Issue 6, 2024

Determining wavelength-dependent quantum yields of photodegradation: importance of experimental setup and reference values for actinometers

Abstract

Accurate quantum yields are crucial for modeling photochemical reactions in natural and engineered treatment systems. Quantum yields are usually determined using a single representative light source such as xenon lamps to mimic sunlight or UVC light for water treatment. However, photodegradation modeling can be improved by understanding the wavelength dependence of quantum yields and the potential errors introduced by the experimental setup. In this study, we investigated the effects of experimental setup on measured quantum yields using four photoreactor systems and up to 11 different light sources. When using a calibrated spectroradiometer to measure incident irradiance on an open solution surface, apparent quantum yields were up to two times higher if light reflection and light screening were not accounted for in the experimental setup. When the experimental setup was optimized to allow for accurate irradiance measurements, quantum yields were reproducible across photoreactors. The optimized experimental setup was then used to determine quantum yields of uridine, atrazine, p-nitroanisole (PNA), sulfamethoxazole, and diclofenac across the UV spectrum. No significant wavelength dependence of quantum yields was observed for sulfamethoxazole and diclofenac, in contrast to wavelength-dependent quantum yields for uridine, atrazine, and PNA. These reference values can be used for determining wavelength-dependent quantum yields of other compounds of interest. Additionally, more accurate results can be obtained when using (1) an actinometer with similar light absorption and photoreactivity compared to that of the target chemical, (2) optically transparent actinometer solutions that can account for light reflection within reaction vessels, and (3) a quantum yield that corresponds to the spectrum of the selected light source.

Graphical abstract: Determining wavelength-dependent quantum yields of photodegradation: importance of experimental setup and reference values for actinometers

Supplementary files

Article information

Article type
Paper
Submitted
20 Feb 2024
Accepted
30 Apr 2024
First published
01 Mai 2024

Environ. Sci.: Processes Impacts, 2024,26, 1052-1063

Determining wavelength-dependent quantum yields of photodegradation: importance of experimental setup and reference values for actinometers

L. de Brito Anton, A. I. Silverman and J. N. Apell, Environ. Sci.: Processes Impacts, 2024, 26, 1052 DOI: 10.1039/D4EM00084F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements