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Here we report that fully reversible B&N bond formation/cleavage is a promising tool for the achievement of dynamic libraries
(DLs) of rapidly interconverting compounds. The composition of a number of minimal DLs of adducts between phenylboronic

acid catechol ester 1 and a series of nitrogen-based aromatic heterocycles (NVArHets) is demonstrated to be predictable taking

into account the association constants related to the formation processes of the single adducts involved. Furthermore, such

composition can be controlled over time by the use of activated carboxylic acids (ACAs). Depending on the amount of added

ACA, a B&N based DL can be either overturned in terms of composition, transiently overexpressing an adduct initially under-

expressed, or transiently fully disassembled into its building blocks.

Introduction

Dynamic combinatorial chemistry (DCC)8 has been an intense
field of investigation since two decades due to its implications
in different topics such as supramolecular recognition,®12
catalysis, 1317 dissipative,'82° and systems chemistry.303¢ Both
covalent and supramolecular reversible bonds have been
largely employed to constitute dynamic libraries (with this term,
DLs, one typically refers to collections of compounds able to
interconvert by exchanging building blocks under equilibrium
conditions), with the latter generally having the advantage of
very fast kinetics on human scale. Nevertheless, the presence of
a catalyst may confer the same feature also to covalent dynamic
bonds such as imine, acetal, olefin bonds and the like. Here we
report on a systematic investigation of the exchange reactions
involving the Lewis-pairs formed by phenylboronic acid catechol
ester (1) and several nitrogen-based aromatic heterocycles,
NArHets -namely a series of pyridines and N-methylimidazole.
Such reaction entails the formation/cleavage of the dynamic,
covalent (dative) B&N bond. The process turns out to be fast on
the human timescale and fully reversible, even in the absence
of any catalyst. The B&N exchange process involving catechol
boronic esters and NArHets has been already exploited to build
a variety of complex molecular structures.37-%0 Several examples

involve the achievement of macrocycles,***> molecular
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1 Electronic Supplementary Information (ESI) available: details on the synthesis of
1, titration of 1 with NArHets 2-6, crystallographic data, NMR spectra, ORCA input
and output files, and speciation of the DDLs obtained. See DOI: 10.1039/x0xx00000x

cages,*®47 rotaxanes,*®4? supramolecular adducts,*%-> covalent
organic frameworks (COFs),>6¢1 and polymeric materials.62-67
However, despite the episodic use of the B&N bond in the
design of (supra)molecular architectures, we feel that a
systematic investigation of its properties is still missing. In this
work, we aim to build a deeper mechanistic comprehension of
the properties of such bond and to frame the B&N Lewis pair
formation within the field of dynamic combinatorial chemistry
as a versatile tool for the generation of DLs.

Experimental section
Materials

All the NArHets, amines, catechol, phenylboronic acid, and
tribromoacetic acid were purchased from Fluorochem, TCl or
Merck. Deuterated chloroform was purchased from
Fluorochem. Non-deuterated solvents were purchased from
Carlo Erba. Deuterated chloroform was passed through short
plugs of Na;S0O4 (anhydrous) and Al,O3 (activated, basic) before
use to remove excess water and traces of acids. NMR spectra
were recorded on either a BrukerDPX300 or a BrukerDPX400
spectrometer and were internally referenced to the residual
proton solvent signal. See ESI for further details.
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Fig. 1 a) Binding processes between phenylboronic acid catechol ester 1 and NArHets 2-6. b) Overall proposed transformation occurring in the presence of amines 7-11. c) *H-NMR
titration of 5.0 mM 1 with 3 in CDCls at 25 °C (see ESI, Figures $S23-S32 for the other titrations). d) Brgnsted correlation between log Kuing (Or l0g Kobs, for aliphatic amines 7-11) and
pKaH* for compounds 2-11 (for pyridines, p = 0.68, R? = 0.97, see ESI, Table S2 for details). The linear correlation only holds for NArHets 2-6; the data points relative to amines 7-11
lay outside the line. e) Comparison of *H-NMR traces of 1 (bottom, black), a mixture of 1 and 5 (centre, green), and a mixture of 1 and 8 (top, gold). Spectra recorded at 25 °C; all

compounds are 10 mM in CDCls. Only the aromatics portion is shown. See Figures S51 for full spectra. The Horho protons on the phenyl moiety on 1 are rendered equivalent in the

1H-NMR spectra by the fast rotation about the Ph—B bond.
Synthesis of 1

Catechol (451 mg, 4.1 mmol) was added to a dichloromethane
(14 mL) suspension of phenylboronic acid (500 mg, 4.1 mmol).
Then, ethyl acetate was added dropwise under stirring until a
homogeneous solution was obtained. The resulting mixture was
stirred at room temperature overnight. The solution was dried
over anhydrous Na,SO,, filtered, and concentrated under
reduced pressure. Recrystallization from hot hexane afforded 1
as clear needle-like crystals (650 mg, 81%). See ESI for further
information.

2| J. Name., 2012, 00, 1-3

Results and discussion

Firstly, a series of titration experiments was carried out in order
to quantify the strength of the interaction between
phenylboronic acid catechol ester 1, which can be considered a
benchmark boron-based substrate, and a series of NArHets in
CDClIs at 25 °C, see Figure 1a for the relevant equilibria.

The equilibrium constants (Kping) for the formation of complexes
1eL with L = {2-6} were obtained by plotting the chemical shift
of the *H NMR signal of proton Horne on 1 against the NArHets
concentration. A 1:1 binding model was fitted to the
experimental data. (see Figure 1c for the case of the 13 adduct
and ESI for the other cases). For complexes 1¢2 and 15, the

This journal is © The Royal Society of Chemistry 20xx
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obtained Kping are in good accordance with the values previously
measured in the same solvent.38

Upon addition of NArHets 2-6 to a solution of 1, the formation
of complexes 1#(2-6) occurs immediately and smoothly with no
detectable side-product accumulating in solution. These
equilibria are fast on the 'H NMR timescale, as evidenced by the
resolved signals (Figure le, green trace). Furthermore, the
higher the pK,H* of the employed heterocycle, the larger the
Kbina With a very good log Kping - pKaH* Brgnsted correlation
(Figure 1d, p = 0.68, RZ = 0.97. For any base, pK;H* is the pK, of
its conjugate acid.* All the pK,H* values are measured in water,
see Table S2 and the related caption for details, as well as
Figures S13-S22 for the titration curves and the NMR spectra).
The addition of aliphatic amines 7-11 to a CDCls solution of 1,
also produced a shielding of the Homno proton on 1 with
concomitant deshielding of the protons on the amine backbone.
Again, a 1:1 binding model could be fit to the experimental data.
However, even though aliphatic amines 7-11 are more basic
than NArHets 2-6, the obtained Kops values were significantly
lower than the Kping values of most NArHets, with no clear
dependence on the strength of the base (see Figure 1c).
Furthermore, in all cases, the *H NMR spectra feature broad
signals and spurious peaks not belonging to any readily
identifiable species (see Figure 1e, gold trace).

Additionally, while the saturation value for the Hortho chemical
shift was the same in all the titrations of 1 with NArHets 2-6
(namely 7.50 ppm, with 4 leading to the only slight outlier of
7.57 ppm), no clear pattern was found for aliphatic amines. (All
the titration curves are reported in the Sl. See Figures S23-532)
Taken together, this evidence points towards different
reactivities of 1 in the presence of NArHets or aliphatic amines.
Eventually, crystals were obtained from the 1:1 mixtures of 1
and amines 8 or 9. The structures feature the binding of a
hydroxide ion to the B centre of 1 and the protonated amine
engaging in H-bonding with the oxygen of the hydroxide group
together with a water molecule (see Figure 2 and Tables S23 and
S25). Although these are solid-state structures, we propose that
the increased steric bulk around the nitrogen atom and higher
basicity of aliphatic amines compared to NArHets favours the
deprotonation of adventitious water in the chloroform and the
subsequent coordination of the hydroxide ion to the boron
(compare Figure 1a and Figure 1b), consistently with a reactivity
model proposed by Anslyn.%8 This view is further supported by
the fact that sterically bulky lutidine does not appreciably bind
to 1 despite its increased basicity with respect to 3 (see Figure
S34 and caption). Similarly, bulky phenylboronic acid pinacol
ester is hardly reactive towards 5, the strongest binder for 1
employed in this work (Figure S36).

Since the formation of 1¢HO™ will occur to some extent every
time that wet chloroform is employed, we tested whether its
presence in large quantities would impact the formation of a
B<N complex. Therefore, to a 1:1 mixture of 1 and 7 (both 12.5
mM), an equimolar amount of 5 was added. The 'H NMR
spectrum of the resulting mixture was very similar to that of the
1:1 mixture of 1 and 5, suggesting that, when possible, the
formation of a B&N complex is favoured with respect to that of

This journal is © The Royal Society of Chemistry 20xx

Chemical Science

1¢OH'. A similar result, albeit less marked, was,btained, by
adding 4 in place of 5 (see Figures S51 an&8852(.1039/D55C07665J
Having shown that the presence of 1¢OH’ is not detrimental to
the formation of a B&N complex (or, more precisely, that 1¢OH-
and 1eL with L = NArHet can co-exist as components of a DL,
with 1eL being the predominant species), we returned to
characterising the B&N adducts.

All the adducts dissociate upon dilution and mass spectroscopy
measurements are particularly difficult on the neutral
compounds 1eL (L = 2-6) yielding no reliable information.
Instead, for the definite identification of such adducts we
resorted to X-ray crystallography which also provided us with
valuable structural information. For compounds 12 and 15 it
was possible to isolate single crystals suitable for X-ray analysis
(Figure 2) by double layer crystallisation (chloroform/hexane)
from 1 to 1 solution mixtures of the two components.

In the case of adduct 1e3, the crystals obtained were not
suitable for diffraction analysis. However, the structure of this
adduct has been previously solved and deposited in the
Cambridge Structural Database (CSD)%%7? and has been used as
reference in the present discussion. The crystallographic data
and experimental details for data collection and structure
refinement of 12 and 15 are reported in Table S23. The two
adducts crystallise with more than one molecule in the
asymmetric unit and their geometrical parameters are listed in
Table S24. The B-N distances are all quite similar, ranging from
1.634(13) to 1.664(3) A, with the exception of a slight outlier
[1.607(7) A] displayed by one of the three molecules in adduct
1e5. These values are in good agreement with the average
distance of 1.645 A obtained comparing 126 structures found in
the CSD, all containing the B—Npyrigine fragment (see Tables S24
and S26).

Unfortunately, all the attempts to obtain single crystals of 14
and 16 failed. Nevertheless, on account of the similarities in
the NMR spectra with the confirmed adducts, we propose that
the prevalent process is that of B&N bond formation, rather
than water deprotonation.

- \,—'\t_
: X *
1.2 13 1-5

1-:OH- + 8-H* 1-0OH- + 9-H*

Fig. 2 X-ray structures. Top row: adducts 1#2, 13,7 and 15. Bottom row: co-crystals
1¢OH + 1eH* and 8¢OH" + 9¢H* Colour code: B, pink; N, blue; O, red; C, grey; H, white.

J. Name., 2013, 00, 1-3 | 3
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In other to gain further insights into the nature of the B&N
bond occurring between 1 and the NArHets, a computational
study was conducted. Calculations were performed with the
ORCA 6.1.0 program package.’>72 The starting geometries of 1,
NArHets, and those of their adducts with 1 were optimised at
the r2SCAN-3c level of theory, using the SMD solvation model
(chloroform).”374 Single point energies and frequences of the
optimized structure were then computed at the r2SCAN-
3c/def2-QZVPP(SMD) level of theory, following a benchmark
study focused on Lewis acid-base interaction.”

The stabilisation energies (Estab) Of the interaction between 1
and NArHets were calculated as the difference between the
energy of the adduct (Eadduct) and the sum of the energies of the
donor NArHet (Eq), and the acceptor 1 (E.), i.e. Estab = Eadduct — (Ed
+ Ea).7® Estap values were then compared with those derivable
from the experimentally measured binding constants. Figure 3
shows a good linear correlation between experimental and
theoretical data, with a systematic discrepancy, on average, of
about 0.57 kcal moli(see Table S27). Moreover, the calculated
B-N distances are comparable with those obtained from X-ray
crystallography (see Table S28). To rationalise the similar Hortho
chemical shift saturation values observed for the 1-NArHets
adducts, Hirshfeld partial charges were computed (see Table
$28). The averaged Hortho partial charges for each 1-NArHets
range from 0.0313 for 15, to 0.0329 for 12 with the average
value between all the adducts being 0.0321. These values are all
very similar, but they are markedly different than the one
obtained for free 1, which is 0.0479. The computed partial
charges fit well with lower, very similar values of the Hortho
chemical shift for all the adducts with respect to 1.

20
S
-3.0
£
[0}
Q
X, 40 ]
g N
g -5.0 ‘
5 [
< 50 NG
w m =0.988
R? = 0.994
70 - i i § =
70 60 50 40 30 20  -10

Calculated Exw [kcal/mol]

Fig. 3 Linear correlation between the experimental stabilization energies derived from
Kvina measurements, and the computed stabilization energies for the 1-NArHet adducts.

Having gained some chemical understanding of the dynamic
B<N bond, we turned to building and controlling dynamic
libraries of increasing complexity by exploiting its properties.

Therefore, six competitive experiments, each one involving two
couples of adducts 1L (with L = NArHets 2-5) were carried out
in CDCl3 at 25 °C as depicted in Figure 4, where the equilibrium
for the couples 192 and 13 is shown. In all cases, compound 1

4| J. Name., 2012, 00, 1-3

and the two given NArHets were added in equimglak ameunt
(12.5 mM), and it was found that the exchBRge PéaétiohwasFast
on HNMR time scale, with the equilibrium reached
immediately after the addition of the reagents (first spectrum
recorded). Keq for each exchange reaction can be calculated
from the ratio between the corresponding Kping for each adduct.
For example, in the case of the equilibrium 12 +3 2 13 +2
which corresponds  to trace c in Figure 3,
Keq = Kbind(1'3)/Kbind(1'2) =4.4 with adduct 13 abundantly
prevailing over 12 (free 1 30% of 1o, 13 50% of 1ict and 12
20% of 1, see Figure S45 and the related caption in the ESI for
details on the mixture composition obtained both
experimentally and theoretically). As expected, since in the case
of both adducts 1¢2 and 13 the adopted conditions do not
allow for a complete binding, the presence of two molar
equivalents of bases (2 + 3 with respect to 1) in the competitive
experiment causes a further up-field shift of all signals related
to the boronic ester (identified by a black circle in Figure 4). As
for the remaining five DLs the speciation was calculated and the
theoretical amount of free 1 was satisfactorily compared to that
calculated from NMR data (see ESI, Tables S7-S9). Being 4-
dimethylaminopyridine 5 the strongest binder versus ester 1,
each time it is involved, the equilibrium is shifted toward adduct
1e5 (see Figures S47, S49, and S50). These experiments clearly
demonstrate the ease of achieving DLs of B&N adducts able to
rapidly interconvert on human timescale, with a predictable
composition.

Next, we performed consecutive competition experiments,
building DLs with an increased number of components (Figure 5
shows the reaction scheme, the NMR spectra, and the
computed speciation for each DL). Thus, to a 12.5 mM CDCls
solution of 1 (1.0 mol equivs, black trace) was added 1.0 mol
equiv. of 3. Complex 13 partially formed and -as expected- the
signal relative to the Horho proton on 1 was shifted upfield,
while those belonging to 3 moved downfield (blue trace).
Addition of 1.0 mol equiv of 4 to this mixture partially displaced
3, as evidenced by the upfield shift of the protons on the latter
(pink trace). The Hortho signal also moved upfield, indicating
increased binding of 1, which was distributed between its free
form and the bound ones (13 and 14). Then, 1.0 mol equivs
of 6 were added to the solution, causing a further upfield shift
of the signals belonging to 3 and 4, as well as of the Hortho proton
(light purple trace). Finally, 1.0 mol equivs of 5 were added to
the mixture. This resulted in an upfield shift of the signals
belonging to all the previously added ligands and brought the
Hortho proton to its saturation value of 7.50 ppm, indicating
complete binding.

Thus, at the end of the experiment, the DL contained
compounds 1, 3, 4, 6, and 5 (in order of addition) together with
complexes 13, 14, 16, and 1¢5 (in order of increased
stability). After each addition, the computed amount of free 1
was satisfactorily compared to that estimated from NMR data
(see ESI, Figure S53, and Tables S17-518).

This journal is © The Royal Society of Chemistry 20xx
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1H-NMR time scale with adduct 13 prevailing on adduct 12 under competitive conditions (trace c). Trace a 12.5 mM 2, trace b 12.5 mM 1 and 2, trace ¢ 12.5mM 1, 2 and 3, trace
d 12.5mM 1 and 3, trace e 12.5 mM 3. The black circles are relative to the signals on the 1 backbone.

Next, we investigated the chance to control over time a minimal
DL composed of two B—N adducts and related NArHets using an
activated carboxylic acid (ACA) as a stimulus. ACAs are used for
the operation of dissipative chemical systems, which possess
one or more Brgnsted basic sites.””8° For instance, the DL
13 + 5 2 15 + 3 was rapidly obtained by adding in CDCl; 15.0
mM equimolar 1, 3 and 5 (Figure 6, 'H NMR, trace a). As
expected from the Kyping values reported in Figure 1a, adduct 15
largely prevails on 1e3. Addition of 15.0 mM ACA 12-COH
(tribromoacetic acid) causes the extensive protonation of 5, the
strongest base present in solution, which is subtracted from the
equilibrium. The latter is now shifted to the left with 13
prevailing on 1e5.

Comparison between traces a and b of Figure 6 shows that all
signals are shifted down-field soon after the addition of 12-
CO3H (trace b). Such shifts are due to protonation of 5 to 5H",
whose signals are found down-field shifted with respect to the
corresponding ones in adduct 15 and to partial association of
3 to 1, which causes the down-field shift of the signals related
to both moieties 3 and 1.

However, the new state (Figure 6, trace b) is not an equilibrium

one since the ACA conjugate base 12-CO, slowly

decarboxylates and the corresponding, just formed carbanion
12 retakes the proton from 5H* to give free pyridine 5 and
bromoform 12 (traces b to e).

Consequently, the initial equilibrium with 15 prevailing on 13
is restored (trace e). Thus, when the decarboxylation of ACA 12-
COzH is complete, the DL goes back to the initial equilibrium
state. The above interpretation of the experimental results is
strictly consistent with the higher sensitivity of the affinity of
the basic nitrogen atoms for the proton than for the boron atom
of 1 (for pKying Vs pKaH* p = 0.68, see Figure 1d, Figure S33 and
the related caption for more details). Furthermore, a computer
assisted calculation of the DL speciation based on the pK,H* of
3 and 5 and pKying of 1¢3 and 15 confirms such reading (see
Tables S21 and S22). However, another corroborating
experiment that further shows the fidelity of an ACA driven DL
based on the B&N bond was carried out in the presence of
excess acid 12-CO,H.
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equilibrium with a small amount (<5% in our conditions) of phenylboronic acid and catechol due to partial hydrolysis from traces of water in the solvent. The addition of
NArHets suppresses this side-reaction.
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Compounds 1, 3 and 5, 10.0 mM each, were added in CDCl; at
25°C. The thermodynamic equilibrium with adducts 1e5
prevailing on 13, was immediately reached as expected (see
state D and trace d in Figure 7 where *H NMR spectra of free 1,
13 and 15 are also reported as traces a, b and c, respectively,
for the sake of comparison). Addition of 30.0 mM 12-CO3H
causes protonation of both pyridines 3 and 5, which are
liberated in solution affording free 1 (see trace e in Figure 7
recorded at t =9 min from addition of the ACA). The new state
E, which can be defined as a dissipative state, persists as long as
the excess acid is present (traces e and f recorded at time t =9
min and 7 h, are both consistent with the presence of excess
acid).When the excess is over (from state F onward), the less
basic 3 is firstly deprotonated forming adduct 13, as shown by
trace g (t = 36 h), which roughly corresponds to state G of Figure
7. At this point the strongest base 5 is still mostly protonated
and cannot effectively engage in bonding with 1. Then, ACA 12-
CO;H is further consumed and free base 5 starts to be available
for the formation of 15 at the expense of 1e3. Eventually,
when ACA 12-CO;H is exhausted, the system goes back to the
initial equilibrium state with 15 again prevailing on 13 (see
trace i in Figure 7, t = 5d, which corresponds again to the state
D). A corollary of this experiment is that ACA 12-CO;H can be
also used to temporally drive the simple binding equilibrium

between ester 1 and bases 2-6. And in fact, Figure S40 shows
that addition of ACA 12-CO;H to complex 15, causes the
liberation of 1 in solution due to the transient protonation of 5.
When the decarboxylation of 12-CO,H is over, adduct 1e5 is
reversibly and completely restored. The process turned out to
be fully reversible as demonstrated by an experiment in which
three subsequent cycles were triggered by three successive
additions of 12-CO;H. At the end of each cycle (see Figure S44),
adduct 15 was found completely reassembled, also proving
that bromoform is not detrimental to the B&N bond chemistry
to any extent. Thus, similarly to what found in the case of the
transimination reaction,27.2989 also in the case of the B&N bond
exchange, use of ACA allows to drive over time in a predictable
fashion dissipative?’ dynamic libraries (DDLs).28
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Conclusions

In this report we show that the B<N bond between
phenylboronic acid catechol ester and a series of N-based
aromatic heterocycles is fully reversible and can be
conveniently used to obtain dynamic libraries of interconverting
compounds. In chloroform, such B&N exchange reaction turns
out to be rapid on the HNMR time scale and its
thermodynamic fate easily predictable from the formation
equilibrium constants (Kping) of the exchanging adducts.
Moreover, it is shown that the exchange reactions among B&N
adducts as well as their formation can be finely controlled over
time in a dissipative fashion using activated carboxylic acids
(ACAs). It is expected that such reversible interaction will be
exploited in the next future for a number of applications such
as i) the generation of dynamic libraries composed of more
complex chemical structures whose composition can be
controlled in a dissipative fashion, ii) the design of boron-based
receptors for NArHet anchoring groups with the chance to
control the related binding process over the time, iii) the
achievement of stimuli responsive materials and dynamic
polymer networks based on the exchange of the N-donor
species.
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