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Electrospray and Electrosonic Spray lonization Mass Spectrometry (ESI-MS and ESSI-MS) have been widely
used to report evidence that many chemical reactions in micro- and nano-droplets are dramatically
accelerated by factors of ~10% to 10° relative to macroscale bulk solutions. Despite electrospray's
relative simplicity to both generate and detect reaction products in charged droplets using mass
spectrometry, substantial complexity exists in how the electrospray process itself impacts the
interpretation of the mechanism of these observed accelerated rates. ESI and ESSI are both coupled
multi-phase processes, in which analytes in small charged droplets are transferred and detected as gas-
phase ions with a mass spectrometer. As such, quantitative examination is needed to evaluate the impact
of multiple experimental factors on the magnitude and mechanisms of reaction acceleration. These
include: (1) evaporative concentration of reactants as a function of droplet size and initial concentration,
(2) competition from gas-phase chemistry and reactions on experimental surfaces, (3) differences in
ionization efficiency and ion transmission and (4) droplet charge. We examine (1-4) using numerical
models, new ESI/ESSI-MS experimental data, and prior literature to assess the limitations of these
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1. Introduction

A significant number of studies have observed that chemical
reactions confined in micro- and nano-droplets proceed at
significantly faster rates than those in macroscopic bulk solu-
tions. Several approaches are used to study in-droplet chem-
istry, which include electrospray (ESI),"” nano-ESI (nESI)*** and
electrosonic spray (ESSI)**° ionization mass spectrometry (MS).
These techniques produce droplets from a solution containing
the reaction mixture, which is then directed towards a MS inlet
for chemical characterization. In droplet fusion mass spec-
trometry,*>*** two droplet plumes, each containing a reactant,
are mixed in free space prior to entering the MS inlet.
Accelerated reaction rates are also observed in millimeter-
sized droplets levitated either acoustically*® or by the
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micro- and nano-droplets produced by ESI and ESSI.

Leidenfrost effect,’**** as well as for evaporating droplets
deposited on a surface.*® Reaction rate acceleration has also
been reported in other less commonly used approaches,
including atomized sub-micron droplets suspended in an
environmental chamber,?” guided collisions of electrodynami-
cally levitated micron-sized charged droplets,*® thin-films,**3%%°
desorption ESI (DESI) MS,* laser ablation ESI-MS,* paper spray
MS,"** droplet imbibition,** and micro-emulsions.*

In this work, we focus on the growing body of literature using
ESI/ESSI-MS to investigate reaction rates and mechanisms in
nano- and micro-droplets. ESI, nESI and ESSI-MS have been
applied to study a diverse set of unimolecular,®******3° bimo-
lecular®®7*114717,19,25,26.28,2931 gnd termolecular* organic reac-
tions. These include complexation,'® cycloaddition,® and ring-
opening reactions,® phosphorylation,” hydrogen-deuterium
exchange,’ protein folding and unfolding,®"**** reduction®
and oxidation®?*?* reactions, as well as the formation of inor-
ganic aggregates.”> When compared to the same reactions
conducted in macroscale containers, reactions in ESI/ESSI
micro- and nano-droplets are observed to proceed signifi-
cantly faster, with reported acceleration factors in the ~10> to
10° range.”’

Although many of these prior studies report evidence that
reactivity is altered in ESI/ESSI droplets, the underlying reasons
for the accelerated rates and, in some cases, altered reaction

This journal is © The Royal Society of Chemistry 2020
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mechanisms remain unclear.”®* The aim of this work is to
provide further insight into potential acceleration mechanisms
using numerical modelling, new experimental observations,
and analysis of the existing literature. We break down the
processes occurring in ESI/ESSI droplet plumes and discuss
how the often competing multi-phase kinetics of each step
affect the accelerated reaction rates observed in the literature.
To do so, the paper is organized as follows. In Section 2 we
illustrate the coupling of gas- and condensed-phase processes
(i.e. multi-phase) inherent to the ESI process itself, providing
a framework for the discussion of possible acceleration mech-
anisms in Section 3. Section 4 presents a detailed analysis of
each of the ESI processes described in Section 2: (1) droplet
evaporation, (2) the competition between in-droplet chemistry
and reactions in the gas-phase or on experimental surfaces, (3)
challenges related to ionization efficiency of different analytes
and ion transmission and (4) effects of droplet charge. We
demonstrate that all these factors need to be carefully consid-
ered to robustly interpret the mechanism underlying acceler-
ated reaction rates in ESI/ESSI experiments.

(a) Charged droplets
formation

(c) Gas phase processes
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2. Multi-phase processes in
electrospray and sonic spray droplets
plumes

ESI-, nESI- and ESSI-MS are similar techniques for the genera-
tion of charged micro- and nano-droplets, in which ions are
transferred to the gas-phase for analysis by mass spectrometry.
Shown in Fig. 1 is an illustration of a typical ESI setup used for
measuring the kinetics of a generic bimolecular reaction: A + B
— C. Reactants A and B are dissolved in a pure or mixed solvent
(most commonly water, ethanol, and/or methanol) and the
reaction mixture is delivered to a capillary emitter tip to form
charged droplets. The reaction time is controlled by varying the
distance between the emitter and the MS inlet, usually over
a few centimeters, but sometimes up to 1 m by introducing
a transfer tube.'”*®*> Reaction kinetics are typically obtained by
measuring the ion intensity corresponding to product C as
a function of the distance between the MS inlet and the droplet
source. Distance is converted to reaction time using droplet

(d) Droplets and gas phase
species reach the MS inlet
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Fig.1 The complex, multi-phase processes present during ESI-MS. (a) Droplets are formed from a capillary emitter tip by applying a voltage (ESI/
nESI) and/or a high-pressure coaxial gas flow (ESSI); droplets are formed with a certain size distribution. (b) Rapid solvent evaporation causes
a decrease in the sizes of the droplets. In this schematic, reactants are considered non-volatile. In the condensed phase, the concentration of
reagents can increase because of solvent evaporation and the amount of product formed can be a function of droplet size (Section 4.2);
condensed-phase reactions can occur in the bulk (kpu) or at the surface (ksyrface) regions of the droplets. (c) Charged ESI droplets undergo
repeated fission events (charge residual model, CRM) that produce smaller progeny droplets, and reagent ions can be directly emitted into the
gas-phase (ion emission model, IEM). Gas-phase reactivity can occur with a certain kqas. (d) Gas-phase species and droplets reach the MS inlet.
The colour scales qualitatively represent the concentration of reagents A and B (cyan/blue) and of product C (purple/red) in the ESI droplets. (e)
and (f) Imaging of 1 : 1 MeOH/H,O ESSI microdroplets plumes (120 psi N, gas flow, 5 uL min~ solvent flow rate, +5 kV applied to the emitter tip)
formed with two capillaries with 250 um and a 50 um inner diameters (i.d.) and 350 pm and a 150 pm outer diameters (o0.d.), respectively.*
Adapted with permission from ref. 4. Copyright (2020) American Chemical Society.
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velocity. This approach differs from the use of ESI, nESI and
ESSI-MS for offline reaction monitoring,'®*’ where the emitter
tip is kept close to the MS inlet (typically at a distance of a few
millimeters) to minimize droplet travel time.

Fig. 1 illustrates the coupling of gas- and liquid-phase (i.e.
multi-phase) processes that occur as droplets are formed and
travel to the MS inlet. The liquid jet formed at the tip of the
capillary emitter is broken up into droplets by an applied
voltage (ESI and nESI) and/or by a high-pressure coaxial sheath
gas flow (ESSI), which facilitates droplet formation as well as
charging. The resulting droplet properties (size, charge and
velocity distributions) depend on the emitter tip diameter, flow
rate, sheath gas pressure and applied voltage.>*>* The process of
droplet formation is complex and the spray conditions are not
always stable, sometimes resulting in pulsating or burst spray
modes.”® Fig. 1e and f illustrates this complexity with two
snapshots of ESSI plumes* where bursts of liquid and droplets
are observed.

Fig. 1b shows droplets shrinking before reaching the MS
inlet. This is due to solvent evaporation, possible reactant
evaporation, fission events and direct emission of ions into the
gas-phase. The extent of solvent evaporation depends on vola-
tility, with size-dependent kinetics. For example, small droplets
(~100s of nm in diameter) of a highly volatile solvent (e.g.
methanol or ethanol) can completely evaporate and enter the
MS inlet as gas-phase species. Larger droplets (typically up to
~10 or 20 pm in diameter) composed of a less volatile solvent
(e.g. water) remain nearly unchanged during transit and will be
vaporized within the MS inlet. This means that the degree of
evaporative enrichment of reactants A and B is both a function
of size (as indicated by the cyan/blue reagent concentration
scale in Fig. 1b) and solvent composition, which is discussed
quantitatively in Section 4.5. Additionally, Fig. 1b shows that
droplets eventually reach a constant size, if the reactants are
non-volatile. However, this is not always the case and solvent
evaporation can be accompanied by the substantial loss of
reactants to the gas-phase, as considered in Section 4.3.

As the droplets shrink, their surface charge density
approaches the Rayleigh limit, leading to direct ion emission
and/or to the spontaneous ejection of smaller offspring droplets
that continue to evaporate and undergo subsequent fission
events.>® These processes are described by the ion emission
model (IEM)*® and charge residue model (CRM,* Fig. 1c),
respectively. However, the physical mechanisms (IEM vs. CRM)
explaining the conversion of solvated species within droplets to
gas-phase ions still remain somewhat unclear and may not be
universal, since the exact mechanism will likely depend upon
the solvent, chemical species and droplet charge evolution.***®
The net result of evaporation, repeated fission events and direct
ion emission is to increase the concentration of reagents (A and
B) in the droplets as well as the gas-phase.

Once both reactants and products in the condensed- and
gas-phase reach the heated MS inlet (Fig. 1d), all residual
solvent is evaporated. There have been reports indicating that
reactivity is halted by this sudden desolvation process,*>”** but
given the high temperatures within the inlet, ion-molecule
reactions in this region cannot be completely excluded. For
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example, the observation of product distributions changing
with MS inlet temperature may be indicative of additional gas-
phase chemistry occurring in the inlet.>"”

The competing multi-phase processes illustrated in Fig. 1
suggest that understanding the accelerated formation of
product in ESI/ESSI-MS requires a detailed evaluation of the
spatial-temporal evolution of reactants, products and solvent in
both the gas and condensed phases. There are several possi-
bilities, with potentially competitive timescales, of where the A +
B reaction might occur: inside a droplet, at its surface, and/or in
the gas phase during transit to or inside the MS-inlet. Addi-
tional complexity arises due to the inherent polydispersity of
droplets produced in ESI/ESSI sources, since many of the
potential acceleration mechanisms (e.g. evaporation and
surface reaction) and multi-phase processes (e.g. droplet fission
or ion emission) scale with droplet size. When ESI/ESSI-MS
methods are used to investigate reaction acceleration mecha-
nisms in droplets, it is crucial to account for these dynamic and
competing multi-phase processes for an accurate interpretation
of the observations.

3. Possible competing reaction
acceleration mechanisms in ESI/ESSI
droplets

From consideration of the multi-phase steps in Fig. 1, it follows
that there are several mechanisms for the observed accelerated
reaction rates in ESI/ESSI droplets. These mechanisms are
summarized in Fig. 2, again using a generic bimolecular reac-
tion (A + B — C). The rapid evaporation of solvent increases the
concentration of reactants (Fig. 2a), potentially reaching
supersaturated states in a droplet that are inaccessible in bulk
solutions.* Increased concentration of A and B naturally results
in faster formation rates of product C (d[C]/d¢ = kpun[A][B])-

The fraction of molecules at the droplet surface compared to
its bulk is much larger than in a macroscopic vessel (see for
example Fig. 1 in ref. 60). Thus, surface reactions or equilibria
could play a more substantial role in governing the overall
chemical transformations occurring in micro- and nano-
droplets, compared to bulk solutions. It has been shown that
partial solvation of A and B molecules at the air-liquid interface
(Fig. 2b) can modify the Gibbs free energy of the reactants
relative to the products,” resulting in larger surface rate
constants for A + B compared with the bulk (ksurface > Kpulk)-
Narendra et al.®* used quantum mechanical methods to explore
how partially solvated reagent molecules and transition states at
the air-vacuum interface can accelerate reaction rates. For
example, they found that reactant molecules at the interface of
a nanometer-sized methanol clusters had broader energy
distributions than when located in the bulk. The increase in
energy for certain surface orientations was calculated to be as
high as 1.6 eV. This increase in energy was attributed to
configurations that had lower degree of solvation of the charged
site on the reactant molecule. From these calculations, Naren-
dra et al® estimated an upper bound of ksyface VS. Kbuik
enhancement of 10%.

This journal is © The Royal Society of Chemistry 2020
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Fig. 2 For a generic bimolecular reaction, several chemical—physical processes can be responsible for accelerated reaction rates in ESI/ESSI
micro- and nano-droplets compared to the same reaction conducted in bulk solutions. (a) Solvent evaporation and the resulting increased
concentration of reagents; (b) partial solvation at the surface and consequent Ksurface > Koui: (C) physical confinement of reagents at the air—
droplet interface and increased concentration at the surface; (d) effects of charge and strong electric fields, together with ion evaporation and
gas-phase reactivity. The factors affected by each possible acceleration mechanism are indicated in red.

If reactants are surface active (e.g. surfactants, hydrophobic
molecules, etc. Fig. 2c), their surface enrichment further
increases the reaction rate (i.e. [A]s > [A], [B]s > [B]). Moreover,
specific orientation of reactants and solvent molecules at the
interface resulting in decrease in entropy has also been impli-
cated in faster reaction kinetics.” In addition, stable pH
gradients were observed in neutral droplets,* which could lead
to differential (acid or base) catalysis at the droplet surface
compared to its bulk. The exact nature of the air-water interface
of charged droplets remains debated,>**® with some studies
reporting that the air-water interface is basic,**® while others
found a larger surface affinity for protons.®”® A detailed
description of these unknowns can be found in the review by
Agmon et al.*® and references therein. The acceleration of a few
acid-catalysed'>””> and base-catalysed” reactions have been
observed in ESI/ESSI droplets, where pH gradients and different
surface affinity of protons and hydroxide ions could play an
important role.

Finally, Fig. 2d shows that ESI, nESI and ESSI droplets are
charged® and strong electric fields could be present in these
micron- and nanometer-sized compartments.” The excess
charge resides at the surface of a charged droplet, simply due
to electrostatic repulsion between charges of the same sign.*®
Charged species can reside up to a few monolayers depth,
depending on the exact nature of the charges species.*®
Additionally, the excess surface charge is predicted to rear-
range ionic species in the droplet interior, resulting in an
electric field with a specific radial profile.” It has been
observed that strong electric fields stabilize charge separation
in a transition state during single molecule experiments’*”
and a similar mechanism could occur at the charged droplet

This journal is © The Royal Society of Chemistry 2020

interface, thus resulting in faster rates. Charge could also be
responsible for local changes in pH at the surface of charged
droplets.

As illustrated in Fig. 1, evaporating ESI, nESI and ESSI
droplets eject charged species into the gas-phase (IEM),*®
potentially introducing gas-phase and ion-molecule reactions
(Fig. 2d). Since there is no way to determine where the reaction
has occurred (i.e. gas-phase vs. droplet) from the mass spectra
alone, the presence of gas-phase chemistry complicates the
identification and quantification of in-droplet chemistry. This
is particularly true of ion-molecule reactions that are often
collision-limited and orders of magnitude faster than
diffusion-controlled condensed phase reactions (i.e. Kion/molec.
> kpui)-

The relative importance of each mechanism summarized in
Fig. 2 remains relatively unexplored.”” Additionally, the domi-
nant mechanism(s) likely depend on the specific chemical
reaction,”” droplet size distribution and solvent properties (e.g.
vapor pressure). Although separating and exploring each of
these factors to isolate the governing reaction acceleration
mechanism(s) is experimentally challenging, the growing body
of literature motivates an in-depth analysis of the relative
importance of these coupled steps that are intrinsic to these
ESI-type techniques. The goal of this critical review and analysis
is to: (1) provide a context for future work aimed at elucidating
the underlying mechanisms for accelerated reactions in ESI/
ESSI droplets and (2) provide a better understanding of the
possible ramifications of chemistry observed in ESI droplets for
transformations occurring in environmental and biological
micro- and nano-compartments.

Chem. Sci., 2020, 11, 13026-13043 | 13029
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4. Analysis of the multi-phase
processes responsible for reaction
acceleration in ESI-, nESI- and ESSI-MS

In the following sections we present a critical analysis of the
application of ESI-, nESI- and ESSI-MS to study reaction kinetics
in droplets, with particular focus on (1) the impact of increased
reagent concentrations due to solvent evaporation and droplet
lifetimes, (2) competing gas-phase reactions and reactivity on
experimental surfaces, (3) ionization efficiencies and ion
transmission, and (4) charged droplet surface and strong elec-
tric fields in micro- and nano-droplets.

4.1 Numerical modelling of simultaneous in-droplet
reaction and evaporation

Solvent evaporation and the resulting increased concentration
of reagents can be one of the key factors determining the
accelerated reaction rates observed in ESI/ESSI droplets.*>”>
Here, we discuss to what extent this evaporation is significant
for methanol droplets of varying initial size (ESI vs. nESI) and
concentration. We also compare solvents of different vapor
pressure (methanol vs. water) and we consider the case of
volatile reactants. We demonstrate that high reagent concen-
trations caused by solvent evaporation can account for a few
orders of magnitude in the overall observed acceleration rates
in ESI, nESI and ESSI-MS experiments, specifically up to 5 x 10°
for 500 nm diameter methanol droplets with a starting reagent
concentration of 10 uM.

To quantitatively assess these aspects, we couple droplet
evaporation and reaction in a numerical model. Evaporation of
solvent from a single pure-component droplet is described by
integrating Maxwell's equation:”

2 2 _ 2D;M; ?(T)

=Ty leT (f — [0) (1)

where r and r, are droplet radius a function of time (¢) and at time
zero (t,), D; is the diffusion coefficient of the species i evaporating
into the gas-phase (assumed to be pure nitrogen in this work),
pl(T) is the pure component vapour pressure of species i at
temperature 7, p; is the density of species i, and R is the gas
constant. A full description of our modelling approach including
the parameters used, the underlying assumptions and its vali-
dation against published experimental ethanol droplet evapora-
tion data” is presented in the ESI (Sections S1 and S2, Fig. S1).}

We couple solvent evaporation described by eqn (1) to
a simultaneous bimolecular chemical reaction. For the discus-
sion that follows, the hydrazone formation reaction from isatin
and phenyl hydrazine''® is selected as a model system:

L, . L
.
@::,g:o H’NHZ
H

phenyl hydrazine

-H,0

> N-NH

©[€:° (2)

H
3-(2-phenylhydrazono)indolin-2-one

isatin
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This reaction was chosen for two reasons. First, bulk solu-
tion kinetics are reported in Bain et al.,'* which allows for
a direct comparison between the reaction in a macroscopic
solution to that in a droplet. Second, for this reaction Marsh
et al.”” report significant trends of increasing conversion rates
with decreasing droplet size and concentration.

The hydrazone formation reaction is bimolecular with the
following rate law:

d[hydrazone]

& klisatin][phenyl hydrazine] (3)

where [isatin], [phenyl hydrazine] and [hydrazone] are the molar
concentrations of the reactants and product, respectively, as
a function of time (). The bimolecular rate constant for this
reaction (k = 0.044 M "' s7') is obtained by fitting the bulk
solution data reported in Bain et al'® (Fig. 1b in their manu-
script, see fit in Fig. S21).

At each simulation time step (0.1 pus) we compute changes in
droplet size and composition due to evaporation (eqn (1)) and
reaction (eqn (3)). To make sure the chosen time step was small
enough to avoid numerical artifacts, we confirmed that
a smaller time step of 0.01 ps produced the same simulations
results. The concentrations of the reactants and product are
updated at every time step, which accounts for changes in
concentration due to both reaction and the decrease in droplet
volume due to solvent evaporation. For the comparisons to
reactions in bulk solutions presented in Sections 4.2 and 4.4,
eqn (3) is solved considering the initial bulk solution concen-
trations and evaporation is omitted.

We note that our modelling approach is purely focused on
determining the contribution of solvent evaporation to the
observed accelerated reaction rates in Fig. 2a, and any possible
alteration of reaction kinetics due to the processes described in
Fig. 2b-d are not considered.

4.2 Model results: solvent evaporation leads to larger
acceleration factors in smaller droplets

Fig. 3 shows results for the evaporation of methanol droplets
with initial diameters from 200 to 4000 nm. The droplets
contain equimolar quantities of isatin and phenyl hydrazine (10
mM), with both reagents assumed non-volatile. The temporal
evolution of the diameter for each initial droplet size (d,) is
shown in Fig. 3a. The r*-slope in the evaporation model (eqn (1))
is constant, but Fig. 3a shows that the overall methanol evap-
oration timescale is size-dependent and faster for smaller
droplets. As an example, Fig. 3a shows that for two droplets with
initial diameter of 200 (violet line) and 3000 nm (orange line)
methanol evaporation is complete after ~0.05 and 1.5 ms,
respectively. The corresponding increased reagent concentra-
tion is shown in Fig. 3b: in all the cases, the final concentration
reached within the droplets is ~5 M, which corresponds to the
‘neat’ reagents. This is an increase by a factor of 500 from the
initial concentration.

Fig. 3c shows the product conversion ratio as a function of
time, calculated using the molar ratio of the product
(Phydrazone(t)) and one of the reactants, (7 jsatin(to)):

This journal is © The Royal Society of Chemistry 2020
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Fig. 3 Evaporation of methanol droplets containing isatin and phenyl hydrazine (both 10 mM), calculated with egn (1), and simultaneous reaction

(egn (3)). Time evolution of droplet diameter (a), reagent concentration in

droplets and in bulk solution (grey dashed line) (b), product conversion

ratio in droplets and in bulk solution (grey dashed line, right y-axis) (c) and calculated acceleration factor (d) for droplets with initial diameters of
200-4000 nm (purple to red color scale) are shown. The acceleration factors in (d) are calculated by dividing the conversion ratio in droplets and
that in the bulk solution from panel (c) at each point in time. Reagents are considered non-volatile.

nhydrazonc ([)

Conversion ratio(f) =
19 jsatin(%0)

(4)

A conversion ratio of 1 indicates reaction has come to
completion. Fig. 3c shows that smaller droplets achieve higher
conversion ratios at faster timescales than larger droplets, due
to the fact that complete methanol evaporation is faster in
smaller droplets (Fig. 3a). As a comparison, the conversion ratio
estimated for the same reaction conducted in the bulk (dashed
line) is shown in Fig. 3c. A conversion ratio of 1.1 x 1077 is
reached over timescales relevant for ESI-MS experiments (25
ms) in a bulk solution. This is because there is no solvent
evaporation in the bulk simulation.

Finally, the droplet acceleration factors as a function of
initial d, relative to the bulk solution are shown in Fig. 3d. The
acceleration factor is calculated as the ratio between the
conversion ratio in droplets and that in the bulk solution from
Fig. 3c. For each droplet size, acceleration factors tend towards
500, which simply originates from the factor of 500 increase in
reactant concentration due to the solvent evaporation shown in
Fig. 3b. Fig. 3d illustrates that smaller droplets obtain their
maximum acceleration factors more rapidly. For example, at ¢ =
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10 ms the acceleration factor for a droplet with initial diameter
of 200 nm is ~500, whereas for a droplet with initial diameter of
4000 nm it is ~350. This result simply reflects the shorter times
required for complete evaporation of methanol from the
droplet. In Section S4 of the ESI{ we provide a detailed expla-
nation of the temporal trends of the acceleration factors in
Fig. 3d.

Bain et al.'® reported an acceleration factor of 10* for the
hydrazone formation reaction measured by nESI-MS with
a droplet flight time of 10 ms. Marsh et al.** found that the
magnitude of the rate enhancement for this reaction depended
upon droplet size, with smaller droplets exhibiting larger
acceleration factors. Fig. 3 shows that increased reagent
concentrations from rapid solvent evaporation can explain both
the observed trend in acceleration factors with droplet size and
a significant portion of the magnitude of the acceleration. Lee
et al.> and Yan et al.** also observed l