-metal dichalcogenides
(TMDCs) have attracted much attention because of their excel-
lent physical properties and potential applications in elec-
tronics and optoelectronics."”” In particular, much effort has
recently been devoted to investigate group-6 TMDC monolayers
such as MoS, and WSe, and to elucidate their semiconducting
properties, such as high on/off current ratio, high mobility and
direct-bandgap nature.®>** To exploit the potential of TMDCs
in devices such as light-emitting diodes and tunnelling field-
effect transistors (FETs), developing a sophisticated technique
for stable and highly efficient carrier doping is critical.
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Carrier doping in TMDCs has been carried out via several
approaches, including elemental substitution, defect engineer-
ing, and chemical doping. Elemental substitution of group-6
TMDCs has been demonstrated by replacing group-6 transition
metal elements (Mo and W) with group-5 and group-7
elements such as Nb and Re, respectively.'*"® Defect engineer-
ing has been carried out by the formation of chalcogen
vacancies by hydrazine or plasma treatment,'®*° and the re-
placement of sulphur vacancies by chloride molecules.”" Even
though these techniques enable high tunability of the electri-
cal conductivity of TMDCs, achieving both high-density
doping and high mobility remains a major challenge because
of impurity scattering by the substituted atoms or defects. In
contrast, chemical doping is mainly based on surface charge
transfer from a dopant to a semiconductor and has the advan-
tage of not usually introducing defects into the crystal lattice.
Chemical doping can thus increase the carrier density without
seriously degrading the carrier mobility of TMDCs. The litera-
ture contains numerous reports of TMDC doping.>*' For
example, Fang et al. reported degenerate n-type doping of few-
layer MoS, and WSe, via vapor-phase doping of K, resulting in
high electron densities of ~1.0 x 10"* em™ and ~2.5 x 10"?
em™> for MoS, and WSe,, respectively.>* Air-stable n-type
doping of few-layer MoS, with a high carrier density of ~1.2 x
10" em™ was also achieved via solution-based doping of
benzyl viologen (BV); the BV-doped MoS, exhibited stable
transport properties in air for ~9 days.*® Ji et al. achieved p-
and n-type doping of monolayer WSe, using 4-nitrobenzene-
diazonium tetrafluoroborate and diethylenetriamine, respect-
ively, and reported high carrier mobilities of 82 and 25 cm®
v™' 57! for holes and electrons, respectively.>® Despite such
progress, further improvements that result in highly stable and
efficient doping methods are strongly desired for realizing
future high-performance TMDC-based devices.

In the present work, we demonstrate the feasibility of using
salt-crown ethers to achieve degenerate n-type, stable mono-
layer MoS,. Crown ethers, which are cyclic oligomers consist-
ing of several ethylene oxides, possess central cavities that

form stable complexes with various metal ions and
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molecules.’>** One type of crown ether, benzo-18-crown-6 in
KOH/butanol solution, forms stable complexes with K" cations
to produce OH™ anions, which can serve as an efficient n-type
dopant for carbon nanotubes (CNTs).>> We found that this
approach is also effective at preparing highly doped monolayer
MoS, with an electron density of 3.4 x 10"* em™2, which is
similar to the previously reported electron density values for
MoS, doped with other n-type dopants such as K and BV.**??
Importantly, the electron-doped surfaces of MoS, are stable
under ambient conditions for approximately 1 month. The
electron doping by the crown ether complex is also supported
by the first principles calculations. Furthermore, patterned
doping is demonstrated to improve the contact resistance in
MoS,-based FETSs.

Results and discussion

To investigate the carrier doping by crown ether in MoS,, back-
gated FETs with a MoS, channel were fabricated. Fig. 1a shows
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the schematic and optical micrographs of a representative
MoS, FET. Triangular -shaped monolayer MoS, single crystals
were grown on SiO,/Si substrates via chemical vapor depo-
sition (CVD). For n-type doping, the samples were spin-coated
with a butanol solution of KOH/benzo-18-crown-6. In the solu-
tion, K" ions were captured by the cavities of the crown ether
to form stable K™-ion complexes [K-crown]'OH™ in butanol.*

KOH + [crown] = [K-crown|® + OH~

Similar to the case of CNTs, we reasonably expected elec-
trons to transfer from OH™ ions to MoS,; we also expected the
transferred electrons to be stabilized by [K-crown]' cations
adsorbed onto the MoS, surface, as illustrated in Fig. 1b. The
positive charges in the metal ion-benzocrown complexes
would be delocalized over the benzene ring, thereby support-
ing further stabilization of negatively charged K" ions.**

Fig. 1c and d presents the transfer and output curves for
FETs with undoped MoS, and FETs with MoS, doped with
KOH/benzo-18-crown-6 at concentrations from 0.1 to 100 mM,
respectively. The undoped MoS, exhibits typical n-type
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Fig. 1 (a) Schematic and optical micrographs of the back-gated FET device. (b) Schematic model of the chemical doping using KOH/benzo-18-

crown-6 for n-type doping. (c and d) The transfer (c) and output curves (d) of undoped and doped monolayer MoS, with different dopant concen-
trations from 0.1 to 100 mM. (e) Transfer characteristic curves of the device before and after doping. The doped device had been kept in air for 183
days. (f and g) Raman (f) and PL (g) spectra of undoped and doped monolayer MoS, with different dopant concentrations from 0.1 to 100 mM.
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semiconducting behaviour; the corresponding FET exhibits
an on/off current ratio of ~10°> and a carrier mobility of
~6.5 cm® V™' s7! for applied gate voltages, Vi, ranging from
—50 to 50 V. Here, the carrier mobility was estimated using a
parallel-plate model,** y = [(dI4)/(dV,s)[(L/VasCoxW)], where L is
the channel length, W is the channel width, I is the drain
current, Vg is the drain voltage, and Cox = 12.1 nF cm™2 is the
gate capacitance of SiO, with a thickness of 285 nm and Vg, =
1 V. These characteristics are comparable to those reported in
previous studies of CVD-grown monolayer MoS,.>> For the
samples coated with 0.1 and 1 mM dopants, higher-concen-
tration doping led to a shift of the threshold voltage (Vi) to the
negative voltage side and to an increase of the drain current.
Treatments with higher-concentration dopants resulted in a
substantial increase in the off-current and in metallic gate
dependence. Eventually, the on-current reached ~100 pA for
the sample treated with the 100 mM dopant solution, which
represents an increase of approximately two orders of magni-
tude compared with the on-current of the untreated sample. An
increase in the on-current was also observed for monolayer
WS, (Fig. S1f). Notably, the doped MoS, FETs were highly
stable in ambient air. The transfer curves remained nearly
unchanged even after 24 days of air exposure (Fig. 1le). The
drain current decreased by one order of magnitude between 24
and 41 days, but showed little change for the next 142 days.

The doped MoS, was further characterized by Raman and
photoluminescence (PL) spectroscopy. Fig. 1f shows the
Raman spectra of monolayer MoS,, recorded before and after
the doping treatments with different concentrations of the
dopants (0.1-100 mM). The two characteristic Raman peaks
denoted by E’' and A’y are attributed to the in-plane and out-of-
plane vibration modes of monolayer MoS,, respectively.>® As
shown in Fig. 1f, the E' mode (383 cm™") changes very little
after the doping process, whereas the A’; mode is downshifted
by 6 cm™'. This tendency is consistent with the results of an
earlier report of electron doping of MoS, with BV>® and
suggests that the electron-phonon interaction is enhanced by
an increase in the electron concentration.’” The PL spectra
show the emission peak from A exciton at 1.80 eV for the
undoped MoS, (Fig. 1g).® The A-exciton peak was substantially
suppressed by the doping treatments and was completely
quenched at above 1 mM with a downshift of the peak to 1.72
eV. Similar quenching of the A-exciton peak is also observed
for the doping by electric field.*® These PL changes can be
explained by an increase of the emission from negatively
charged trions as a result of the electron doping and the sup-
pression of neutral exciton formation.*®**? These optical
responses are consistent with the transport measurement
results for electron-doped monolayer MoS,. A good homogen-
eity of doping was confirmed by the Raman and PL spectra
obtained at different locations (Fig. S27). A small variation in
the PL spectra is also observed for both the pristine and doped
samples and can be explained by the local lattice strain
induced due to the interaction with the growth substrate.*’

We measured the Hall effect and the temperature depen-
dence of the electrical resistance of the sample doped using
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Fig. 2 (a) Magnetic field dependence of the Hall voltage for the doped

monolayer MoS, using 100 mM dopant solution at room temperature.
The inset is an optical image of the sample. The scale bar is 10 um. (b)
Temperature dependence of the electrical resistance for the doped
monolayer MoS; using 100 mM dopant solution.

the 100 mM dopant solution. The linear magnetic field depen-
dence is consistent with the ordinary Hall voltage behaviour
(Fig. 2a). The 2D sheet carrier density, n,p, is given by n,p, =
|(IaB)/(eAVy)|, where I4 is the drain current, e is the electric
charge, B is the magnetic field strength and AVy is the Hall
voltage obtained after subtracting the offset Hall voltage at B =
0 T. The carrier mobility is given by y = 6,p/en,p, where o,p =
5.6 x 107> Q" is the sheet conductance of the present device.
The values of n,;, and u were estimated to be 3.4 x 10"* cm™
and 10 cm® V™' s7') respectively. The present n,p, value is as
high as the value of ~10"* cm™ previously reported for MoS,
doped with potassium or BV.>>** The high electron density
also suggests that the Fermi level is located in the conduction
band and that degenerate n-type doping is achieved by the
crown ether complexes. Indeed, the temperature-dependent re-
sistance of the doped MoS, indicates typical metallic behav-
iour, where the resistance decreases with decreasing tempera-
ture (Fig. 2b). These transport measurement results clearly
indicate that effective electron doping was achieved by the
crown ether complex-based coating process.

To understand the electronic states of monolayer MoS, with
the K/benzo-18-crown-6 complex, we carried out first principles
calculations. Fig. 3a shows the changes in the electron distri-
bution as a result of the adsorption of the dopant. The region
of increased electron density (indicated in blue) is distributed
over the MoS, layer and the region of decreased electron
density (indicated in orange) is distributed in the crown ether
complex (Fig. 3b). Fig. 3c shows the electronic band structures.
Monolayer MoS, has a direct bandgap of ~1.8 eV and its Fermi
level is located in the middle of the bandgap. In contrast, the
Fermi level of monolayer MoS, with the crown ether complex
shifts to the conduction band. According to the density of
states (Fig. 3d), the energy level of the highest occupied mole-
cular orbital (HOMO) for the K/benzo-18-crown-6 complex
(having K atom components) becomes higher than the con-
duction-band minimum of monolayer MoS,. This arrangement
of energy levels means that one electron is transferred from
the complex to MoS, per unit cell. Assuming that the density
of K/benzo-18-crown-6 complex on the MoS, layer is the same

This journal is © The Royal Society of Chemistry 2021
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Fig. 3 (a) Optimized atomic structure of monolayer MoS, with the
K/benzo-18-crown-6 complex and changes in the electron distribution
induced by the adsorption of the dopant. Gray, red, white, purple,
yellow and green spheres represent C, O, H, K, S and Mo atoms, respect-
ively. The blue (orange) colour represents an increase (decrease) in the
electron density. (b) Top and side views of the wave function of the
HOMO for K/benzo-18-crown-6. The green and yellow colors indicate
plus and minus contours, respectively. (c) Electronic band structures of
undoped and doped monolayer MoS. (d) Total (gray) and K atom partial
(purple) density of states (DOS) of (top) K/benzo-18-crown-6 and
(bottom) monolayer MoS, with K/benzo-18-crown-6.

as that used in the model for calculations, the electron density
of monolayer MoS, is estimated to increase to ~3 x 10" em™>.
This estimation is consistent with the carrier density obtained
from the Hall effect measurement (Fig. 2a). These results also
suggest that the doped electrons in MoS, are stabilized by the
K/benzo-18-crown-6 complex after charge transfer from the
OH™ ions to MoS,.

Next, we demonstrated the spatially controlled n-type
doping of partially masked MoS, FETs. After the electrodes
were deposited, an epoxy-based photoresist was coated, using
a lithography process, only in the middle of the channel. The
MoS, between the source/drain (S/D) contacts and the photo-
resist were then doped, whereas the channel masked by the
photoresist remained undoped (Fig. 4a). Fig. 4b and Fig. S37
show the transfer and output curves of the device with the
photoresist coating before and after the doping, respectively.
The doped device clearly exhibits a higher on-current and a
rapid increase in the current. Given the change in the channel
area, the electron mobility increased from ~52 cm”> V™' 57" to
~117 em”® V™' 57" as a result of the patterned doping.

The patterned n-type doping was also carried out by partial
removal of KOH/benzo-18-crown-6. The dopant was removed
by immersing the samples in a solvent such as water or
butanol. After the devices were immersed in these solvents,

This journal is © The Royal Society of Chemistry 2021
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Fig. 4 (a) Schematic diagram of an n*/i/n* patterned device with a
photoresist coating. (b) Transfer curves of the device with the photo-
resist coating before and after the doping using 100 mM dopant solution.

the gate dependence of the washed MoS, exhibited n-type
behaviour, with a high on/off current ratio, similar to the gate
dependence of the undoped MoS, (Fig. S4a and bt). The pat-
terned n-doping of the MoS, FETs was achieved via the revers-
ible characteristics and the lithography process. After the
doping, the photoresist was lithographically coated only close
to the S/D electrodes. The dopant in the uncoated region was
then removed by immersing the device in water for 1 min; the
coated region remained in the doped state because of the pro-
tection afforded by the photoresist (Fig. S4ct). Fig. S4d{ shows
the transfer curves before and after the patterning. The on-
current increased from ~6.6 x 1077 to ~3.3 x 107% A. These
results for both the partially doped devices, which are similar
to the results for previously reported devices,>***?' can be
explained by a reduction in the contact resistance.

For discussion of the advantages of our doping method, the
performance of TMDC-FET devices reported in the present
work and in previous works are compared in Table S1.7>*’
The present doping method achieved relatively high electron
density (~3.4 x 10" em™) and air stability (~24 days) com-
pared with the methods used to prepare devices in the pre-
vious studies. Rosa et al. have reported that poly(vinyl-alcohol)
doping with Al,O; encapsulation results in a device with high
stability in air for 30 days.>® Such oxide films may provide an
approach to improve the stability of the present n-type doped
TMDCs through passivation.

Conclusions

We have demonstrated the efficient electron doping of CVD-
grown monolayer MoS, with high stability under ambient con-
ditions using KOH/benzo-18-crown-6 as a dopant. The electron
doping achieved a high electron density of 3.4 x 10" cm™,
and the doped MoS, exhibited excellent stability in air for
~1 month. First-principles calculations indicated that elec-
trons were transferred from the K/benzo-18-crown-6 complex
to the monolayer MoS,. Patterned doping was also used to
improve the contact resistance in MoS,-based FETs. The
present chemical doping strategy provides an effective method
to control the electrical properties of TMDC materials for use
in future device applications.
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Experimental section
Sample preparation

MoS, monolayers were grown on SiO, (285 nm)/Si substrates
via salt-assisted CVD."""* The SiO,/Si substrate was placed at
the centre of a quartz tube, and MoO, powder (20-100 mg),
KBr powder (5-11 mg) and sulphur flakes (2-3 g) were placed
1, 2-3 and 30 c¢m upstream from the tube centre, respectively.
The quartz tube was then filled with N, gas at flow rates of
150-275 sccm. The temperatures of the substrate and powders
were gradually increased to 740-800 °C using an electric
furnace. After the set-point temperature was reached, the
sulphur flakes were heated at about 180-200 °C for 15 min
using a second electric furnace to supply sulphur vapor to the
substrate. After the growth, the quartz tube was immediately
cooled using an electric fan. The same reaction conditions
were used to grow WS,, except that WO; powder (10 mg) was
used instead of MoO,, the amount of KBr was decreased to
5 mg, and the N, gas flow rate was increased to 300 sccm.

Device fabrication

FET devices were fabricated by photolithography. MoS, films
on SiO,/Si substrates were spin-coated with an AZ P1350
photoresist (Merck Performance Materials), followed by an
exposure/development process, resistive thermal evaporation
of Au (20 nm)/In (5 nm) electrodes (ULVAC, EX-200) and a lift-
off process in acetone. The devices were then annealed at
200 °C under vacuum (~10~* Pa) for 30 min before the trans-
port measurements. To prepare the four-terminal devices for
Hall effect measurements, the devices were plasma-etched for
1 min using a Tergeo plasma cleaner (Pie Scientific) at 49 W
under Ar and air. For the n'/i/n" patterned doping, an SU-8
3005 photoresist (Kayaku Advanced Materials) was coated only
in the middle of the channel using a lithography process. A
similar n'/i/n* patterned doping was achieved by combining
an AZ P1350 photoresist coating applied only close to the S/D
electrodes and water immersion after KOH/benzo-18-crown-6
doping.

Doping process and transport measurements

The carrier transport properties were measured using a probe
station with voltage sources (KEITHLEY, 2614B) connected in
the configuration. The doping process was performed by spin-
coating butanol solution consisting of KOH/benzo-18-crown-6
(0.1-100 mM) onto the substrates. These chemicals were pur-
chased from Wako Pure Chemical Industries (Japan) and
Sigma-Aldrich (Japan) and were used as received without
further purification. The Hall effect and the temperature
dependence of the electrical resistance were measured with a
physical property measurement system (PPMS, Quantum
Design).

Raman and PL spectroscopy

The Raman and PL spectra of the samples were acquired at
532 nm excitation in a backscattering configuration using a
microspectrometer (Renishaw, inVvia).
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Theoretical calculations

First-principles calculations of the undoped and doped mono-
layer MoS, were carried out using density functional theory
(DFT), as implemented in the OpenMx package.”> The
generalized gradient approximation** with van der Waals
correction***® was used for the exchange-correlation function.
The electron-ion interaction was described by norm-conser-
ving pseudopotentials.*”*®* Pseudo-atomic orbitals (PAOSs)
centred on atomic sites were used as the basis function set.*’
The PAO basis functions were specified by C7.0-s2p2d1, H7.0-
s2p1, 07.0-s2p2d1, K14.0-s4p3d2, M7.0-s3p2d2fl and S7.0-
s3p2d2f1. For example, C7.0-s2p2d1 indicates the PAOs of the
carbon atom with a cutoff radius of 7.0 Bohr and with two s,
two p, and one d components. The lattice constant of the
monolayer MoS, was set to 3.16 A.
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