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Flow states of two dimensional active gels driven by ex-
ternal shear

Wan Luo∗ab, Aparna Baskaranc, Robert A. Pelcovitsde, and Thomas R. Powersabde†

Using a minimal hydrodynamic model, we theoretically and computationally study the Couette flow
of active gels in straight and annular two-dimensional channels subject to an externally imposed
shear. The gels are isotropic in the absence of externally- or activity-driven shear, but have nematic
order that increases with shear rate. Using the finite element method, we determine the possible
flow states for a range of activities and shear rates. Linear stability analysis of an unconfined gel in
a straight channel shows that an externally imposed shear flow can stabilize an extensile fluid that
would be unstable to spontaneous flow in the absence of the shear flow, and destabilize a contractile
fluid that would be stable against spontaneous flow in the absence of shear flow. These results are in
rough agreement with the stability boundaries between the base shear flow state and the nonlinear
flow states that we find numerically for a confined active gel. For extensile fluids, we find three kinds
of nonlinear flow states in the range of parameters we study: unidirectional flows, oscillatory flows,
and dancing flows. To highlight the activity-driven spontaneous component of the nonlinear flows,
we characterize these states by the average volumetric flow rate and the wall stress. For contractile
fluids, we only find the linear shear flow and a nonlinear unidirectional flow in the range of parameters
that we studied. For large magnitudes of the activity, the unidirectional contractile flow develops a
boundary layer. Our analysis of annular channels shows how curvature of the streamlines in the base
flow affects the transitions among flow states.

1 Introduction
The defining property of an active fluid is that energy is added to
the system at the small length scales of the particles that make
up the fluid, instead of at the large length scales of the bounding
walls or inlets of the system.1 Commonly studied examples in-
clude cytoplasm2 or its reconstituted components,3–5 collections
of swimming microorganisms,6–8 and model two-dimensional
layers of cells.9 The interplay of the energy injected at small
scales and the interactions among the constituent particles lead to
nonequilibrium collective behavior, including spontaneous coher-
ent flows,10–12 sustained oscillations,1,13 active turbulence,14–16

and two-dimensional4 or three-dimensional17,18 topological de-
fects in active liquid crystalline fluids. These phenomena suggest
that active fluids may be used for novel microfluidics applications,
including fluids that pump themselves or mix themselves. Since
these applications require a degree of control over active fluids,
recent investigations have studied how confinement of active flu-
ids affects flows and the formation of defects.13,19–26 In this pa-
per, we build on these investigations by studying the flow states of
an active gel in a channel with moving boundaries to see how an
imposed shear affects the possible flow states and the transitions
among them.
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By ‘active gel’ we mean a model liquid crystal which tends to
the isotropic phase away from boundaries with strong anchor-
ing conditions and in the absence of shear flow. The motionless,
isotropic state of an unbounded two-dimensional active gel is un-
stable to spontaneous flow and nematic ordering above a criti-
cal activity.27,28 Recent numerical calculations have identified the
spontaneous flow states in straight three-dimensional29,30 and
two-dimensional channels13,29,31 with stationary walls. In a two
dimensional channel with no-torque anchoring conditions at the
walls, the critical activity for spontaneous flow increases as the
channel width decreases.29 Thus, confinement is stabilizing, as
has been found in other related situations.32 For a given value
of the activity parameter, new flow states emerge as the chan-
nel width increases, with the flow progressing through unidirec-
tional, undulating (also known as ‘oscillatory’,13) and dancing
flow states.29,33 A similar sequence of flow states is found for
fixed channel width and increasing activity.29

Our work is motivated by the experimental observation that im-
posed shear can prevent30 the spontaneous instability of a solu-
tion12 of microtubule bundles and kinesin motors in the presence
of the molecular fuel ATP. Instead of a motionless state, our base
state is the state of simple shear in which the flow field is given
by the solution to the Stokes equation for our straight or annular
channel geometry. Working at fixed channel width, we find that
increasing the activity leads to a sequence of flow states which are
reminiscent of the ones seen in the case of no external shear, but
with some important new elements. For example, the imposed
shear rate can be stabilizing in the same sense that confinement
is stabilizing: for an extensile active gel, we find that the critical
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activity for the imposed simple shear flow to develop a sponta-
neous flow component increases with the imposed shear rate. A
similar result was established using linear stability analysis of the
effects of external shear on active nematics by Muhuri, Rao, and
Ramaswamy.34 Cates et al.35 have studied the effects of shear
close to the isotropic-nematic transition, primarily on the nematic
side of the transition where the isotropic phase is metastable.
Here we give a more systematic treatment of this problem for
two-dimensional materials in the equilibrium isotropic phase (in
two dimensions there is no metastable isotropic phase above the
transition), revealing that the imposed shear also leads to oscilla-
tory behavior in the unstable modes. For a contractile active gel,
we find that shear is destabilizing. Earlier work has also examined
the rheology of active nematics and gels, showing that polar ac-
tive particles have a nonmonotonic stress-strain relation at high
activity,36 and illuminating the nature of shear banding in apolar
active gels.37 Our work extends these investigations to the case
of an annular channel, illustrating the role of the curvature of the
streamlines of the base flow.

Our paper begins with a minimal hydrodynamic model for ac-
tive gels. We then study the linear stability of an active gel in
a straight channel subject to a uniform shear flow imposed by
a moving plate. In the stable region, the linear rheology, orien-
tational order, and the shear stress exerted by the active fluids
on the moving boundary are analytically calculated for the state
of uniform shear. Then we turn to the other flow states using
the finite element method to characterize the flow transitions for
the extensile and contractile fluids. Next, we turn to an annular
channel and carry out similar analytical and numerical studies to
assess the effects of the curvature of the boundaries.

2 Minimal hydrodynamic model
We use a simple continuum hydrodynamic model for nematic liq-
uid crystals38,39 to describe apolar microtubules, adding to the
Stokes equation a term corresponding to non-equilibrium active
forces, as was done in the "minimal" model used by Varghese et
al.29 In two dimensions, the orientational order of apolar active
matter is described by a traceless, symmetric tensor—the ten-
sor order parameter that is used in the theory of nematic liquid
crystals—Qi j = S(2nin j − δi j), with i, j = x,y.40 The unit vector
n(x) is the director at position x and the scalar order parameter
S represents the degree of alignment. The equilibrium state of
the microtubule bundles is governed by a Landau-Ginzburg free
energy density,

F =
K
2

∂iQ jk∂iQ jk +
A
2

Qi jQi j +
C
4
(
Qi jQi j

)2
, (1)

where repeated indices are summed over. The single Frank elas-
tic constant K penalizes gradients of Qi j. Since we focus on a low
concentration isotropic phase, A will be positive to guarantee that
the minimizing state is disordered. In two dimensions there is no
term cubic in Qi j, and the isotropic-nematic transition is contin-
uous. In the isotropic phase we consider in this paper, the term
proportional to C can be neglected, as was done in previous stud-
ies of two-dimensional and three-dimensional channel flow.29,30

A minimal hydrodynamic model for incompressible flow in two

Fig. 1 The base state for the flow field and tensor order parameter field
Qi j of a Couette flow of an active gel in a straight channel with the bottom
wall moving at a fixed speed γ̇W . The double-headed arrows correspond
to the director field n of the extensile apolar active bundles. The tensor
order parameter field is uniform throughout the channel because the flow
is uniform and because we impose Neumann boundary conditions on Qi j.

dimensions is given by29

0 = ∇ ·v (2)

0 = −∇∇∇p+η∇
2v−a∇ ·Q (3)

0 = −ν
(
∂tQ+v ·∇Q+Q ·Ω−Ω ·Q

)
−AQ+K∇

2Q

+ 2λνE, (4)

where η is the shear viscosity, ν is the rotational viscosity, p is
pressure, (v ·∇∇∇Q)i j = vk∂kQi j, E= [∇v+(∇v)T]/2 is the strain rate
tensor, Ω = [∇v− (∇v)T]/2 [i.e. Ωi j = (∂ jvi − ∂iv j)/2] is the vor-
ticity tensor, and a is the strength of the activity. A positive value
of a corresponds to extensile particles, and a negative value of
a corresponds to contractile particles. The shape parameter λ

is positive for prolate particles and negative for oblate particles;
λ = 1 corresponds to needle-like particles. Note that in three di-
mensions there will be additional nonlinear terms proportional to
λ appearing in eqn (4).

We study two-dimensional Couette flows in straight and annu-
lar channels by moving one of the boundaries. On both bound-
aries, we assume no-slip conditions for the fluid velocity and
torque-free anchoring conditions for the director field. We dis-
regard inertial effects because the Reynolds number of the typical
active flows we study is small. In this minimal hydrodynamic
model, passive nematic backflow effects are disregarded in order
to simplify the model. Thus, in our model, the order parame-
ter field Q only affects the flow through the active stress −aQ.
A more complete active nematic hydrodynamic model, including
backflow effects, has been considered by other authors.41

The active time scale which results from the competition be-
tween viscosity and activity is given by η/|a|. From the dynam-
ical equation for Q, eqn (4), it is apparent that the relaxation
time τ for distortions away from the equilibrium isotropic state
is τ = ν/A. Likewise,

√
K/A is a correlation length for the liq-

uid crystalline order, which we write in nondimensional form as
ℓ =

√
K/A/W , where W is the width of the straight or annular

channel. In the next section, we will see that in the limit of small
correlation length, ℓ ≪ 1, an active gel flows spontaneously in a
channel when the active time scale η/a is comparable to the liq-
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Fig. 2 Director angle φ as a function of time for various shear rates for
the startup problem of the liquid crystal order parameter in the case of
steady simple shear. From top to bottom, the shear rates are γ̇τ = 5
(green curve), γ̇τ = 1 (gold curve), and γ̇τ = 0.2 (blue curve).

uid crystal relaxation time ν/A. Thus, when we numerically solve
the governing equations in section 4, it is natural to define the di-
mensionless activity α = aλτ/η . The factor λν in eqn (4) charac-
terizes the flow birefringence of a passive (a = 0) liquid crystal.42

When weak shear γ̇ ≪ 1/τ is applied to a nematic liquid crystal in
the isotropic state, the rods align such that AQ≈ 2λνE, which im-
plies that the scalar order parameter is proportional to the shear
rate: S ∝ γ̇τ.

3 Straight channel: start-up problem and linear sta-
bility analysis

Let us begin by reviewing the linear stability analysis of an un-
bounded two-dimensional active gel43. An isotropic (Q= 0), mo-
tionless (v = 0) gel is unstable to shear flow and nematic order-
ing when the effective shear viscosity (ηeff ≡ η − aλτ) vanishes,
which occurs for a critical activity ac = η/(λτ).27,28 The form of
the effective shear viscosity shows that extensile particles tend
to reduce the shear viscosity, whereas contractile particles tend
to increase it. In the unstable state of the unconfined geometry,
the pattern of alignment of the bundles follows a sine wave, ap-
pearing like a bent filament, or like the nematic configuration of
bend.40

Next, let us consider Couette flow of an active gel confined to
an infinite straight channel of width W and subject to a steady
uniform shear flow v0 = γ̇(W −y)x̂ as shown in Fig. 1. We assume
no-slip boundary conditions on the channel walls for the veloc-
ity field, and Neumann conditions, (∂iQ jk = 0) or “zero-torque
conditions" for the order parameter field on the walls. Given the
parallel planar channel walls and zero-torque boundary condi-
tions, the nematic order parameter is uniform and divergenceless
for the imposed uniform shear flow. In our hydrodynamic model,
activity only appears in eqn (3), and thus, when activity is below
the critical value for the instability, the order parameter field is
unaffected by the activity.

Before considering the stability of simple shear flow, we solve
the startup problem, assuming an initially stationary isotropic gel
with activity below the critical value (to be deduced below). Since
the Reynolds number is assumed to be small, the flow immedi-
ately assumes its steady-state value v0. But the order parameter

field attains its steady-state value only after a time comparable to
the liquid crystal relaxation time τ.44 Given the boundary condi-
tions on the order parameter, we may assume that Q is uniform in
space. Since Q is uniform, the divergence of the active stress van-
ishes and the flow remains simple shear as the order-parameter
field evolves. The order parameter equations (eqn (4)) reduce to

∂tQxx = −1
τ

Qxx − γ̇Qxy (5)

∂tQxy = γ̇Qxx −
1
τ

Qxy −λ γ̇. (6)

Assuming Q(t = 0) = 0, we find

Qxx = Q(0)
xx

[
1− e−t/τ cos(γ̇t)

]
+Q(0)

xy e−t/τ sin(γ̇t) (7)

Qxy = Q(0)
xy

[
1− e−t/τ cos(γ̇t)

]
−Q(0)

xx e−t/τ sin(γ̇t) , (8)

where the steady-state order parameter tensor Q0 is given by

Q(0)
xx =

λ γ̇2τ2

1+ γ̇2τ2 , (9)

Q(0)
xy = − λ γ̇τ

1+ γ̇2τ2 . (10)

The order parameter rises to its steady state, with oscillations that
become apparent when the shear rate is greater than the relax-
ation rate 1/τ. These oscillations are reminiscent of the oscilla-
tions observed45 in the apparent viscosity during the startup flow
of 8CB, a director-tumbling nematogen.46 In simple shear, the di-
rector of a tumbling nematic makes a complete revolution, like a
rod undergoing a Jeffery orbit in shear flow.46 In our case, as long
as τ is finite, the directors oscillate about their final steady state.
Fig. 2 shows the director angle φ = arctan[Qxy/(S +Qxx)] (mea-
sured counterclockwise from the x-axis) as a function of time.

The steady-state scalar order parameter and the director angle
are given by

S =
λ γ̇τ√

1+ γ̇2τ2
(11)

φ = −arctan

(
1√

1+ γ̇2τ2 + γ̇τ

)
. (12)

Equations (11) and (12) show that in steady state, the flow
aligns the nematic director at a nonzero angle with the horizontal
streamlines, with a degree of order that increases with increasing
shear rate. At low shear rates, γ̇τ ≪ 1, the bundles are oriented at
an angle of φ =−π/4 with the streamlines, and the order is weak
(S ≪ 1). At high shear rates, the bundles tend to align parallel to
the streamlines, and S ≈ λ . For needle-like particles, with λ ≈ 1,
the order is strong in the limit of high shear rate. The shear stress
on the moving plate in the stable region is

σW =−ηγ̇ −aQ(0)
xy = γ̇

(
−η +

aλτ

1+ γ̇2τ2

)
, a < ac. (13)

From eqn (13), it is easy to see the wall shear stress increases
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linearly with activity but the dependence on the imposed shear is
not linear when the activity is below the critical value.

To analyze the stability of the base configuration with flow rate
v0 and the confinement W , we consider a perturbation that is
independent of x, the channel axis. * Thus, v = v0 + v1 and Q =

Q0 +Q1 , with the perturbations

v1 = vx sin(nπy/W )exp(β t) x̂, (14)

Q1 =

(
Qxx Qxy

Qxy −Qxx

)
cos(nπy/W )exp(β t) , (15)

where vx, Qxx, and Qxy are constants, n is a nonzero positive in-
teger, and β is the growth rate of the perturbation. With these
assumptions, the x component of the force equation eqn (3) im-
plies

vx =
aQxyW

nπη
. (16)

Using eqn (16) in the linearized equations for Q1 yields

β± = −1
τ

(
1+

π2Kn2

AW 2

)
+

λa
2η(1+ γ̇2τ2)

±

√[
λa

2η(1+ γ̇2τ2)

]2
− γ̇2

(
1+

λaτ/η

1+ γ̇2τ2

)
. (17)

There are two modes. In the limit of a passive fluid, a = 0, the
modes collapse to a single mode corresponding to oscillations of
the order parameter as it decays to its equilibrium value given by
eqn (11): β± =−λ/τ[1+π2K/(AW 2)]± iγ̇. Note the similarity be-
tween these damped oscillations and the damped oscillations in
the startup problem, eqns (7) and (8). A nonzero activity makes
the two modes distinct. In the limit of zero shear rate, β− is neg-
ative and independent of activity even if a ̸= 0, and corresponds
to the decay of the scalar order parameter of a passive isotropic
nematic when it is perturbed from the isotropic value S = 0. The
other mode corresponds to the spontaneous flow and ordering of
an active isotropic nematic when a> ac = [1+π2K/(AW 2)]η/(λτ).
Note that the confining channel walls raise the critical activity
above the previously quoted critical value for unbounded space.
The elastic constant K only enters the growth rate if the channel
width is finite.

In general, the critical activity for instability depends on the
shear rate, and is found by determining when Re(β+) = 0 for n =

1. The modes are oscillatory when the square root in eqn (17) is
imaginary, or when a− < a < a+, where

a± =
2ηγ̇

λ
(1+ γ̇

2
τ

2)

(
γ̇τ ±

√
1+ γ̇2τ2

)
. (18)

When a− < a < a+, the critical curve Re[β+(n = 1)] = 0 in the γ̇-a
plane is given by

a1c = 2
η

λτ

(
1+ γ̇

2
τ

2
)(

1+π
2ℓ2
)
, (19)

* A more general assumption would be to suppose the perturbation depends on both
x and y, but here we forbid x-dependence to simplify the analysis. The more general
analysis using pseudospectral methods will be reported elsewhere.

Fig. 3 Linear stability analysis results for a two-dimensional active gel
in a straight channel of width W subject to a shear flow with rate γ̇.
The Frank elasticity is small: K = 0.01AW 2. Simple shear flow is stable
against perturbations in the shaded blue region, and the perturbations
are oscillatory in the region between two dashed lines.

where ℓ is the dimensionless correlation length defined in the pre-
vious section. When a < a− or a > a+, the growth rate is purely
real, and the critical curve β+(n = 1) = 0 is given by

a2c =
η

τ

(
1+ γ̇2τ2)[(1+π2ℓ2)2 + γ̇2τ2]

λ (1+π2ℓ2 − γ̇2τ2)
(20)

Note that a2c > 0 for
√

1+π2ℓ2 > γ̇τ, and a2c < 0 for
√

1+π2ℓ2 <

γ̇τ.
The stability boundaries are plotted in Fig. 3 for the case of

ℓ = 0.1 (i.e., a small value of the dimensionless nematic corre-
lation length). We choose ℓ = 0.1 to match the value we have
chosen for the nonlinear numerical calculations presented in the
next section. The region of oscillatory growth rates, a− < a < a+,
is the region between the dashed lines. The stable region is the
shaded blue region between the solid blue curves, whereas the
unstable regions are the white regions. Note that the upper sta-
bility boundary is given by a1c in the oscillatory region, and a2c

in the non-oscillatory region. The lower stability boundary lies
wholly in the non-oscillatory region, and is therefore given by
a2c. Since the upper stability boundary near γ̇ = 0 increases with
shear rate, our results are in agreement with Muhuri et al.,34 who
found that shear counteracts the instability for extensile particles.
Surprisingly, we also find that shear can be destablilizing for con-
tractile active particles if the magnitude of the activity is large
enough.

4 Straight channel: nonlinear spontaneous flows
The linear analysis of the previous section predicts that simple
shear flow with uniform nematic order is stable as long as the ac-
tivity and externally imposed shear rate lie in the shaded region
of Fig. 3. However, there may be transitions to flow states that
are not captured by linear stability analysis, and furthermore, the
linear equations cannot describe the fully-developed flow states.
Thus, we explore the activity-induced flow states and the tran-
sitions between them by numerically solving the full nonlinear
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Fig. 4 Numerically determined flow states for extensile fluids with ℓ= 0.1
and λ = 1 in a straight channel. See the text for an explanation of how
the flow states were determined. The blue shaded region and the dashed
line indicate the linearly stable states and the boundary for oscillatory
modes, respectively, for ℓ = 0.1 (compare with Fig. 3). The location of
the transitions is generally insensitive to whether the initial splay of the
nematic directors converges to the right (as in Fig. 5b) or the left (as in
Fig. 5d). Note that depending on the noise in the initial conditions, some
of states at higher α can either be dancing or oscillatory-like states; an
example is shown in the SI.

equations, eqns (2)–(4) which describe the Couette flows of ac-
tive gels. We use the open source finite element software FEn-
iCS47–49 to solve the nonlinear equations, employing a backwards
Euler scheme to solve for the time dependence. We characterize
the flow states by the spontaneous volumetric flow rate as well as
the wall shear stress.

The system is initialized with a small value of the nematic order
parameter S, appropriate for an isotropic state. For sufficiently
small values of the external shear, the direction of the activity-
induced flow for a > ac depends on the configuration of the ne-
matic order. We can achieve positive flow—flow in the same di-
rection the bottom wall moves—or negative flow—flow against
the direction the bottom wall moves—by imposing appropriate
initial conditions on the directors. These conditions will be de-
scribed below for the extensile and contractile cases. The initial
director fields also have small random fluctuations. Because we
are neglecting inertial effects, we do not need to initialize the
velocity field, which is determined from eqns (2)-(4). Instead
of attempting to simulate a very long channel, we use periodic
boundary conditions on the left and right boundaries of the chan-
nel. The length L of the channel is chosen to be five times the
width W ; we found this length to be the longest channel length
we could simulate in a reasonable amount of computing time. We
focus on situations in which the width W of the channel is large
compared to the correlation length

√
K/A of the liquid crystal.

Therefore, our simulations are carried out with a small nematic
correlation length,

√
K/A = 0.1W (i.e. ℓ= 0.1). In our numerical

calculations, W is the unit of length, τ is the unit of time, and η/τ

is the unit of pressure. We restrict our simulations to the case of
needle-like particles, λ = 1. As mentioned in section 2, we use
the dimensionless activity α defined via α = aλτ/η .

Fig. 5 Steady states of spontaneous flow and nematic order for dimen-
sionless activity α = 1.5 and dimensionless shear rate γ̇τ = 0.2 (the bottom
wall moves to the right, and the top wall is stationary). In the velocity
field plots (panels (a) and (c)), color denotes flow speed, and arrows
denote the direction of the flow. In the order parameter field (panels (b)
and (d)), color denotes the scalar order parameter and lines denote the
director field. The length of the line is proportional to the scalar order
parameter, and thus provides a relative measure of the nematic order.
Note that the leftward spontaneous flow in (c) is not sufficient to reverse
the net flow near the moving wall, but leads to negative net flow near
the stationary wall.

4.1 Extensile fluids
For extensile fluids, we find three types of flow states when the
activity is above the critical value ac: unidirectional, oscillatory,
and dancing. These states are similar to three of the states found
by Samui et al.,13 who studied an active nematic fluid confined
to a channel in the absence of external shear. These authors also
found an active turbulent state at high activity, which we do not
explore here. The unidirectional flow is steady, consisting of a
superposition of spontaneous flow and simple shear flow. The os-
cillatory flow is unsteady, with a pattern of flow and order that
translates at a constant velocity along the channel, which makes
the spatially-averaged wall stress constant in time. The dancing
flow is truly unsteady, with a spatially-averaged wall stress that
oscillates in time. These states will be described in more detail
below. Fig. 4 shows the phase diagram for flow states for dimen-
sionless activity in the range 0 ≤ α ≲ 2.5 and shear rate in the
range 0 ≤ γ̇τ ≲ 1. To get positive spontaneous flow, we imposed
initial conditions with the directors converging to the right, as
in Fig. 5b. To get negative spontaneous flow, we imposed initial
conditions with the directors converging to the left, as in Fig. 5d.
We ran each simulation until either all transients died out, or
t = 600τ, whichever came first. The final state could either be
a steady state or a state with regular periodic behaviour. Then
we classified the states as follows. The simple shear and unidi-
rectional flow states generally emerge at times t < 600τ. Both
states are steady with negligible y-component of velocity, and
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these two flow states are easily distinguished since simple shear
has the standard linear flow profile vx = γ̇(W − y), whereas uni-
directional flow has a spontaneous flow component added to the
linear flow. If there is a nonzero y-component of the velocity at
the end of the simulation, we check for oscillations in the average
wall stress, σ̄w =

∫ L
0 dxσxy(x,y = 0)/L, for times in the range 550τ–

600τ. Negligible oscillation in the average wall stress implies an
oscillatory flow state, while non-negligible values imply a danc-
ing state. Most of the points shown in Fig. 4 reached a steady or
regular periodic state by t = 600τ, or came very close to doing so.
But a few cases near transitions between flow states needed much
longer to fully develop.

The limit of stability for the simple shear flow states in the Fig.
4 is the boundary between the region with black crosses and the
regions with other symbols. We observe that the numerical limit
of stability for simple shear flow matches very well with the pre-
diction of linear stability analysis (filled blue region), but only
for the transition from the simple shear to unidirectional flow,
γ̇τ ≲ 0.3. The disagreement between the linear stability bound-
ary and the transition from simple shear flow to oscillatory flow
may be due to our neglect of the possibility that the perturbation
could depend on x as well as y. In the region of simple shear flow
(black crosses in Fig. 4), our numerical results show that the wall
stress decreases with activity, in agreement with eqn 13. Fig. 6a
shows the numerically computed wall stress, normalized by the
passive (viscous) stress. When the flow state is simple shear, ac-
tivity reduces the total wall stress in proportion to the activity,
in accord with the general understanding that extensile particles
with activity reduces the effective viscosity.43 Fig. 6b shows the
normalized wall stress, or, equivalently, the effective viscosity vs.
imposed shear rate. For the cases for which the flow is simple
shear, we see that the gel is shear-thickening, in accord with our
analytic expression eqn (13).

Unidirectional flow. When the externally imposed shear is
in the range 0 ≤ γ̇τ ≲ 0.3, and the dimensionless activity is in
a relatively narrow band near α ≈ 1 (Fig. 4), activity creates a
steady unidirectional flow along the x-axis (Fig. 5). The activity-
induced component spontaneously breaks the left-right symmetry
of the channel, with the actual direction of the active flow compo-
nent determined not by the imposed external shear but instead by
the initial conditions of the directors, as described above. Since
the total shear rate vanishes at the value of y at which the flow
rate has an extremum, the scalar parameter vanishes at this same
value of y (Fig. 5). Fig. 7 shows the flow profile subtracting off the
imposed shear flow for fixed activity and various values of γ̇ for
both the left-moving and right-moving spontaneous flows. It indi-
cates that the spontaneous active component of the flow depends
on γ̇; in other words, the total flow is not simply a superposition
of the passive shear flow vx = γ̇(W − y) and the spontaneous flow
at zero externally imposed shear.

To better characterize these flows, we subtract the passive vol-
umetric flow rate from the total volumetric flow rate to get the di-
mensionless activity-induced volumetric flow rate (per unit chan-
nel width),

qactive ≡
(∫ W

0
dyvx −

γ̇W 2

2

)
τ

W 2 , (21)

shown in Fig. 8. This quantity serves as an order parameter de-
scribing the transitions among the various flow states. Fig. 8
shows that the activity-driven flow rate has the same magnitude
for the left-moving and right-moving flows, and also that the am-
plitude of the unidirectional flows increases as the activity in-
creases.

For unidirectional flows we observe negligible difference in the
wall stress for the left-moving and right-moving flows. Examin-
ing Fig. 6a for the case of γ̇τ = 0.2 reveals that reduction of the
normalized wall stress with increasing activity ceases at the onset
of the unidirectional flow, and the normalized wall stress at y = 0
starts to increase slightly as activity increases further. The first
two points of the curve corresponding to α = 1.4 in Fig. 6b illus-
trate the ‘superfluidity’ of active gels, in which the active stress
nearly cancels the viscous stress at the wall when the activity is
near the critical activity. We give an analytical treatment of this
phenomenon in our weakly nonlinear analysis of section 4.3.

Oscillatory flow. Our phase diagram of flow states shows that
for γ̇τ ≲ 0.3, there is a transition with increasing activity from
the unidirectional flow states to two-dimensional oscillatory flows
(Fig. 9). When γ̇τ ≳ 0.3, the simple shear states transition di-
rectly to two-dimensional oscillatory flows as activity increases.
Although the oscillatory flow states are unsteady, with the veloc-
ity and order parameter taking the form of a traveling wave, the
flow pattern and order parameter configuration rigidly translate
in the x direction with wave speed vT. In other words, in the
frame moving relative to the channel walls with speed vT, the
streamlines meander in space but are steady. Likewise, the con-
figuration of the order parameter tensor is steady in this frame.
Because we use periodic boundary conditions, the flow field and
orientational order parameter must have a period in x equal to
the channel length L. But these fields could also have a shorter
period, which must evenly divide the total channel length. Since
we use a channel length L = 5W , the possible wavelengths for a
periodic configuration are 5W , 5W/2, 5W/3, .... Different wave-
lengths are selected in the dynamical final state depending on the
initial state of the nematic directors, as well as the value of the
activity and the imposed shear. Because it is difficult to determine
the relationship between the random fluctuations imposed on the
initial directors and the wavelength that is finally selected, we did
not make a systematic study of all the possible wavelengths and
how the corresponding wavespeeds depend on the parameters.
It is natural to worry that the steady translation of the flow field
and order parameter pattern could be an artifact of the periodic
boundary conditions. In Sec. 5, we study an annular geometry
as a single domain without the need for periodic boundary con-
ditions. Since we also observe an oscillatory flow state with con-
stant angular wave speed in that situation, we are confident the
occurence of a pattern with constant wave speed in the straight
channel is not an artifact of the period boundary conditions.

We measured the volumetric flux for times in the range t = 550–
600τ, which is when the system is generally in its final dynami-
cally stable state. In the final state, the volumetric flow rate and
wall shear stress of the oscillatory flows are constant. For small
externally imposed shear (e.g. γ̇τ ≤ 0.2 in Fig. 4), the spontaneous
activity-induced flows can be either positive or negative, depend-
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Fig. 6 Numerical results for spatially-averaged wall stress imposed by the active flow on the bottom wall of a straight channel, normalized by the
passive wall stress for simple shear and unidirectional flows, which is equivalent to the effective viscosity in the presence of activity normalized by the
shear viscosity, ηeff/η . Panel (a) shows the dependence on the activity and panel (b) shows the dependence on the external shear rate. Note that form
of the straight lines in panel (a) is given by eqn 13. The nearly vanishing stress in the unidirectional flows accords with our weakly nonlinear analysis
in section 4.3.

Fig. 7 Spontaneous component of velocity profiles in dimensionless units
for unidirectional flow at different rates of externally imposed shear. For
each value of the shear rate, there are two branches, with the upper
branch corresponding to the positive spontaneous flow, and the lower
branch corresponding to the negative spontaneous flow.

ing on the form of the splay in the initial conditions for nematic
order, as for the unidirectional flows. See Figs. 9a–d (movies are
in the SI). For positive spontaneous flow, the streamlines undu-
late, but the externally imposed shear breaks the up-down sym-
metry of the waves with respect to the horizontal centerline of the
channel. The velocity at the valleys of the waves is higher than
at the peaks. For negative spontaneous flow, since the activity-
induced flow is opposite to the direction of the externally imposed
shear flow, the flow more easily forms circular streamlines. Thus,
for γ̇ ̸= 0, the absolute value of the activity-driven flux of negative
spontaneous flows is slightly smaller than the flux for the posi-
tive spontaneous flows, as can be seen by looking very closely at
Fig. 8.

The direction of the spontaneous flow not only determines the

Fig. 8 Dimensionless activity-driven volumetric flow rate versus dimen-
sionless activity in a straight channel. The symbols denote the flow states
and the colors denote the externally imposed shear rate. The wavelength
is 5W/4 for all cases with nonzero activity-driven flow rate shown in the
figure.

shape of the streamlines, but also determines the direction of
translation of the total flow pattern, including the passive vis-
cous flow. For positive spontaneous flow, the total flow pattern
translates in the +x direction, while for the negative spontaneous
flow case, it translates in the −x direction. The activity-driven
volumetric flow rate is nonzero but generally decreases with in-
creasing activity as shown in Fig. 8.

We now turn to larger externally imposed shear (e.g. γ̇τ ≥ 0.3
in Fig. 4). In this case, only the positive spontaneous flow ap-
pears; the symmetry is broken by the flow imposed by the external
shear. The activity-driven volumetric flow rate is zero because the
imposed shear rate is large enough to close the streamlines. In-
terestingly, our numerical results indicate that the wave speed for
these oscillatory flows with zero activity-driven flow rate is equal
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Fig. 9 Examples of the unsteady oscillatory flow state at t = 600τ. Panels
(a), (b), (c) and (d) show the flow patterns and order parameter fields
corresponding to positive and negative spontaneous flows for small ex-
ternal shear rate. Panels (e) and (f) show a case with larger shear rate.
At this shear rate, we only observe positive spontaneous flow.

to the average volumetric flow rate of simple shear, vT = γ̇W/2.
Dancing flow. At higher activity, the flow field and tensor or-

der parameter field become unsteady in any frame, and we find
states (Fig. 10; movies are in the SI) analogous to the danc-
ing flows found by Shendruk et al.33 and Samui et al.13 in their
study of active nematic flow in a two-dimensional channel. The
volumetric flow rate of dancing flow is still constant with time.
Additionally, in the range we study (α ≤ 2.5), when activity is
large enough to dynamically close all streamlines for the part of
the flow that is activity-driven, the total flux is the same as in the
passive case. As in the case of the oscillatory flows, sometimes we
find multiple states at the same values of parameters. For exam-
ple, noise in the initial conditions may cause the system to exhibit
oscillatory-like states in the region of the phase diagram where
dancing flows are also found.

Given a director configuration n̂ = cosφ x̂+ sinφ ŷ, we may de-
fine the topological charge inside a closed loop by computing∫

dφ = 2πm around the loop, where m is the charge. Applying this
definition to the configuration in Fig. 10b may be problematic be-
cause the order parameter S vanishes not just in small cores but in
extended two-dimensional regions. If the loop drawn to encircle
a potential topological defect crosses a region where S vanishes,
the angle φ and the topological charge are ill-defined. Neverthe-
less, we can simply look at the director configuration of dancing

Fig. 10 Snapshot of a representative unsteady dancing flow state at
t = 599.8τ. In the velocity field plots, colors denote flow speed, and
arrows denote flow direction. In the order parameter field, colors denote
the scalar order parameter, and lines denote directors.

Fig. 11 Flow states for contractile particles in a straight channel with
ℓ = 0.1. As in Fig. 4, the blue shaded region is linearly stable, and
the modes of the linearized equations are damped but oscillatory above
the dashed line. The finite element results are insensitive to the initial
conditions of the director field.

flow and see that there are parts of the configuration around the
regions of small S near the center of the channel that closely ap-
proximate the director field of +1/2 defects. The +1/2 defects
appear in pairs, and the two defect cores move with undulations
of the flow in opposite directions leading to the pairs exchanging
partners with the pair to the immediate left and immediate right,
consistent with the Ceilidh dance observed by Shendruk 33 and
Samui13.

The spatially averaged shear stress imposed by the active flow
on the moving wall also oscillates in time. The average wall shear
stress no longer decreases linearly with activity in the sponta-
neous flow region.

4.2 Contractile fluids
Negative activity corresponds to contractile particles. When the
activity is sufficiently negative and the shear rate is large enough,
γ̇τ >

√
1+π2ℓ2 , we observe unidirectional flow states in our

finite-element calculations. The stability boundary that we find
in our numerical calculations is consistent with the results of our
linear stability analysis (Fig. 11). As in the extensile case, we get
both positive and negative flows, depending on whether the ini-
tial configuration of the directors bends downward as in Fig. 12b,
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Fig. 12 An example of the velocity and order parameter fields of positive
and negative spontaneous flow for contractile particles. In the velocity
field plots (a) and (c), color denotes the flow speed, and arrows denote
flow direction. In the order parameter field plots (b) and (d), color
denotes the scalar order parameter, and lines denote the directors.

or upward as in Fig. 12d. After transients have died out, the
active component of the volumetric flow rate is equal in magni-
tude for the positive and negative flows, and the amplitude of the
flow rate increases as the magnitude of the activity increases. It is
well-known that contractile elongated particles in a shear flow en-
hance the shear viscosity.43 Thus, the wall stress (normalized by
passive stress) increases linearly with the magnitude of the activ-
ity when the flow is simple shear, according to eqn 13. When the
flow transitions to unidirectional flow, we also find that the nor-
malized wall stress increases linearly with the magnitude of the
activity, however with a slightly smaller absolute value of slope.
The figures showing the dependence of the active component of
flow rate and the dependence of the normalized wall stress on
activity are in the SI.

When the magnitude of the activity becomes large, we observe
a boundary layer in the flow velocity. Since we found only steady-
state unidirectional flow states for contractile activity, it is com-
putationally more efficient to reduce the governing partial differ-
ential equations to ordinary differential equations [see eqns (23–
26) below] and solve them using the bvp5c solver of MATLAB.50

Fig. 13 shows the active component of the flow for the positive
and negative spontaneous flows of contractile gels. When the
absolute value of the activity is large, we observe that the sponta-
neous component of the flow approaches simple shear flow, with
a boundary layer of dimensionless thickness ℓδ near one of the
walls, which we define as the displacement boundary layer thick-
ness51

ℓδ ≡

∫W
0 dy

[
γ̇0y− (vx − vpassive

x )
]

∫W
0 dyγ̇0y

, (22)

where γ̇0 = d(vx − vpassive
x )/dy at y = 0 for positive spontaneous

Fig. 13 Active component of the velocity profile in dimensionless units
for contractile particles in the unidirectional flow state, for γ̇τ = 2.0 and
various activities. The upper branches correspond to positive sponta-
neous flow, and the lower branches correspond to negative spontaneous
flow. The dimensionless boundary layer thickness is denoted by ℓδ .

Fig. 14 Log-log plot of dimensionless boundary layer thickness ℓδ vs.
α −αc, for various shear rates (legend). These results indicate that ℓδ ∝

|α−αc|ζ , where ζ gradually changes from −0.44 to −0.56 with increasing
γ̇τ.

flow. The boundary layer thickness is the same for positive and
negative spontaneous flow. Fig. 13 shows that the peak flow
speed of the active component is higher and the boundary layer
is thinner for larger magnitudes of the activity. From Fig. 14, we
find that ℓδ ∝ |α −αc|ζ , where ζ is close to −0.5, but its magni-
tude increases with γ̇τ. This dependence will be studied in an-
other publication.

4.3 Weakly nonlinear analysis for γ̇ = 0.

To conclude this section, we turn to a weakly nonlinear analysis
of the spontaneous steady unidirectional flow near the transition
from the motionless isotropic state.52 We continue to assume λ =

1 and only consider the case of zero shear rate, γ̇ = 0, leaving
the case of nonzero γ̇ for another publication. Assuming that the
velocity field, order parameter tensor, and pressure depend only
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on the coordinate y, the dimensionless governing equations are

v′′x −αQ′
xy = 0 (23)

−p′+αQ′
xx = 0 (24)

ℓ2Q′′
xx −Qxx + v′xQxy = 0 (25)

ℓ2Q′′
xy −Qxy − v′xQxx + v′x = 0 (26)

with no-slip boundary conditions vx(0) = vx(1) = 0 and no-torque
(Neumann) boundary conditions Q′

i j(0) = Q′
i j(1) = 0. The prime

denotes a derivative with respect to y. We already saw in Sec. 3
that the motionless, distorted state at zero imposed shear rate is
unstable when α > αc, where αc = (1+π2ℓ2) is the dimensionless
critical activity. Here we study the spontaneous flow and weak
ordering for α = αc +δα, with δα small and positive. We do not
assume that ℓ, the dimensionless nematic correlation length, is
necessarily small. Assuming the balance Qxx ≈ v′xQxy in eqn (25)
suggests that to leading order, vx = O(δα1/2), Qxy = O(δα1/2),
and Qxx = O(δα). Thus, we expand in powers of δα1/2:

vx = δα
1/2v(1)x +δαv(2)x +δα

3/2v(3)x + . . . (27)

Qi j = δα
1/2Q(1)

i j +δαQ(2)
i j +δα

3/2Q(3)
i j + . . . . (28)

At O(δα1/2), we find the steady versions of the linearized equa-
tions we used in Sec. 3 to solve for the growth rate,

v(1)′′x −αcQ(1)′
xy = 0 (29)

ℓ2Q(1)′′
xx −Q(1)

xx = 0 (30)

ℓ2Q(1)′′
xy −Q(1)

xy + v(1)′x = 0. (31)

The Neumann boundary conditions on Qi j together with eqn (30)

imply that Q(1)
xx (y) = 0. Integrating eqn (29) yields v(1)′x −αcQ(1)

xy =

σ (1), where σ (1) is a constant. Eliminating v(1)x from eqn (31)
leads to

ℓ2Q(1)′′
xy +(αc −1)Q(1)

xy =−σ
(1). (32)

To get a solution for Q(1)
xy that satisfies the Neumann boundary

conditions, we must have

Q(1)
xy = c1 cos

(√
αc −1y/ℓ

)
− σ (1)

αc −1
(33)

= c1 cosπy− σ (1)

αc −1
, (34)

Using eqn (29) and the no-slip boundary conditions implies
σ (1) = 0 and v(1)x = (c1αc/π)sinπy. Note that to leading order,
vx and Qxy are O(δα1/2), but Qxx is at most O(δα). At the next
order, the equations are

v(2)′′x − (1+π
2ℓ2)Q(2)′

xy = 0 (35)

−ℓ2Q(2)′′
xy +Q(2)

xy − v(2)′x = 0 (36)

−ℓ2Q(2)′′
xx +Q(2)

xx = c2
1(1+π

2ℓ2)cos2
πy, (37)

with solutions

Q(2)
xx = c2

1
1+π2ℓ2

2

(
1+

cos2πy
1+4π2ℓ2

)
(38)

Q(2)
xy = c2 cosπy (39)

v(2)x = c2
1+π2ℓ2

π
sinπy, (40)

where c2 is a constant.

To determine c1, we must expand to O(δα3/2):

v(3)′′x − (1+π
2ℓ2)Q(3)′

xy = −c1π sin(πy) (41)

ℓ2Q(3)′′
xy −Q(3)

xy + v(3)′x = c3
1C0

[(
3
2
+4π

2ℓ2
)

cosπy

+
1
2

cos3πy
]
, (42)

where C0 = (1+π2ℓ2)2/[2(1+4π2ℓ2)]. Integrating eqn (41) yields

v(3)′x = (1+π
2ℓ2)Q(3)

xy + c1 cosπy+σ
(3), (43)

where the constant σ (3) appears in the expansion of the stress,
σ = v′x −αQxy = δα1/2σ (1) + δασ (2) + δα3/2σ (3) + . . . . The so-
lutions we have already found at lower order imply that σ (1) =

σ (2) = 0. The no-slip boundary conditions on v(3)x also imply that
σ (3) = 0. Thus, the stress vanishes not only at the critical value of
the activity, but also as α is increased above αc. Our numerical
computations give the same result just above the critical activity.
Using eqn (43) to eliminate v(3)x from eqn (42) yields

ℓ2Q(3)′′
xy +π

2ℓ2Q(3)
xy =C1 cosπy+C2 cos3πy, (44)

where

C1 =
c3

1(1+π2ℓ2)2(3+8π2ℓ2)

4(1+4π2ℓ2)
− c1 (45)

C2 =
c3

1(1+π2ℓ2)2

4(1+4π2ℓ2)
. (46)

To find c1, we use the Fredholm alternative,53 which implies
that the right-hand side of eqn (44) must be orthogonal to the
solution of the corresponding homogeneous equation. Thus, C1 =

0, and

Qxx =
2δα

αc

(1+4π2ℓ2)

3+8π2ℓ2

(
1+

cos2πy
1+4πℓ2

)
+O(δα

3/2) (47)

Qxy = ±2δα1/2

αc

√
(1+4π2ℓ2)

3+8π2ℓ2 cosπy+O(δα) (48)

vx = ±2δα1/2

π

√
(1+4π2ℓ2)

3+8π2ℓ2 sinπy+O(δα), (49)

where the two signs for vx and Qxy correspond to the two different
spontaneous directions of flow, and the corresponding orientation
of the directors. These analytical solutions agree very well with
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our numerical solutions for the spontaneous unidirectional flow
state with activity just above the critical activity, with α ranging
from 1.1 to 1.25 (see the SI).

5 Annular channel: nonlinear spontaneous flows
In our work on the straight channel, we saw that simple shear
flow led to a spatially uniform order parameter field Q when the
activity is less than a critical value. Uniform Q leads to zero active
force on the fluid. In contrast, if the shear rate in the flow is
spatially nonuniform, the alignment and degree of ordering of the
directors will also be spatially nonuniform, leading to an active
force. This situation arises in the case of curved boundaries—as
in an annular channel—for any nonzero value of the activity, no
matter how small. Previous theoretical studies involving curved
boundaries have focused on the case of motionless walls. For
example, Woodhouse and Goldstein found spontaneous circular
flow in a circular chamber,10 and Norton et al. showed that the
nature of topological defects in the director field is determined by
the flow rather than the director anchoring conditions at the wall
of a circular chamber.20

In this section, we introduce curvature by considering the flow
states of a two-dimensional active gel in the Taylor-Couette ge-
ometry of an annular channel between two concentric circular
boundaries of radius R and R +W . We impose external shear
by rotating the inner boundary with steady angular frequency ω,
leaving the outer boundary stationary. Stokes flow in this geome-
try, known as Couette flow, is given by54

vθ =
ωR2

(2R+W )W

[
(R+W )2

r
− r
]
, (50)

where r is the radial polar coordinate. The second term of
eqn (50) corresponds to rigid body rotation and does not lead
to any strain rate, but the first term leads to a nonuniform strain
rate, and thus induces a nonuniform order parameter field and
an active force on the fluid for any nonzero value of the activity.
To study the nonlinear flow states of active flows in the annu-
lar channel, we again employ the finite element software FEniCS
to solve the the full nonlinear equations, eqns (2)-(4). We set
ℓ= 0.1, λ = 1 and R/W = 1.

5.1 Extensile fluids

We begin our discussion of the flow states in the annulus with
extensile active gels, α > 0. As in the case of the straight channel,
we give the initial director field some splay to induce counter-
clockwise or clockwise spontaneous flow, with the flow direction
depending on the sense of the splay. For example, splay with the
rods converging as we move counterclockwise around the annu-
lus (Fig. 15d) leads to counterclockwise active flow (Fig. 15c).
For the activities we used, we find the same kinds of active flow
states as in the straight channel: Couette-like states which have
no radial component of flow and are the analogs of the unidi-
rectional states in the straight channel (Figs. 15a–d), oscillatory
states (Figs. 15e and f), and dancing states (Figs. 15g and h).
We run the simulations until t = 600τ, and characterize the flow
states as we did in the case of the straight channel (Sec. 4). For

the Couette-like flows, we distinguish two flow states by checking
whether the maximum velocity is at the moving wall or in the in-
terior of the annulus. If the flow is fastest on the wall, we label it a
“Couette-like 1” flow state; otherwise the label is “Couette-like 2”.
If the transverse component of the velocity vr is nonnegligible, we
check whether the torque exerted by the total flow on the inner
boundary oscillates during the time interval 550τ-600τ. If it oscil-
lates, then the state is dancing, otherwise it is oscillatory. There
are a few flow states near transitions that need a longer time to
equilibrate. We also find multiple solutions for particular values
of ωτ and α for the oscillatory and dancing flows. Fig. 16 shows
flow transitions in the annular channel in range of 0 ≤ α ≲ 2.5
and 0 ≤ γ̇τ ≲ 1. The transition from Couette-like to oscillatory
flow states is relatively robust, with the transition states showing
little dependence on the initial conditions. However, comparing
with the case of the straight channel, the states observed in the
transition from oscillatory to dancing flow are more sensitive to
the choice of initial conditions.

In the case of a straight channel, our numerical calculations al-
ways yielded the Newtonian simple shear state solution as long
as the magnitude of the activity was small enough. The situation
is different for the annular channel: our numerical calculations
only yield the Newtonian Couette flow state solution (eqn (50))
when the activity vanishes. As emphasized earlier, any nonzero
value of activity leads to active force and an active component
of the flow because the order parameter field is nonuniform for
nonzero wall rotation speed ω. Green, Toner and Vitelli exam-
ined a similar phenomena for active nematics in which a surface
of nonvanishing Gaussian curvature generates a spontaneous flow
at arbitrarily low values of the activity parameter.55 As long as ωτ

is sufficiently small, the flow profile varies continuously between
the Couette, Couette-like 1, and Couette-like 2 states as the activ-
ity increases (Fig. 17). Note that the flow velocity increases with
activity for a given imposed rotation rate, as expected because
extensile activity reduces the effective shear viscosity.43 Also, the
change from the Newtonian Couette flow profile is small as long
as the activity is modest, α ≲ 0.9 (Fig. 17), which we examine in
the SI.

The oscillatory flow in an annular channel (Figs. 15e and f;
movies are in SI) is similar to the oscillatory flow in a straight
channel. The flow and order parameter patterns are steady in a
frame that rotates at constant speed, and the average volumetric
flow rate (

∫
drvθ/W) is constant in time. Since we solve the equa-

tions in the annular domain without applying periodic boundary
conditions, and still see steady rotation of the flow pattern and
order parameter pattern, we can be confident that the constant
wave speed we saw in the case of the oscillatory flows in the
straight channel is not an artifact of the periodic boundary condi-
tion.

In the dancing state, the flow and order parameter patterns
periodically change in time, similar to the case of the straight
channel. Unlike the straight channel, the volumetric flow rate
of the dancing flow state (Figs. 15g and h; movies are in SI) in
the annular case is not constant in time. This time dependence
arises because the difference in curvatures of the inner and outer
boundaries of the annulus breaks the reflection symmetry of the
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Fig. 15 Examples of spontaneous flow states of an active gel in an annular channel. In these examples, the inner boundary rotates with dimensionless
speed ωτ = 0.2. The Couette-like 1 and 2 states are steady. In the oscillatory flow state, the flow pattern and order parameter configuration rotate
at a steady rate. The dancing flow state is unsteady. Videos of the oscillatory and the dancing flow states can be found in the SI, sections S2.1 and
S2.2 respectively. In the velocity field plots (top panels), colors denote flow speed and arrows denote flow direction. In the order parameter field plots
(bottom panels), colors denote the scalar order parameter and lines denote the directors.

Fig. 16 Flow states for extensile fluids in an annular channel with ℓ= 0.1
and R/W = 1. The Couette states at ω = 0 are states of zero flow and
zero order.

boundaries of the straight channel that relates the dancing flow at
the top wall to the dancing flow at the bottom wall. Also, as in the
straight channel, we observe moving pairs of +1/2 defect-like pat-
terns with an exchange of partners in the annular dancing flow.
In the straight channel, the defect pairs are mirror images of each
other (see Fig 10b), but in the annulus, the different curvatures
of the two boundaries spoils this symmetry. Joshi et al. also found
similar oscillatory and dancing flow states for active nematics by
changing the curvatures of the annular channel without external

Fig. 17 Velocity profiles in dimensionless units for the extensile case of
Couette (α = 0), Couette-like 1 (α = 0.3, 0.6 and 0.9) and Couette-like
2 (α = 1.2 and 1.5) flow states, for ωτ = 0.2.

shear.56

Fig. 18 shows the active component of the average flow rate
(defined as before as the average flow rate of the total flow mi-
nus the average flow rate of the a = 0 case) for the various flow
states we studied in the annular channel. For the case of zero ap-
plied shear (ωτ = 0), there are positive and negative spontaneous
flows when the activity exceeds a critical value. But for ωτ ̸= 0,
the flow rate has no bifurcation: it continuously increases from
zero as the activity increases from zero. Another striking differ-
ence with the straight channel is that for nonzero rotation rates
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Fig. 18 Active component of the volumetric flow rate for extensile fluids
in dimensionless units of vθ τ/W as a function of activity in the annular
channel. The symbols denote the flow states and the colors denote the
externally imposed dimensionless shear rate. For the dancing flows, the
square symbols show the average value of the oscillation of the volumetric
flow rate.

of the inner curved wall, we only observe positive spontaneous
flows (Fig. 18), even when we attempt to reverse the direction of
flow by altering the initial conditions of the directors. This rec-
tification arises because in the curved channel, the non-uniform
alignment of the directors arising from the applied shear leads
to spontaneous flow with the same rotation sense as the rotat-
ing wall. Furthermore, since the wave translation direction cor-
responds to the direction of the spontaneous component of the
flow, the oscillatory flow patterns all translate in the +θ direction
when ωτ ̸= 0. Another difference from the straight channel case
is that the active contribution to the average flow rate does not
disappear in the annular channel for larger shear rate.

Fig. 19 shows the torque exerted by the active fluid on the in-
ner boundary, normalized by the wall torque in the passive case,
for the Couette-like flows. The relation of the wall torque to the
activity is very similar to the relation of the wall stress to the ac-
tivity in the straight channel case, i.e. the normalized wall torque
decreases with increasing activity for the Couette-like 1 flow state.

The change in slope in the active-flow rate vs. α curve in Fig. 18
indicates the transition from the Couette-like flow state to the
oscillatory flow state. As noted earlier, sometimes our numerical
approach finds oscillatory patterns of different wavelengths for
the same values of the parameters, which would likely result in
values of the volumetric flow rate different from those shown in
Fig. 18.

We compare the wall torque and wall stress of annular and
straight channels in Fig. 20 to show the effect of curvature on
the wall stress as a function of external shear in the range of
0 < α ≤ 1. The normalized wall torque and wall stress are close
to each other for small external shear rate and both increase with
external shear rate, but the increase is larger in the annular chan-
nel, i.e. normalized wall torque is closer in value to the passive
case. Thus, the curvature of the channel reduces the effect of

Fig. 19 The torque imposed by the active flow of an extensile fluid on
the rotating disk normalized by the passive torque for the Couette-like
flows.

activity on the wall with increasing external shear.

5.2 Contractile fluids

We studied contractile active fluids in a two-dimensional annulus
with the parameters in the range −16 ≤ α < 0 and 0 < ωτ ≤ 2.4.
When α < 0, we only found Couette-like states with no radial
component of the flow. Since contractile activity increases the ef-
fective viscosity,43 the effect of the activity is always to reduce the
flow relative to Newtonian Couette flow (Fig. 21). As in the exten-
sile case, the direction that the active component of the flow trav-
els around the annulus is independent of the initial conditions,
but unlike the extensile case, the active component of flow is
negative (against the direction imposed by the externally applied
shear). The magnitude of the negative flow is always less than
the magnitude of the externally imposed Couette flow; therefore,
the total flow never reverses. In this sense, the contractile an-
nular flows are Couette-like 1 states rather than Couette-like 2
states. In accord with the larger effective viscosity of contractile
active fluids relative to passive fluids, the total torque on the in-
ner boundary is always greater than the hydrodynamic torque in
Couette flow (SI Fig. S5).

6 Summary
We investigated the stability and flow states of the active Couette
flows confined in a channel subject to a external shear. An ex-
ternally imposed shear flow can stabilize an extensile fluid that
would be unstable to spontaneous flow when there is no external
shear flow, and destabilize a contractile fluid that would be stable
against spontaneous flow when there is no external shear flow.
In accordance with previous simulations13,29 carried out in the
absence of external shear, we find three kinds of nonlinear flow
states in the range of parameters we study: unidirectional flows,
oscillatory flows, and dancing flows for extensile fluids. The uni-
directional flow observed in the straight channel can have a spon-
taneous active component which is either positive—in the same
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Fig. 20 Comparison of the normalized torque on the inner boundary of
the annulus as a function of the dimensionless frequency of rotation of
the inner disk and the normalized wall stress on the bottom wall of the
straight channel as a function of the dimensionless shear rate.

Fig. 21 Velocity profiles in dimensionless units for Couette flow (α = 0)
and the contractile Couette-like 1 (α < 0) flows states, for ωτ = 2.4.

direction as the moving wall—or negative—in the opposite direc-
tion of the moving wall. The oscillatory flow states also have two
possible directions for the spontaneous active component when
the externally imposed shear rate is small. For greater imposed
shear rates, the spontaneous flow direction will be the same as the
moving wall. For contractile gels, we only observe unidirectional
flow states in the range of parameters that we studied. These uni-
directional flows can have positive or negative spontaneous active
components. In the analysis of the the wall stress caused by the
active flow on the moving boundary, the extensile flow helps the
motion of the moving boundary, while the contractile flow resists
the motion. Moreover, the external shear flow can weaken this
effect of activity on the motion.

Our analysis of the curvature shows there are three main dif-
ferences between the flows states for the straight channel and the
annular channel. First in the annular channel, there is no critical
activity for the system to be stable against the spontaneous flow
given a nonzero external shear. Second, we only observe one di-

rection of spontaneous flow: positive for extensile gels, but nega-
tive for contractile gels. Last, the average volumetric flow rate of
the annular case oscillates with time for the dancing flow state,
while it is steady in the straight channel. Also, we find increasing
the curvature of the streamlines weakens the dependence of the
wall stress on activity.

Our work suggests several directions for future study. An obvi-
ous extension is to work in three dimensions, allowing both the
directors and velocity vectors to point out of the plane and vary
in both directions across a channel. Also, it would be natural to
study the effect of aligning flows induced by a pressure gradient
rather than a moving wall, since Poiseuille-like flow may be easier
to study experimentally. Several groups have studied Poiseuille-
like flow in the nematic phase of active fluids.57–59

Author contributions

WL, AB, RAP and TRP conceived the work; WL developed the
numerical codes and generated the numerical data; WL, AB, RAP
and TRP carried out the theoretical analyses; and WL, AB, RAP
and TRP wrote and edited the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported in part by the National Science Founda-
tion through Grant Nos. MRSEC DMR-2011846, CBET-2227361,
and PHY-1748958. We are grateful to Jesse Ault, Kenny Breuer,
Guillaume Duclos, Hamid Karani, Jasper Chen, Alexander Moro-
zov, and Pranay Sampat for helpful discussions. We also thank
the Center for Computation and Visualization (CCV) at Brown
university for use of high performance computing facilities.

Notes and references

1 M. C. Marchetti, J.-F. Joanny, S. Ramaswamy, T. B. Liverpool,
J. Prost, M. Rao and R. A. Simha, Rev. Mod. Phys., 2013, 85,
1143.

2 R. E. Goldstein, I. Tuval and J.-W. van de Meent, Proc. Natl.
Acad. Sci., USA, 2008, 105, 3663.

3 F. J. Nedelec, T. Surrey, A. C. Maggs and S. Leibler, Nature,
1997, 389, 6648.

4 T. Sanchez, D. T. Chen, S. J. DeCamp, M. Heymann and
Z. Dogic, Nature, 2012, 491, 431–434.

5 J. Alvarado, M. Sheinman, A. Sharma, F. C. MacKintosh and
G. H. Koenderink, Soft Matter, 2017, 13, 5624–5644.

6 I. Riedel, K. Kruse and J. Howard, Science, 2005, 309, 300.
7 D. L. Koch and G. Subramanian, Annual Review of Fluid Me-

chanics, 2011, 43, 637–659.
8 D. Saintillan and M. J. Shelley, Comptes Rendus Physique,

2013, 14, 497–517.
9 G. Duclos, C. Erlenkämper, J.-F. Joanny and P. Siberzan, Nat.

Phys., 2016, 13, 58.
10 F. G. Woodhouse and R. E. Goldstein, Phys. Rev. Lett., 2012,

109, 168105.

14 | 1–16Journal Name, [year], [vol.],

Page 14 of 16Soft Matter



11 E. Lushi, H. Wioland and R. E. Goldstein, Proc. Nat. Acad. Sci.
USA, 2014, 111, 9733–9738.

12 K.-T. Wu, J. B. Hishamunda, D. T. Chen, S. J. DeCamp, Y.-W.
Chang, A. Fernández-Nieves, S. Fraden and Z. Dogic, Science,
2017, 355, eaal1979.

13 A. Samui, J. M. Yeomans and S. P. Thampi, Soft Matter, 2021,
17, 10640–10648.

14 H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E.
Goldstein, H. Löwen and J. M. Yeomans, Proc. Nat. Acad. Sci.
U.S.A., 2012, 109, 14308–14313.

15 C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein and
J. O. Kessler, Phys. Rev. Lett., 2004, 93, 098103.

16 J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink, M. Bär
and R. E. Goldstein, Phys. Rev. Lett., 2013, 110, 228102.

17 R. A. Simha and S. Ramaswamy, Phys. Rev. Lett., 2002, 89,
058101.
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