Review of defect engineering in perovskites for photovoltaic application
Abstract
Perovskite-based devices have achieved high efficiencies in the fields of photovoltaics and energy storage. However, intrinsic defects in the deep levels of the perovskite structure are both morphological and structural. Perovskites mainly suffer from extrinsic defects at their interfaces and grain boundaries, ultimately affecting the perovskite film crystallinity. Moreover, they additionally depreciate the band alignment and charge transport. Defect engineering is therefore the ideal option to enhance device performance and stability. The initial substrate formation plays a consequential role in determining the morphology of the structure and different materials can thus be tested as precursors through different initial fabrication strategies to develop quality perovskite films. Composition engineering is also practiced, with dopants added at various levels of fabrication. In some cases, synthesizing defects also improves the device performance with reasonable stability. Herein, categorizing the defects, should be of primary importance given that defect structuring is very important to upgrade the perovskite performance for commercial applications.
- This article is part of the themed collection: Recent Review Articles