Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

An effective and general strategy is developed to prepare a multifunctional and mechanically compliant skin-like sensor by incorporating a 3D printed thermo-responsive hydrogel into a capacitor circuit. The prepared intelligent skin shows a sensitive and stable capacitance–temperature response, and also exhibits very high pressure sensitivity within 1 kPa, allowing it to sense body temperature, gentle finger touches and finger bending motion. This work not only demonstrates that stimuli-responsive hydrogels are promising candidates for artificially intelligent skins, but might also enrich the design of skin-like sensors for future artificial intelligence, wearable devices and human/machine interaction applications.

Graphical abstract: A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel

Page: ^ Top