Issue 23, 2021

Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics

Abstract

Finding a personalized nano theranostics solution, a nanomedicine for cancer diagnosis and therapy, is among the top challenges of current medicinal science. Porous organic polymers (POPs) are permanent porous organic materials prepared by linking relatively rigid multidimensional organic building blocks. POP nanoparticles have a remarkable advantage for cancer theranostics owing to their specific physicochemical characteristics such as high surface area, convincing pore size engineering, stimuli-responsive degradability, negligible toxicity, open covalent post-synthesis modification possibilities etc. POPs have crystalline and non-crystalline characteristics; crystalline POPs are popularly known as covalent organic frameworks (COFs), and have shown potential application across research areas in science. The early research and development on theranostics applications of nanoscale POPs has shown tremendous future potential for clinical translation. This tutorial review highlights the recently developed promising applications of nPOPs in drug loading, targeted delivery, endogenous and exogenous stimuli-responsive release, cancer imaging and combination therapy, regardless of their crystalline and poorly crystalline properties. The review will provide a platform for the future development and clinical translation of nPOPs by solving fundamental challenges of cancer nanomedicines in drug loading efficiency, size-optimization, biocompatibility, dispersibility and cell uptake ability.

Graphical abstract: Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics

Article information

Article type
Tutorial Review
Submitted
14 Jun 2021
First published
05 Okt 2021

Chem. Soc. Rev., 2021,50, 12883-12896

Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics

N. Singh, S. Son, J. An, I. Kim, M. Choi, N. Kong, W. Tao and J. S. Kim, Chem. Soc. Rev., 2021, 50, 12883 DOI: 10.1039/D1CS00559F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements