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giant magnetocaloric effect in
BiCu3Cr4O12 with charge–spin–lattice coupling
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The novel magnetocaloric effect of BiCu3Cr4O12 is comprehensively investigated, revealing the intricate

interplay of charge–spin–lattice coupling. Using first-principles calculations, this study examines charge

disproportionation and phonon properties, uncovering the fundamental mechanisms behind structural

and electronic instability, as well as strong correlations in the electronic, lattice, and magnetic

interactions of the material. Magnetic exchange coupling constants are systematically derived for two

distinct crystallographic phases: the low-temperature C2/m phase and the high-temperature Im�3 phase.

By incorporating the classical Heisenberg model and a mixed-phase model, this work explores the

mechanism of the first-order magnetic phase transition coupled with structural transformation. The giant

isothermal magnetic entropy changes are successfully reproduced using Maxwell relations for the total

magnetization of mixed phases, demonstrating the accuracy of our models and methods. Additionally,

applying the Clausius–Clapeyron equation to the isothermal entropy change highlights the critical role of

lattice, electronic, and magnetic contributions in the magnetocaloric effect. These findings illustrate how

strong charge, spin, and lattice correlations in BiCu3Cr4O12 significantly enhance the isothermal entropy

change compared to the isothermal magnetic entropy change with only the magnetic contribution. This

study not only deepens the understanding of magnetocaloric materials but also offers valuable insights

for developing energy-efficient refrigeration technologies.
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1 Introduction

Cooling and heating account for a signicant portion of global
energy consumption, which continues to increase due to
climate change and global warming.1,2 Current refrigeration
methods rely on greenhouse gases that have severe environ-
mental impacts, including ozone layer depletion and global
warming.3 The magnetocaloric effect (MCE) is a promising
alternative for next-generation refrigeration, offering high effi-
ciency and environment-friendliness.4,5 Conventional magne-
tocaloric materials undergo heating and cooling upon applying
and removing an external magnetic eld in an adiabatic
process, as illustrated in Fig. 1(a). Two key parameters charac-
terize the magnetocaloric effect: the isothermal entropy change
(DS) and the adiabatic temperature change (DTad). The
isothermal entropy change, dened as DS(Hext,T) = S(Hext,T) −
S(0,T), represents the entropy difference between states III and I
(with and without the external magnetic eld) and determines
the amount of heat that can be utilized for cooling in one cycle.
In conventional magnetocaloric materials, the dominant
cCenter for Spintronics Research Network, Osaka University, Toyonaka, Osaka 560-
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contribution toDS arises from themagnetic or spin component,
denoted as DSmag.. This typically follows a second-order phase
transition, leading to a limited entropy change.4

On the other hand, a rst-order structural phase transition
can be coupled with a magnetic phase transition, forming
a magnetostructural coupling.6,7 The transition from a low-
temperature to a high-temperature structure alters the elec-
tronic structure and magnetic properties, where the structural
transition occurs below the Curie temperature of the low-
temperature phase but above that of the high-temperature
phase.7,8 In such cases, the rst-order magnetic phase transi-
tion from a ferromagnetic low-temperature phase to a para-
magnetic high-temperature phase results in a giant isothermal
magnetic entropy change, which can be estimated using the
Maxwell relations from isothermal magnetization curves.7,8

However, when charge, spin, and lattice degrees of freedom are
coupled, additional contributions from lattice and electronic
entropy become signicant,9–11 as illustrated in Fig. 1(b). In this
scenario, the isothermal entropy change (DS) is not solely
determined by the magnetic component (DSmag.) but is instead
the sum of magnetic, lattice, and electronic contributions:

DS = DSlat. + DSele. + DSmag. (1)

Estimating DS while accounting for lattice, electronic, and
magnetic contributions remains a challenging task in both
experimental and theoretical simulations.

BiCu3Cr4O12 is a transition-metal oxide that exhibits a pecu-
liar charge disproportionation effect.9–11 The cubic structure,
which serves as the high-temperature phase with space group
Im�3, contains a single type of Cr ion with a charge state of
+3.75.11 In contrast, the monoclinic structure corresponding to
the low-temperature phase, with space group C2/m, contains
Fig. 1 (a) Diagram of the conventional magnetocaloric effect showing t
field, including the isothermal and adiabatic processes. (b) Diagram of spin
illustrating how interactions between the spins, lattice, and charge are s

J. Mater. Chem. A
three distinct types of Cr ions: one with a charge state of +4 and
two with charge states of +3.5,11 as shown in Fig. 2. This material
undergoes a rst-order magnetic phase transition that is
accompanied by a structural change from the cubic to the
monoclinic phase, as well as charge disproportionation in the
electronic structure.9–11

NdCu3Fe4O12 is a related transition-metal oxide that also
exhibits a giant caloric effect, primarily due to charge dispro-
portionation. However, its structure remains stable in the Im�3
space group across a wide temperature range. In contrast,
BiCu3Cr4O12 exhibits a rst-order magnetostructural transition
from a ferromagnetic C2/m phase to a paramagnetic Im�3 phase.
This structural transformation can be controlled by an external
magnetic eld, making it suitable for magnetocaloric applica-
tions. On the other hand, NdCu3Fe4O12 undergoes a magnetic
phase transition from an antiferromagnetic to a non-magnetic
state, where the local magnetic moment of Fe disappears at
the critical temperature. Since both the antiferromagnetic and
non-magnetic states are less responsive to magnetic elds,
external pressure is typically required to induce the transition—
characterizing it as a barocaloric effect.

Although previous experimental studies have reported giant
isothermal magnetic entropy changes (DSmag.) in BiCu3Cr4O12

using the Maxwell relations,9,10 the contributions from lattice
(DSlat.) and electronic (DSele.) degrees of freedom to the total
isothermal entropy change (DS) remain unexplored in both
experimental and theoretical studies.

This knowledge gap motivates us to investigate the under-
lying mechanisms and clarify the contributions of lattice and
electronic effects to the isothermal entropy change in BiCu3-
Cr4O12, where charge, spin, and lattice interactions are strongly
correlated. To this end, we perform rst-principles calculations
based on density functional theory (DFT) to determine the
he full cycle of a magnetocaloric material under an external magnetic
–lattice–charge coupling that can enhance themagnetocaloric effect,
trongly correlated.

This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Crystal structure of the low-temperature phase with space group C2/m (#12) (a) and high-temperature phase with space group Im�3
(#204) (b) of BiCu3Cr4O12.11 The Bi, Cu, Cr, and O atoms are denoted as purple, blue, green, and red colors, respectively.
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electronic structure and phonon properties. Additionally, the
magnetic exchange coupling constants Jij are derived using the
Liechtenstein formula within the framework of linear response
theory.12 The classical Heisenberg model is then employed to
study the magnetic properties of both the C2/m and Im�3 phases,
using parameters obtained from rst-principles calculations.

Our simulation approach is based on the classical Heisen-
berg model, which incorporates various magnetic interactions
with parameters derived from rst-principles calculations.
These include isotropic exchange coupling (Jij), Dzyaloshinskii–
Moriya interactions, magnetocrystalline anisotropy energy, and
external magnetic elds. In our previous work, we successfully
applied this methodology to investigate the spin reorientation
mechanism and anisotropic magnetocaloric effect in Nd2Fe14B,
a system with localized 4f electrons in Nd.13 That study revealed
that the competition between Dzyaloshinskii–Moriya interac-
tions and magnetic anisotropy underlies these phenomena.
These results suggest that our computational framework is also
applicable to electron-localized magnetic systems such as rare-
earth-based compounds, provided that appropriate interaction
parameters are used.

To account for the rst-order structural phase transition, we
incorporate a mixed-phase model based on our earlier work.8

The isothermal magnetic entropy change is computed from
isothermal magnetization curves using the Maxwell relations,
consistent with previous experimental studies.9,10 Furthermore,
we calculate the total specic heat and entropy for the pure C2/
m and Im�3 phases, as well as for the mixed phase, taking into
account contributions from lattice, electronic, and magnetic
degrees of freedom. Although the isothermal magnetic entropy
change is obtained from the Maxwell relations, the total
isothermal entropy change of BiCu3Cr4O12 is also evaluated
using the Clausius–Clapeyron equation based on specic heat
calculations. Our results reveal that the lattice and electronic
contributions to the isothermal entropy change are substantial.
This study thus provides an accurate methodology for investi-
gating the magnetocaloric properties of BiCu3Cr4O12 and
highlights its potential for application in high-power, high-
This journal is © The Royal Society of Chemistry 2025
efficiency, and environmentally friendly thermal control
systems.

2 Computational details

The crystal structure parameters of BiCu3Cr4O12 for the low-
temperature phase (C2/m) and high-temperature phase (Im�3)
from experimental studies are used for the simulations.11 The
electronic structures of BiCu3Cr4O12 in both the C2/m and Im�3
phases are investigated using the Vienna Ab initio Simulation
Package (VASP).14–16 These calculations employ the generalized
gradient approximation, specically the Perdew–Burke–Ern-
zerhof (GGA-PBE) functional.17 For electronic structure calcu-
lations, a k-point mesh of 3 × 4 × 3 and 6 × 6 × 6 was utilized
for C2/m and Im�3 phases, respectively. A plane-wave basis set
cutoff energy of 500 eV was used for electronic structure
calculations. To compute the force constants, density func-
tional perturbation theory is applied within the VASP frame-
work, using supercells of sizes 1 × 1 × 1 and 1 × 2 × 2 for the
C2/m and Im�3 phases, respectively.14–16,18,19 The Phonopy code is
used to generate these supercells.18,19 The phonon dispersion
curves and phonon density of states are obtained from the
computed force constants using Phonopy.18,19 Additionally, the
lattice-specic heat is calculated within the harmonic approxi-
mation using Phonopy.18,19

The magnetic exchange coupling constants (Jmij ) for the
classical Heisenberg model are determined using the Liech-
tenstein formula, as implemented in the Machikaneyama
code.12,20

The magnetostructural model with a mixed-phase approach
is adopted based on our previous work, incorporating the
classical Heisenberg model for the magnetic part of the C2/m
and Im�3 phases.8,21,22 Meanwhile, the structural transition is
described using a modied Potts model.8

The classical Heisenberg model for the C2/m and Im�3 phases
is given as:21,22

Hmagnetic ¼ �
X
hiji

Jm
ij
~Si$~Sj � gmB

X
i

~Hext$~Si; (2)
J. Mater. Chem. A
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where the rst term represents the exchange interaction
between spin Si at site i and spin Sj at site j, with Jmij denoting the
magnetic exchange coupling constants. A positive Jmij favors
parallel alignment of neighboring spins, while a negative Jmij fa-
vors antiparallel alignment. The second term corresponds to
the Zeeman interaction, where the spin Si aligns with the
external magnetic eld direction to minimize energy. The
thermal energy in the classical Heisenberg model is corrected
by incorporating the quantum uctuation–dissipation relations
(QFDR), which improves the temperature dependence of
magnetization and magnetic-specic heat.23,24

To account for the lattice phase transition from the C2/m to
the Im�3 structure under the inuence of magnetic eld and
temperature, we employ the modied Potts model from our
previous work:8

Hlattice ¼ �
X
hiji

�
Js
ij þ KgmBHext

�
dsi ;sj; (3)

Here, Jsij represents the structural coupling constant between the
deformation states at sites i (si) and j (sj), while K is a dimen-
sionless magnetostructural coefficient. The structural coupling
constant is directly related to the structural transformation
temperature (Tstructure). In this study, the structural coupling
constant is determined based on the magnetization curve from
experimental data.9,10 The second term accounts for the effect of
the magnetic eld on structural transformation, where one
structural phase becomes more favorable under the application
of an external magnetic eld. A positive K stabilizes the C2/m
phase in the presence of a magnetic eld, whereas a negative K
favors the Im�3 phase. The experimentally estimated values for
Jsij and K are 3.86 meV and 3.0, respectively.9,10

To consider the magnetic and structural phase transitions in
Monte Carlo simulations, three simulation boxes are used. The
size of the supercells for the magnetic part with the classical
Heisenberg model is 8 × 8 × 8 and 12 × 12 × 12 for C2/m and
Im�3 phases, respectively. The number of Monte Carlo steps is
100 000, and the rst 50 000 steps are discarded.

The total magnetization, including contributions from both
phases, is given by:

mtotal = m(C2/m)$s + m(Im�3)$(1 − s), (4)

Here, m(C2/m) and m(Im�3) represent the magnetization of the
C2/m and Im�3 phases, respectively. The magnetization of each
phase is calculated as the summation of the spin vectors in each
phase using the classical Heisenberg model, as given in eqn (2).
s is the order parameter of the third simulation box, which is
described by eqn (3), where s and 1 − s represent the concen-
trations of the C2/m and Im�3 phases, respectively.
DSMðHext;TÞ ¼ DSmag:ðHext;TÞ ¼
ðHext

0

�
vmtotalðH;TÞ

vT

�
d

J. Mater. Chem. A
The isothermal magnetic entropy change can be calculated
from the magnetization curve using the Maxwell relations:8,21,22

Here, mtotal represents the total magnetization, which includes
contributions from both the C2/m and Im�3 phases, as shown in
eqn (4). The total magnetization is associated with the lattice
phase transition, which can contribute to a giant isothermal
magnetic entropy change in the Maxwell relations.8

Furthermore, the total entropy of the C2/m and Im�3 phases,
considering contributions from the lattice, electronic, and
magnetic components, is estimated as:

StotalðHext;TÞ ¼

ðT
0

Clat:

�
Hext;T

0
�
þ Cele:

�
Hext;T

0
�
þ Cmag:

�
Hext;T

0
�

T
0 dT

0
(6)

Here, Clat., Cele., and Cmag. represent the lattice, electronic, and
magnetic specic heat, respectively. As mentioned earlier, Clat.

is calculated from the phonon density of states using the Pho-
nopy code, while Cele. is derived from the electronic density of
states at the Fermi level.18,19,25 The magnetic specic heat is
calculated as the derivative of the magnetic energy from the
classical Heisenberg model in Monte Carlo simulations.23,24

It is important to note that the thermal energy of the
magnetic component is corrected by applying the quantum
uctuation–dissipation relations (QFDRs), so the magnetic
specic heat approaches zero at 0 K, instead of the 1.0 kB per
atom predicted by the equipartition theorem for the classical
Heisenberg model with the Boltzmann distribution.23,24

The total entropy of the mixed phases is calculated as:

Smix
total = SC2/m

total $s + SIm�3
total$(1 − s) (7)

Here, Smix
total represents the total entropy, which includes contri-

butions from the C2/m and Im�3 phases, as shown in eqn (6).
Meanwhile, s and (1 − s) represent the concentrations of the
C2/m and Im�3 phases, respectively.

The isothermal entropy change can be calculated using the
Clausius–Clapeyron equation:

DSC–C(Hext,T) = DS(Hext,T) = Smix
total(Hext,T) − Smix

total(0,T) (8)

3 Results and discussion

The electronic density of states of the C2/m and Im�3 phases is
shown in Fig. 3(a and b). The magnetic conguration in both
the C2/m and Im�3 phases is ferrimagnetic. The main contribu-
tion to saturation magnetization comes from the magnetic
Hy
XN
j¼0

mtotal

�
Hj ;T þ DT

��mtotal

�
Hj ;T � DT

�
2DT

DH; (5)

This journal is © The Royal Society of Chemistry 2025
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Fig. 3 The electronic density of states (DOS) of C2/m (a) and Im�3 (b), where the total DOS, Bi partial DOS, Cu partial DOS, Cr partial DOS, and O
partial DOS are represented by black, cyan, red, blue, and green curves, respectively. The phonon dispersion curves ofC2/m (c) and Im�3 (d) in the
high symmetry k-paths in the Brillouin zone. The phonon density of states (DOS) of C2/m (e) and Im�3 (f), where the total DOS, Bi partial DOS, Cu
partial DOS, Cr partial DOS, and O partial DOS are represented by black, cyan, red, blue, and green curves, respectively.

Table 1 Magnetic moments of Cr atoms of C2/m and Im�3 with charge
disproportionation effect by using VASP

C2/m (#12)
Im�3
(#204)

Cr1
+4

(mB per atom)
Cr2+3.5
(mB per atom)

Cr3+3.5
(mB per atom)

Cr+3.75
(mB per atom)

2.373 1.886 1.896 2.098
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moment of Cr atoms, while the magnetic moment of Cu atoms
is smaller and antiparallel to that of the Cr atoms. In the C2/m
phase, the magnetic moment of Cr atoms ranges from 1.886 to
2.373 mB per atom as shown in Table 1, while the magnetic
moment of Cu atoms ranges from 0.338 to 0.455 mB per atom,
oriented opposite to that of the Cr atoms. In the Im�3 phase, the
magnetic moment of Cr atoms is 2.098 mB per atom as shown in
Table 1, while the magnetic moment of Cu atoms is 0.443 mB per
atom and antiparallel to the Cr magnetic moment. The
magnetic moment of Cr atoms exhibits a charge dispropor-
tionation effect, with two Cr4+ (with the magnetic moment
being 2.373 mB per atom) and two Cr3.5+ ions (with the magnetic
moments being 1.886 and 1.896 mB per atom) in the C2/m phase,
while the Im�3 phase contains only Cr3.75+ (with the magnetic
moment being 2.098 mB per atom) ions. This charge dispro-
portionation is also reected in the density of states, where the
This journal is © The Royal Society of Chemistry 2025
density of states of Cr atoms in the C2/m phase is not degen-
erate, unlike in the Im�3 phase. Additionally, the electronic
structure of the Im�3 phase shows half-metallic behavior, while
the C2/m phase exhibits a nite density of states in the minority
spin channel at the Fermi level. As mentioned earlier, the
J. Mater. Chem. A
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electronic-specic heat is calculated from the density of states
at the Fermi level for both the C2/m and Im�3 phases.

The phonon dispersion and phonon density of states for the
C2/m and Im�3 phases are shown in Fig. 3(c–f). In the C2/m
phase, there are no so modes, with all bands lying above zero
frequency. In contrast, the Im�3 phase exhibits so modes with
imaginary frequencies at the G, N, and P k-points. From the
partial density of states, these so modes originate from the
acoustic bands of Bi atoms in the Im�3 phase. This observation is
consistent with experimental results, where the Im�3 phase is
unstable at 0 K but becomes thermodynamically stable at nite
temperatures.9–11 As mentioned earlier, the lattice-specic heat
is calculated from the phonon density of states for both the C2/
m and Im�3 phases. Additionally, the entropy of the lattice and
electronic parts for both phases is integrated from the respec-
tive specic heats. However, this entropy calculation uses the
reference state as ferromagnetic at 0 K and without an external
magnetic eld, so the magnetic eld does not affect the entropy
of the lattice and electronic components of each phase. Instead,
the external magnetic eld inuences the lattice and electronic
entropy in the mixed phases, as described in eqn (7).

The magnetic exchange coupling constants for the C2/m and
Im�3 phases, calculated using the Machikaneyama code, are
shown in Fig. 4(a and b). The magnetic exchange coupling
constants between Cu and Cr pairs for the rst-nearest neigh-
bors are negative in both C2/m and Im�3 phases. This indicates
that the Cu magnetic moment tends to align antiparallel to the
Cr magnetic moment, resulting in a ferrimagnetic congura-
tion, which is consistent with the results obtained from VASP
calculations. In contrast, the magnetic exchange coupling
constants for the rst- and second-nearest-neighbor Cr–Cr pairs
are negative in the Im�3 phase. In the lower-symmetry C2/m
phase, however, these coupling constants exhibit uctuations
and include several large positive values. As a result, the average
Jij values for both the rst- and second-nearest-neighbor Cr–Cr
pairs in the C2/m phase are higher than those in the Im�3 phase.
As a result of the enhanced coupling constants in the C2/m
phase, the Curie temperatures, estimated using the mean-eld
approximation (MFA), are 279.4 K for the C2/m phase and 203.4
Fig. 4 Magnetic exchange coupling constants (Jij) as a function of dista
represent Cu–Cr and Cr–Cr pairs, respectively. In the C2/m phase, ope
values. (c) Temperature dependence of the order parameters obtained
correspond to m(C2/m), m(Im�3), s, and mtotal, respectively.

J. Mater. Chem. A
K for the Im�3 phase. It is important to note that the Curie
temperature predicted by MFA is typically overestimated when
compared to the values obtained from Monte Carlo
simulations.

The temperature dependence of the order parameters in
simulations without an external magnetic eld is shown in
Fig. 4(c). The Curie temperatures of the C2/m and Im�3 phases in
the Monte Carlo simulations are 195 K and 112 K, respectively.
In the absence of structural transformation, the magnetic phase
transitions in both C2/m and Im�3 phases occur from ferro-
magnetic to paramagnetic (FM–PM) and are classied as
second-order phase transitions. It is important to note that the
magnetization curves of the C2/m (m(C2/m)) and Im�3 (m(Im�3))
phases in Monte Carlo simulations have been corrected and
become steeper at the Curie temperature compared to classical
simulations by considering the Bose–Einstein distribution for
magnons, as described by the quantum uctuation–dissipation
relation (QFDR). However, the magnetic phase transition in
both C2/m and Im�3 phases still remains a second-order phase
transition. On the other hand, the structural order parameter s
exhibits a rst-order phase transition at a critical temperature
between the Curie temperatures of the C2/m and Im�3 phases. In
this case, at the critical temperature of the structure, the total
magnetization mtotal is linked to the rst-order phase transition
of the structure, with the transition from the ferromagnetic C2/
m phase to the paramagnetic Im�3 phase. This results in a rst-
order phase transition in the total magnetization. The struc-
tural coupling constant Jsij, which is proportional to the critical
temperature of the structure, is estimated from the experi-
mental magnetization curve to reproduce the slope of the
magnetization curve.9,10

The temperature and magnetic eld dependence of the
magnetization in the C2/m and Im�3 phases from simulations
are shown in Fig. 5(a and b). The magnetization in the C2/m and
Im�3 phases exhibits second-order phase transition behavior,
with a smooth transition from ferromagnetic to paramagnetic
at the Curie temperature. Moreover, the application of an
external magnetic eld results in an increase in the transition
temperature, with a smoother slope in the magnetization curve.
nce for the C2/m (a) and Im�3 (b) phases. Red circles and blue squares
n symbols indicate raw data, while closed symbols indicate averaged
from Monte Carlo simulations. The red, blue, cyan, and green curves

This journal is © The Royal Society of Chemistry 2025
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Fig. 5 Temperature and magnetic field dependence of m(C2/m) (a), m(Im�3) (b), s (c), and mtotal (d). The color of data points corresponds to the
temperature, ranging from 0 K (blue) to 300 K (red).
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On the other hand, the order parameter of the structural part s
is shown in Fig. 5(c), which demonstrates rst-order phase
transition behavior when a nite magnetic eld is applied. The
Fig. 6 Isothermal magnetic entropy change of 1 kOe (black), 10 kOe (blu
(a),m(Im�3) (b), andmtotal (c and d). Note that the temperature of the calcu
with experimental data (dashed lines).9,10

This journal is © The Royal Society of Chemistry 2025
application of an external magnetic eld leads to an increase in
the transition temperature from the C2/m to the Im�3 phase. This
is because the magnetization of the C2/m phase is large (at
e), 30 kOe (green), and 50 kOe (red) fromMaxwell relations ofm(C2/m)
lation data (solid point lines) in (d) is shifted byDT= 30 K for comparison
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temperatures below the Curie temperature of the C2/m phase),
while the magnetization of the Im�3 phase is negligible (at
temperatures above the Curie temperature of the Im�3 phase). In
such cases, the total magnetization, shown in Fig. 5(d), exhibits
a rst-order phase transition at a nite applied magnetic eld,
as it is associated with the structural transition as described in
eqn (4). Since the magnetization of both the C2/m and Im�3
phases is corrected with QFDR, the accuracy of the total
magnetization is also improved, as the total magnetization
results from the contributions of both the C2/m and Im�3 phases.

The isothermal magnetic entropy changes calculated using
the Maxwell relations for the C2/m and Im�3 phases are shown in
Fig. 6(a and b). Due to the second-order phase transition in the
magnetization of both C2/m and Im�3 phases, the isothermal
magnetic entropy change of both phases is broadened and not
too high. Note that, with the correction from QFDR, the
isothermal magnetic entropy change of both phases approaches
zero at 0 K, instead of a nite value as seen in classical simu-
lations. The isothermal magnetic entropy change derived from
the Maxwell relations based on the total magnetization of the
mixed phases is shown in Fig. 6(c and d). Note that the
temperature scale of the calculated data in Fig. 6(d) is shied by
DT = 30 K for comparison with the experimental results.9,10 The
isothermal magnetic entropy change from the calculations in
this work is in good agreement with the entropy change in the
experimental data.9,10 This agreement arises because we use the
Fig. 7 The specific heat of lattice (black), electronic (gray), and total co
(green), 40 kOe (orange), and 50 kOe (red) of C2/m (a), Im�3 (b), and mix
contributions at 0 kOe (dark blue), 10 kOe (blue), 20 kOe (cyan), 30 kOe (g
phases (f).

J. Mater. Chem. A
same method (Maxwell relations) to calculate the isothermal
magnetic entropy change, and the simulation model is appro-
priate for reproducing the entropy change in the material with
mixed phases. However, the isothermal magnetic entropy
change estimated from the Maxwell relations does not contain
all the terms in entropy that can be used for cooling, as the
lattice and electronic parts of entropy are not negligible.

On the other hand, we consider another approach (Clausius–
Clapeyron equation) to calculate the isothermal entropy
change. The specic heat and entropy contributions from the
lattice, electronic, and total components under various external
magnetic elds for C2/m and Im�3 phases are shown in Fig. 7(a,
b, d and e). The classical Heisenberg model is known to be
inaccurate for describing thermodynamic properties at low
temperatures. In particular, it yields a nite magnetic specic
heat of 1.0 kB per atom at 0 K due to the classical equipartition
theorem, which contradicts both the third law of thermody-
namics and experimental observations. To address this issue,
we apply the quantum uctuation–dissipation relation (QFDR)
to the classical Heisenberg model. This approach signicantly
improves the behavior of spontaneous magnetization and
magnetic specic heat, especially in the low-temperature
region. It is especially important for accurately estimating the
total magnetic entropy, which is obtained by integrating the
specic heat. The total specic heat at zero kOe shows a peak at
the Curie temperature, while applying an external magnetic
ntributions at 0 kOe (dark blue), 10 kOe (blue), 20 kOe (cyan), 30 kOe
ed phases (c). The entropy of lattice (black), electronic (gray), and total
reen), 40 kOe (orange), and 50 kOe (red) ofC2/m (d), Im�3 (e), andmixed

This journal is © The Royal Society of Chemistry 2025

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ta03354c


Paper Journal of Materials Chemistry A

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

4.
09

.2
02

5 
18

:3
8:

41
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
eld broadens the peak and shis it to the high-temperature
side, reecting the effect of the external magnetic eld. The
total entropy of both phases is calculated from eqn (5), which
increases with temperature and exhibits a jump at the Curie
temperature under 0 kOe. Under a nite external magnetic eld,
the total entropy shis to the high-temperature side with
smoother curves compared to the zero kOe case.

The total specic heat and total entropy of the mixed phases
under various external magnetic elds are shown in Fig. 7(c and
f). The total entropy of mixed phases is calculated using eqn (7),
accounting for contributions from both the C2/m and Im�3
phases, with the molar fraction of phase C2/m being s and that
of theIm�3 phase being 1 − s. Then, the specic heat of the
mixed phases can be extracted as the derivative of the total
entropy of the mixed phases with respect to temperature. While
the specic heat of pure C2/m and Im�3 phases shows small and
broadened peaks, typical of a second-order phase transition in
magnetization, the specic heat of the mixed phases is very
sharp at the critical temperature. From the specic heat of the
mixed phases, the isothermal entropy change can be estimated,
with contributions from lattice, electronic, and magnetic parts.

The entropy differences between C2/m and Im�3 phases are
shown in Fig. 8(a). The lattice entropy difference exhibits a peak
at low temperatures and changes sign to become negative at
Fig. 8 (a) The entropy difference between C2/m and Im�3 of lattice (black
(blue), 20 kOe (cyan), 30 kOe (green), 40 kOe (orange), and 50 kOe (red). (
kOe (cyan), 30 kOe (green), 40 kOe (orange), and 50 kOe (red) by using
changes and isothermal entropy changes at 0 kOe (dark blue), 10 kOe (blu
using Maxwell relations (c) and the Clausius–Clapeyron equation (d), resp
for comparison with experimental data.9,10

This journal is © The Royal Society of Chemistry 2025
intermediate and high temperatures. Meanwhile, the entropy
difference of the electronic part increases linearly over a wide
temperature range. The total entropy difference under various
external magnetic eld strengths has contributions from lattice,
electronic, and magnetic components. It increases linearly at
low temperatures, with the main contribution coming from the
lattice part. However, when the lattice entropy difference rea-
ches its maximum and starts decreasing, changing sign, the
total entropy difference remains high with only a slight change
due to the contribution from the magnetic part. The total
entropy difference then increases signicantly and reaches
a maximum at the critical temperature of the Im�3 phase, before
decreasing and becoming zero at the critical temperature of the
C2/m phase. Although the total entropy difference provides the
maximum entropy between C2/m and Im�3 phases, the
isothermal entropy change, which relates to the amount of heat
that can be used for refrigeration, needs to consider the molar
fraction of the C2/m and Im�3 phases.

The isothermal entropy changes of the mixed phases at
various external magnetic eld strengths, derived from the
Clausius–Clapeyron equation as eqn (7), are shown in Fig. 8(b).
The isothermal entropy changes of mixed phases show a peak at
the critical temperatures corresponding to the structural tran-
sition from the C2/m to the Im�3 phase. The peaks in the
), electronic (gray), and total contributions at 0 kOe (dark blue), 10 kOe
b) The isothermal entropy change at 0 kOe (dark blue), 10 kOe (blue), 20
the Clausius–Clapeyron equation. The isothermal magnetic entropy
e), 20 kOe (cyan), 30 kOe (green), 40 kOe (orange), and 50 kOe (red) by
ectively. Note that the temperature in (c and d) is shifted by DT = 30 K
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isothermal entropy changes of mixed phases are smaller and
narrower than those of the total entropy difference due to the
effect of the structural change from the C2/m to the Im�3 phase.
The isothermal magnetic entropy changes from the Maxwell
relations and isothermal entropy changes calculated from the
Clausius–Clapeyron equation are shown in Fig. 8(c and d). The
isothermal magnetic entropy changes from the Maxwell rela-
tions are smaller and less sharp those from the Clausius–Cla-
peyron equation, especially in the case of an external magnetic
eld of 10 kOe. This is because the isothermal magnetic entropy
change from the Maxwell relations only includes the contribu-
tion from the magnetic part. Although magnetization is asso-
ciated with structural changes through the molar fraction in the
total magnetization as in eqn (4), the contributions from lattice
and electronic parts are not accounted for. The lattice and
electronic contributions to the isothermal entropy change in
the Clausius–Clapeyron equation is also associated with struc-
ture changes through the molar fraction. Note that the effect of
the external magnetic elds on the lattice and electronic parts is
not considered in this work, as the phonon and electronic
structure calculations were carried out in the ground state
without external magnetic elds. However, the effect of external
magnetic elds on the lattice and electronic parts of the mixed
phases is considered through the molar fraction, which is
controlled by the external magnetic eld. In this case, the
isothermal entropy change calculated using the Clausius–Cla-
peyron equation is more realistic than that that obtained from
Maxwell relations for estimating the amount of heat that can be
used for cooling in one cycle of the magnetocaloric effect.

4 Conclusion

This study comprehensively investigates the magnetic and
thermodynamic properties of BiCu3Cr4O12, which exhibits
a low-temperature C2/m phase and a high-temperature Im�3
phase, by combining rst-principles calculations and Monte
Carlo simulations. Phonon calculations reveal so phonon
modes in the Im�3 phase, originating from Bi atoms, providing
insights into its thermodynamic instability at 0 K. Our analysis
uncovers the mechanism of the rst-order phase transition in
both structure and magnetism, where the structural transition
due to charge transfer, lattice distortion, and charge dispro-
portionation (from the C2/m to Im�3 phase) occurs within the
temperature window dened by the Curie temperatures of the
two phases. This structural transformation drives a rst-order
magnetic phase transition from ferromagnetic(C2/m) to para-
magnetic(Im�3), which is analyzed using a combination of the
classical Heisenberg model and our mixed-phase model. The
isothermal magnetic entropy changes obtained from Maxwell
relations in this study are in good agreement with experimental
ndings, validating the accuracy of our mixed phases approach.
Furthermore, applying the Clausius–Clapeyron equation
provides a more precise assessment of isothermal entropy
change, highlighting the crucial roles of lattice and electronic
contributions in the magnetocaloric effect. The resulting
isothermal entropy change is signicantly larger than the
isothermal magnetic entropy change with the magnetic part
J. Mater. Chem. A
obtained from Maxwell relations alone. This comprehensive
analysis enhances the understanding of magnetocaloric prop-
erties in the C2/m and Im�3 phases, demonstrating the material's
potential for advanced magnetocaloric refrigeration technolo-
gies. These ndings highlight the intricate interplay between
magnetic, structural, and electronic properties in BiCu3Cr4O12,
paving the way for the development of next-generation cooling
materials.
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