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Enhanced photocatalytic hydrogen production from a MCM-41-
immobilized photosensitizer―[Fe-Fe] hydrogenase mimic dyad 
Wen Wang,a Tianjun Yu,*a Yi Zeng,a Jinping Chen,a Guoqiang Yang,*b and Yi Li*

A covalently linked photosensitizer-catalytic center dyad Ps-Hy, consisting of two bis(2-
phenylpyridine)(2,2'-bipyridine)iridium(III) chromophores (Ps) and a diiron hydrogenase mimic (Hy) was 
constructed by using click reaction. Ps-Hy was incorporated into K
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The requirement to develop clean and sustainable sources of 15 

energy has stimulated new approaches to mimic natural 
photosynthesis in the conversion and storage of solar energy.

-exchanged molecular sieve MCM-41 
to form a composite (Ps-Hy@MCM-41), which has been successfully applied to the photochemical 
production of hydrogen. The catalytic activity of Ps-Hy@MCM-41 is ~3-fold higher as compared with 10 

that of Ps-Hy in the absence of MCM-41. The incorporation of Ps-Hy into MCM-41 stabilize the catalyst, 
consequently, advances the photocatlysis. The present study provides a potential strategy for improving 
catalytic efficiency of artificial photosynthesis systems by using mesoporous molecular sieves. 

Introduction 

1-3 
Of these approaches, the photochemical production of hydrogen 
from water is at the forefront. In nature, the interconversion of 
protons and hydrogen is efficiently catalyzed by metalloenzymes 20 

known as hydrogenases which exist in many microorganisms, 
and photoinduced electron transfer plays a central role.4,5 The 
electron transfer processes develop a large separation of positive 
and negative charges within photosystem I (PSI) reaction 
centers.6 The maintenance of this charge separation is critical for 25 

ensuing biochemical reactions.7-10 By “mimicking” natural 
photosynthesis, chemists have tried to duplicate the hydrogen 
production events in photosynthesis with model compounds, 
which have been used as artificial photosynthetic systems for the 
conversion of solar energy.11-17

Effective charge separation has been considered to be a key 35 

factor for both natural photosynthesis and artificial 
photochemical conversion.

 Because of the fundamentality of 30 

photoinduced electron transfer to these systems, much effort has 
been expended to understand the processes of photoinduced 
electron transfer, with the ultimate goal of achieving the 
efficiency and economy of artificial photosynthesis systems.  

18-21 The vectorial or unidirectional 
photoinduced electron transfer through a co-operative interaction 
between the various components in well-ordered nature 
photosynthetic systems provide an effective charge separation. 40 

Inspired by natural photosynthetic systems, chemists have 
attempted to use organized molecular assemblies, layered 
materials, silica gels, microporous and mesoporous materials to 
stabilize the charge separated states.22 Much effort from our 

research group in recent years has been devoted to dendritic 45 

mimics of the natural light harvesting complex for photochemical 
conversion.23-26 Recently, we developed a series of dendritic [Fe-
Fe] hydrogenase mimics with exceptional activity for the 
photochemical production of hydrogen.27

 
Fig. 1 Structures of dyad Ps-Hy, models 3 and Ps (asymmetry of 
the sulfur-carbon bond for the catalytic center is omitted).  55 

 The dendritic 
frameworks provide a distinct microenvironment to regulate the 50 

electron-transfer process and to stabilize the charge separated 
state, consequently advancing the photocatalysis.  

The interest in mimicking natural photosynthesis urges to 
develop a more simple way to stabilize the charge separated state 
of the artificial photosynthesis systems. The ordered mesoporous 
molecular sieves, such as MCM-41, MCM-48, SBA-15, etc, 
display advantages such as tunable pore diameters (2–30 nm), 60 

narrow pore size distributions, high surface areas and electrostatic 
microenvironments, and have shown ability of stabilizing the 
charge separated state.28-35 Herein, we report a photosensitizer-
[Fe-Fe]-hydrogenase mimic dyad (Ps-Hy, Fig. 1), which was 
incorporated into the ordered mesoporous K+-exchanged 65 

molecular sieve MCM-41 to form a MCM-41-confined 
photosensitizer-[Fe-Fe]-hydrogenase mimic dyad (Ps-
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Hy@MCM-41). The studies on the photochemical production of 
hydrogen by Ps-Hy@MCM-41 and Ps-Hy demonstrate that the 
catalytic ability is improved by immobilization on MCM-41. 

Experimental section 
Materials. Reagents were purchased from Acros, Alfa Aesar, or 5 

Beijing Chemicals and were used without further purification 
unless otherwise noted. Mesoporous molecular sieve MCM-41 
(SiO2/Al2O3 mol/mol ≥ 20, BET ≥ 900 m 2/g, d = 3.5 nm) was 
purchased from Xian Feng Nano Company. HPLC-grade 
acetonitrile was used for the photochemical production of 10 

hydrogen and photophysical studies. Milli-Q deionized water 
(Millipore) was used in the Ps-Hy@MCM-41 preparation, the 
light-driven hydrognen generation experiments and the 
spectroscopy measurements. Methanol and tetrahydrofuran were 
dried with sodium and distilled under N2

Instrumentation. 

 atmosphere. 15 

1

Preparation and characterization of Ps-Hy@MCM-41. K-
MCM-41 was prepared by mixing silica–alumina molecular sieve 
MCM-41 (5 g) with a potassium oxalate solution (0.25 M, 50 mL) 
and stirring for 6 h at room temperature (fresh potassium oxalate 35 

solution was replaced each 2 h). The resulting white solid was 
filtered, washed with water, dried and actived at 120 

H NMR (400 MHz) spectra were obtained 
from a Bruker Avance Π-400 spectrometer with tetramethylsilane 
as an internal standard. Infrared spectra were recorded on a 
Nicolet NEXUS 670 FTIR spectrometer. ESI mass spectra were 
recorded on a Waters GCT Premier XE apparatus. Absorption 20 

and emission spectra were run on a Shimadzu UV-1601PC 
spectrometer and a Hitachi F-4500 spectrometer, respectively. 
UV-Vis reflectance spectra were recorded on a Shimadzu UV-
VIS-3100 spectrophotometer. Thermogravimetric analysis (TGA) 
was performed on an SDT Q600 Simultaneous DSC-TGA 25 

instrument. The analysis of hydrogen production was carried out 
on a Shimadzu GC-2014 with a TCD detector. The 
electrochemical data were determined by using glassy carbon 
electrodes on CHI600C. The transient absorption spectra were 
performed on an Edinburgh LP 920 pump-probe spectroscopic 30 

setup. 

ΟC and 
540 ΟC for 3 h, respectively. The following procedure was used 
to prepare Ps-Hy@MCM-41 by exchanging potassium ion (K+) 
with the cation of Ps-Hy. A small amount of K-MCM-41 (100.3 40 

mg) was suspended in the CH3CN solution of Ps-Hy (1.0 × 10−4 
M, 19 mL), which was stirred at ambient temperature overnight. 
The suspension was then centrifuged and the precipitate was 
dried at 40 ΟC under vacuum. The amount of Ps-Hy incorporated 
into K-MCM-41 was determined by the absorbance change at 45 

340 nm (ε = 3.0×104 M-1 cm-1

Electrochemistry. A three-electrode system (a 3 mm glass 50 

carbon working electrode, a platinum wire counter electrode, and 
a nonaqueous Ag/Ag

) of the supernatant before and after 
incorporation. Ps@MCM-41 was prepared and characterized 
similarly as Ps-Hy@MCM-41 except by using Ps instead of Ps-
Hy. 

+ reference electrode) was used to measure 
the cyclic voltammograms. The working electrode was polished 
with a 0.05 μm alumina paste and sonicated in acetone for 15 min 
before use. The electrolyte solution with 0.1 M n-Bu4NPF6 was 55 

purged with argon for 30 min before measurement. 
Electrochemical measurements were recorded at a scan rate of 
100 mV/s and the ferrocene/ferrocenium redox couple (Fc/Fc+

Photocatalytic H

) 
was used as a standard. 

2 generation. All experiments of 60 

photochemical production of hydrogen were performed in a 
Pyrex reactor with 10 mL sample solution and a magnetic stir. 
The sample solutions were purged with nitrogen for 30 min prior 
to irradiation. A 300 W Xe lamp was used as the visible light 
source with filters cutting off the light below 400 nm and above 65 

800 nm and a set of neutral density filters was used to adjust the 
irradiation intensity. The amount of generated photoproduct of 
H2 was identified and quantified with a gas chromatograph 
equipped with a 5 Å molecular sieve column, N2 carrier gas, and 
a thermal conductivity detector (TCD) with methane as an 70 

internal standard. The response factor of 1.52 for H2/CH4 was 
determined by calibration with known amounts of H2 and CH4

Results and discussion 

 
under the experimental conditions.  

Preparation and characterization of Ps-Hy and Ps-75 

Hy@MCM-41. 

 An iridium complex [Ir(ppy)2(bpy)]PF6 (ppy = 2-phenylpyridine, 
bpy = 4,4'-dimethyl-2,2'-bipyridine) and a {(μ-S2)Fe2(CO)6} 
subunit, one of the most common and primitive [2Fe2S] clusters 
used in mimics of the active site of diiron hydrogenase, were 80 

chosen as the photosensitizer and the catalyst center, respectively. 
The click reaction was used to connect photosensitizer and 
catalytic unit because of its mild reaction conditions and 
efficiency. The photosensitizer-diiron hydrogenase mimic dyad 
Ps-Hy was constructed by using azido-substituted 85 

[Ir(ppy)2(bpy)]PF6 (compound 4, ppy = 2-phenylpyridine, bpy = 
4-(azidomethyl)-4'-methyl-2,2'-bipyridine) and alkynyl-substuted 
{(μ-S2)Fe2(CO)6
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 before addition
 after addition

} (compound 3) as the starting materials with 
reasonable yield (see Fig. S1 in the Supporting Information). As a 
model compound of photosensitizer (Ps), Ps was synthesized by 90 

using 4-(prop-2-yn-1-yloxy)benzyl alcohol (compound 1) instead 
of compound 3 with the same procedure described for Ps-Hy. The 
details of the synthesis and the characterization of 3, 4, Ps-Hy and  

 
Fig. 2 Absorption spectra of Ps-Hy (10 µM) in CH3CN solution 95 

and in the supernatant (10 fold diluted) after addition of K-MCM-
41 (K-MCM-41 (100.3 mg) was added to the Ps-Hy CH3CN 
solution (1.0 × 10−4 M, 19 mL)).  
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Ps are described in the Supporting Information. The structures of 
the dyad Ps-Hy and the model compounds of photosensitizer and 
catalytic center (Ps and 3) are depicted in Fig. 1, which were 
characterized by 1

The K

H NMR and IR spectroscopy as well as mass 
spectrometry (see the Supporting Information).  5 

+-exchanged MCM-41 (K-MCM-41) was prepared 
according to a reported method by using potassium oxalate as the 
K+ source.36 K-MCM-41 was further ion-exchanged with Ps-Hy 
to give the Ps-Hy@MCM-41 composite. The cation-exchange 
with Ps-Hy2+ occurs spontaneously once K-MCM-41 mixed with 10 

Ps-Hy in CH3CN, and the quantity of Ps-Hy incorporated with K-
MCM-41 can be evaluated by the absorbance change of the 
supernatant (Fig. 2). The loading of Ps-Hy on K-MCM-41 makes 
the color of K-MCM-41 change from white to yellow. The 
firmness of Ps-Hy loaded onto K-MCM-41 was examined by 15 

stirring the suspension of Ps-Hy@MCM-41 in CH3
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 a)

CN at room 
temperature overnight. No leakage of Ps-Hy from Ps-Hy@MCM-
41 was observed, which indicated that Ps-Hy was tightly 
incorporated into K-MCM-41. Similarly, Ps@MCM-41 was 
prepared by using Ps instead of Ps-Hy. 20 

 

2000 1600 1200 800 400

1933

2033

2070

Wavenumber/cm-1

b)

 
Fig. 3 (a) Absorption spectra of suspensions of K-MCM-41 (3.8 
mg, dash line) and Ps-Hy@MCM-41 (3.8 mg, loading 77.8 
µmol/g, dash dot line) in 5 mL CH3CN, Ps-Hy (1×10-5 mol/L, 25 

solid line) in CH3

The Ps-Hy@MCM-41 was further characterized by DLS, UV-
Vis, DRS-UV-Vis and FTIR spectroscopy as well as 
thermogravimetric analysis. The average diameter of the Ps-30 

Hy@MCM-41 particles is 4.7 μm according to the DLS 
measurement (see Fig. S5 in the Supporting Information) which 
is in good agreement with the datum provided by the supplier (3-

5 μm). Obvious light scattering was observed in the K-MCM-41 
and Ps-Hy@MCM-41 suspensions because the molecular siever 35 

is not on nano-scale. The absorption spectrum of the Ps-
Hy@MCM-41 suspension in CH

CN. (b) FTIR spectra of K-MCM-41 (dash line), 
Ps-Hy@MCM-41 (dash dot line), and Ps-Hy (solid line ).  

3CN is similar to the sum of 
those of Ps-Hy and K-MCM-41 with absorption bands at 254 and 
340 nm characteristics of Ps-Hy (Fig. 3a). The diffuse reflectance 
spectrum of Ps-Hy@MCM-41 also exhibits the absorption bands 40 

of Ps-Hy (see Fig. S6 in the Supporting Information). Three 
prominent bands of the CO stretching vibration at 2070, 2033, 
and 1933 cm−1 attributed to Ps-Hy are observed in the FTIR 
spectra of Ps-Hy@MCM-41 (Fig. 3b). The characterization 
results validate the reality of the incorporation of Ps-Hy into K-45 

MCM-41. The thermogravimetric analysis further strengthens the 
fact of the formation of Ps-Hy@MCM-41. Three distinct stages 
of weight loss (50-150 °C: 7.2%, 300-450 °C: 6.0% and 
450−800 °C: 5.8%) in comparison with the neat MCM-41 were 
observed, which represent the desorption of water and the 50 

carbonyl ligands attached to the [2Fe2S] centers, the 
decomposition of the rest part of Ps-Hy and the water loss via 
condensation of silanol groups to form siloxane bonds, 
respectively (see Fig. S7 in the Supporting Information).

Application of Ps-Hy@MCM-41 to hydrogen production. 55 

37-39 

The catalytic performance of Ps-Hy@MCM-41 for light-driven 
hydrogen production was examined by using triethylamine (TEA) 
as the sacrificial electron donor (Fig. 4). A solvent mixture of 
CH3CN and H2O was used to solubilize or disperse all the 
components. Irradiation of the catalyst system with visible light 60 

resulted in the production of hydrogen, which was identified and 
quantified by gas chromatography. Control experiments indicated 
that Ps-Hy and TEA are all essential for production of H2, and 
the absence of any of them leaded to no detectable photochemical 
production of H2

 

. The performance of the photocatalyst system 65 

was dramatically affected by the reaction conditions, such as the 
pH value, the water content of the solvent mixture, and the 
concentration of TEA. 

Fig. 4 Schematic illustration of the photochemical production of 70 

H2

To optimize the experiment condition, light-induced hydrogen 
production was conducted by using Ps-Hy@MCM-41 in 
CH

 by Ps-Hy@MCM-41. 

3CN/H2O binary solvent with varied ratio of CH3CN/H2O, 
and at different pH values and different concentrations of TEA 75 

upon the visible light irradiation (Table 1). The optimal ratio of 
CH3CN/H2O was examined to be 9/1 (v/v) to achieve the best 
catalytic performance when all the other conditions were kept 
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identical (see Fig. S8 in the Supporting Information). The pH 
value of the catalytic system was adjusted by hydrochloric acid 
prior to irradiation. The best catalytic performance of the catalytic 
system was accomplished at the pH value of 10 with same 
amount of Ps-Hy@MCM-41 (5.5 mg Ps-Hy@MCM-41 with 5 

loading 19.1 μmol/g) and same concentration of TEA ([TEA] = 
0.6 M) in CH3CN/H2O (9/1, v/v) (see Fig. S9 in the Supporting 
Information). The poorer catalytic performance of the catalytic 
system at lower and higher pH value may be rationalized by the 
depressed ability of electron donation of TEA and the lower 10 

concentration of H+, respectively. Keeping the optimal conditions 
of pH = 10 and CH3CN/H2

Table 1 Influence of the pH value, solvents, concentration of 
TEA on photoinduced H

O = 9/1 (v/v), an obvious 
improvement in photochemical production of hydrogen was 
observed when the concentration of TEA was successively 
increased from 0.4 M to 0.8 M (see Fig. S10 in the Supporting 15 

Information).  

2 evolution

Run 

a 

pH TEA (M) Irrad.time 
(h) 

H2
(µL) 

 production  

1b 9 0.6 8 8.4±0.5 

2b 10 0.6 8 10.1±0.6 

3b 11 0.6 4 4.8±0.2 

4c 10 0.6 8 7.0±0.3 

5d 10 0.6 8 8.2±0.4 

6b 10 0.4 8 9.4±0.4 

7b 10 0.8 8 11.8±0.7 

a) runs 1-7 with Ps-Hy@MCM-41 (5.5 mg, Ps-Hy:19.1 μmol/g, 
[Ps-Hy] = 10 µM) as catalyst; b) CH3CN/H2O = 9/1 (v/v); c) 20 

CH3CN/H2O = 8/2 (v/v); d) CH3CN /H2

To evaluate the effect of K-MCM-41 on catalytic performance 
of Ps-Hy, the photochemical production of hydrogen of Ps-
Hy@MCM-41 was conducted at the optimal reaction conditions 
with the TEA concentration of 0.8 M. The photocatalytic 25 

behavior of Ps-Hy in a homogeneous catalytic system was also 
examined at the same reaction conditions by using same amount  

O = 9.5/0.5 (v/v).  

 
Fig. 5 Photochemical production of hydrogen by 5.5 mg Ps-
Hy@MCM-41 (loading: 19.1 μmol/g) and Ps-Hy (10 μM) at the 30 

pH value of 10 in 10 mL CH3CN/H2

of Ps-Hy. Upon 8 h irradiation, 11.8 μL H

O (9/1, v/v) upon irradiation 
with visible light.  

2 was generated from 
the Ps-Hy@MCM-41 catalytic system and only 4.4 μL H2

The quantum yield of hydrogen production in Ps-Hy@MCM-
41 catalytic system was measured by irradiation of the suspension 
at the optimal reaction conditions (5.5 mg Ps-Hy@MCM-41, 40 

loading: 19.1 μmol/g, pH = 10, CH

 was 
produced from the Ps-Hy homogeneous catalyst system (Fig. 5). 35 

The catalytic performance of Ps-Hy is evidently enhanced by 
immobilization into K-MCM-41. 

3CN/H2

To clarify the reason of enhanced catalytic performance in the 
Ps-Hy@MCM-41 catalytic system, the FTIR spectra of the 50 

catalytic systems before and after 2 h irradiation were recorded 
(see Fig. S11 in the Supporting Information). After two hours 
irradiation, three prominent bands at 2070, 2033, and 1933 cm−1 
assigned to the CO stretching vibration disappeared completely in 
the homogenous Ps-Hy catalytic system and remained in the Ps-55 

Hy@MCM-41 catalytic system. This indicates that Hy 
decomposed during the irradiation and the immobilization of Ps-
Hy into K-MCM-41 can lower the photo-destruction rate of the 
hydrogenase mimic, which prolongs the life of Hy in the Ps-
Hy@MCM-41 catalytic system. 60 

O = 9/1 (v/v)). A LED 
lamp (1 W, 440 nm) was used as the light source. At the period of 
the maximum rate of hydrogen evolution，the quantum yield was 
determined to be 3%, which means that of 100 photons absorbed 
by the photosensitizer, 3 photons are stored as the chemical 45 

energy. This number is analogous with that reported in most 
literatures, and only a few hydrogen production systems based on 
[2Fe2S]-catalysts can achieve higher quantum yields so far.27,40,41 

 
Fig. 6 Photocatalytic evolution of H2 for 8 h irradiation by Ps-
Hy@MCM-41 with different loading in 10 mL CH3CN/H2

Generally, the catalysts such as the [Fe-Fe] hydrogenase 
mimics show better catalytic performance at lower concentrations 
because the catalysts can absorb light and decompose gradually 
during the illumination.27 The photochemical production of 
hydrogen by Ps-Hy@MCM-41 with different loading was 70 

proceeded in CH

O (9/1, 
v/v) at the pH value of 11.9. Ps-Hy@MCM-41 = 5.5 mg, [TEA] 
= 0.6 M. 65 

3CN/H2O (9/1, v/v), and the results for 8 h 
irradiation are shown in Fig. 6. Interestingly, the overall evolution 
of H2 increases linearly with the loading (10 ~ 80 μmol/g) when 
all the other conditions are kept identical. This character benefits 
the catalytic performance of catalysts at higher concentrations, 75 

giving the potentials for the magnified production.  
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Mechanisms of the photochemical production of hydrogen 
and the enhanced catalytic activity of Ps-Hy@MCM-41 

The photocatalytic H2

Pulsed laser photolysis of Ps-Hy and Ps-Hy@MCM-41, and 
their model compounds Ps and Ps@MCM-41 in the presence of 
TEA was  performed  in  deaerated  CH

 evolution of homogeneous three-
component systems involves a photosensitizing mechanism 
which begins with the excitation of photosensitizer followed by 5 

an electron delivery to the catalyst either through a direct 
oxidative quenching or after reduction by the sacrificial electron 
donor.42 The thermodynamic feasibility of two different cases 
was analyzed by estimating the free energy change ∆G to clarify 
the electron transfer mechanism of catalysis. The ∆G of direct 10 

electron transfer from the excited photosensitizer Ps to the 
[2Fe2S] catalytic center Hy involved in an electron transfer 
process was estimated to be positive (0.02 eV), which indicated 
that such an endothermic pathway would be inefficient if any did 
occur. Alternatively, Ps can be reductively quenched by TEA 15 

generating a reduced photosensitizer Ps− even in the form of Ps-
Hy@MCM-41 (see Fig. S12 in the Supporting Information), 
which is sufficiently reductive to donate an electron to the [2Fe2S] 
center (i.e. FeIFeI) generating [2Fe2S]− (i.e. Fe0FeI) based on the 
∆G (-0.27 eV) given by the reduction potentials. Further 20 

reduction of the reduced core [2Fe2S]− to [2Fe2S]2− (i.e. Fe0Fe0) 
is thermodynamically unfeasible owing to its very negative 
reduction potential (Table S1). Therefore, we infer that the 
electron transfer occurs between the reduced photosensitizer and 
the [2Fe2S] catalytic center, which is further validated by the 25 

transient absorption spectroscopy studies.  

3CN/H2

 30 

O (9/1, v/v, 5mL)  

Fig. 7 Transient absorption spectra of Ps@MCM-41 (3.0 mg, 
loading: 60 μmol/g) and Ps-Hy@MCM-41 (3.0 mg, loading: 77.8 
μmol/g) with TEA (0.8 M) at the pH value of 10 in 5 mL 
deaerated CH3CN/H2

by using 420 nm excitation light. The transient absorption spectra 
of the Ps@MCM-41 and Ps-Hy@MCM-41 systems are quite 
similar. The intensive transient absorption bands at around 390, 
500 and 530 nm were readily formed as shown in Fig. 7 and Fig. 40 

S15, which are assigned to the reduced species Ps− by reference 
to the transient absorption of the reduced species of Ir(III) 
complex.27 The transient absorption band of [2Fe2S]− around 400 
nm43 could not be observed clearly, which might be caused by the 

low transient absorption coefficient of [2Fe2S]− and the overlap 45 

of the transient absorption of Ps− and [2Fe2S]−. Control 
experiments in the absence of TEA show no formation of Ps− in 
either Ps-Hy or Ps-Hy@MCM-41 catalytic system, confirming 
that the excited photosensitizer is reductively quenched by the 
sacrificial electron donor. A subsequent oxidization of Ps− was 50 

further validated by the shortened liftimes of the reduced 
photosensitizer in the presence of Hy (see below). After 
quenching the photosensitizer, TEA undergoes decomposition to 
produce a proton, acetaldehyde, and diethylamine in the presence 
of water.44 55 

O = 9/1 (v/v) at 50 μs after the laser pulse. 
Inset: Kinetic traces of Ps@MCM-41 and Ps-Hy@MCM-41 at 35 

530 nm. 

To understand the enhanced catalytic activity of Ps-Hy by 
MCM-41, the kinetics of the intermediate states was further 
studied by analyzing transient absorption spectra. The lifetimes of 
the reduced photosensitizer (Ps− and Ps−@MCM-41) in the 
absence and presence of MCM-41 are 14.5 and 19.0 ms by fitting 60 

the decay trace at 530 nm mono-exponentially. In the Ps-Hy and 
Ps-Hy@MCM-41 dyad systems, the decay curves at 530 nm for 
the Ps-Hy and Ps-Hy@MCM-41 systems can only be fitted 
double-exponentially (see Table S2 in the Supporting 
Information). A fast decay (~6%) appears at beginning of the 65 

decay curves and the repurification of Ps-Hy results in no change 
of the kinetics. Further studies on the transient absorption kinetics 
at 530 nm after 30 and 60 minutes irradiation demonstrate that 
the proportion of the fast decay increases with the irradiation time 
(Figure S17, Table S2). Thereby, the fast decay can be assigned 70 

to the unknown decomposition products of Ps-Hy caused by the 
transient photolysis. The obtained lifetime in milliseconds is 
assigned to Ps− (3.0 and 4.4 ms for the Ps-Hy and Ps-Hy@MCM-
41 systems, respectively) The shortened lifetime of Ps− in the Ps-
Hy and Ps-Hy@MCM-41 dyad systems substantiates the 75 

occurrence of the electron transfer from Ps− to Hy. The rate 
constants of intramolecular electron transfer between Ps− and Hy 
in the Ps-Hy and Ps-Hy@MCM-41 systems are calculated to be 
262 and 175 s-1, respectively, which is in different to the result 
reported by Hammarström et al.45 In their reported catalytic 80 

system, the rate constant of the reaction of the reduced 
photosensitizer [Ru-(bpy)3]+ with a similar [2Fe2S] catalyst in 
DMF/water is about two magnitude higher than those in ours 
work. Although the electron transfer process in the Ps-
Hy@MCM-41 system is slower than that in the Ps-Hy system, 85 

the Ps-Hy@MCM-41 system shows better catalytic performance, 
which indicates that the electron transfer process from Ps- to Hy 
is not the rate-determining step in this hydrogen production 
system. The electron transfer processes from Ps− to Hy in the 
absence and prescence of MCM-41 show similar quenching 90 

efficiencies of Ps− with the numbers of 0.79 and 0.77 for the Ps-
Hy and Ps-Hy@MCM-41 catalytic systems, respectively. The 
final production quantum yield of a few percent should be 
ascribed to the energy losses during the reductive quenching of 
*Ps by TEA, the oxidation of Ps- by Hy, and the subsequent 95 

catalytic processes after reducing [2Fe2S] by Ps−. Therefore, we 
speculate that the better performance of the Ps-Hy@MCM-41 
catalytic system can be attributed to stabilization effect of the 
molecular sieve, which is further verified by the kinetic studies of 
the transient absorption of the catalytic systems. The variation of 100 

the kinetics with irradiation time indicates that Hy-Ps 
decomposes gradually during the irradiation both in the absence 
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and presence of MCM-41. The proportion of the fast decay 
assigned to the decomposition products of Ps-Hy increases with 
the irradiation time (Table S2). The slower decomposition of Ps-
Hy in the Ps-Hy@MCM-41 system indicates that the 
decomposition of Ps-Hy is evidently slowed done by 5 

immobilization into MCM-41, which is consistent with the results 
of FTIR studies.  

Conclusions 
A photosensitizer-[Fe-Fe] hydrogenase mimic dyad Ps-Hy was 
synthesized and immobilized into the mesoporous molecular 10 

sieve K-MCM-41 to form a composite Ps-Hy@MCM-41. The 
results of photochemical production of hydrogen with Ps-Hy and 
Ps-Hy@MCM-41 in CH3CN/H2
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A covalently linked photosensitizer-[Fe-Fe] hydrogenase mimic dyad is stabilized by immobilizing it into 
MCM-41, giving an enhanced catalytic efficiency for hydrogen production.  
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