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Solid-state NMR has established itself as a cutting-edge spectroscopy for elucidating the
structure of oxide glasses thanks to several decades of methodological and instrumental
progress. First-principles calculations of NMR properties combined with molecular-
dynamics (MD) simulations provides a powerful complementary approach for the
interpretation of NMR data, although they still suffer from limitations in terms of size,
time and high consumption of computational resources. We address this challenge by
developing a machine-learning framework to boost predictive modelling of NMR
spectra. We use kernel ridge regression techniques (least-squares support vector
regression and linear ridge regression) combined with smooth overlap of atomic
position (SOAP) atom-centered descriptors to efficiently predict NMR interactions: the
isotropic magnetic shielding and the electric field gradient (EFG) tensor. As illustrated in
this work, this approach enables the simulation of magic-angle spinning (MAS) and
multiple-quantum magic-angle spinning (MQMAS) NMR spectra of very large models
(more than 10 000 atoms) and an efficient averaging of NMR properties over MD
trajectories of nanoseconds for incorporating finite-temperature effects, at the
computational cost of classical MD simulations. We illustrate these advances for sodium
silicate glasses (SiO,—Na,O). NMR parameters (isotropic chemical shift and electric field
gradient) could be predicted with an accuracy of 1 to 2% in terms of the total span of
the NMR parameter values. To include vibrational effects, an approach is proposed of
scaling the EFG tensor in NMR simulations with a factor obtained from the time auto-
correlation functions computed on MD trajectories.

Introduction

Glasses are ubiquitous materials in modern life because of their low cost but good
performances for a high diversity of usages.'” Glass indeed offers an infinite
combination of compositions (but within a glass formability window) to match
the properties of interest. The importance of glass was recognized in 2022 by
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UNESCO, who declared it as the International Year of Glass.} The fundamental
challenge in glass science remains the establishment and the knowledge of the
relationships between the composition-structure and the properties for the
design of new formulations for specific applications. To this aim, molecular
dynamics (MD) is the reference technique for building atomistic structural
models of glasses and calculating the properties of interest.®” Spectroscopic data
are, however, needed to assess the MD structural models, which have been mostly
provided by neutron and X-ray diffusion experiments for decades.'®** In this
regard and in the context of oxide glasses, NMR remains underexploited and has
been generally limited to its ability of providing quantitative information on the
structural motifs building the glass network (such as SiO,, AlO,, BO3, and BO,)
featuring the so-called short-range order (SRO).

NMR has clearly proven over the two last decades to be a key spectroscopy
method for deciphering glass structure at various atomic length scale orders (from
short to intermediate range order)."*?* Beside the direction of development of
advanced radio-frequency pulse sequences for manipulating NMR interactions with
an extremely high degree of accuracy,"**" a second direction was proposed with the
introduction of accurate and robust DFT computation methodologies, based on the
popular DFT-GIPAW method.*** These two directions are of course complementary
but both address the essential difficulty encountered in studying amorphous
materials such as oxide glasses: the chemical and geometrical disorder introduces
broadening of the lines resulting in a strong overlap between NMR peaks, which can
persist despite the usage of sophisticated 2D high-resolution techniques. This
spectral broadening is engendered by the NMR parameter distribution, a salient
feature of glassy materials that cannot be ignored when fitting experimental
data.'***3* With the help of relationships established either from known crystalline
samples or DFT computations, NMR parameter distributions can be inverted to
a distribution of a geometrical parameter, such as inter-atomic distances, bond
lengths or bond-angle distribution (BAD).**"** However, such approaches are limited
to simple glass compositions and are difficult to extend when there is interplay
between several parameters. A direct link between a 3D structural model and the
NMR spectrum that can provide such information is therefore necessary.

The continuous increase of computational resources combined with the effi-
ciency and accuracy the DFT-GIPAW method**~*” has enabled its fruitful combi-
nation with MD, so that a first-principles NMR approach has emerged as a new
tool for investigating glasses.**** Within this framework, one can validate the
interpretation of experimental data by prediction of NMR fingerprints of atomic
species**® or assess the quality of MD structural models with a direct comparison
with NMR data.***® According to our own experience, modern computational
resources enable GIPAW-DFT calculations with MD models of up to ~800 atoms
to be performed. DFT inherently limits applicabilities to representative models of
glass of several thousands of atoms (a standard size is 5000-10 000 atoms for MD
studies). In addition, investigations of dynamical effects (such as vibrations or
diffusion of atoms) on NMR*~*° necessitates long MD trajectories of the order of
ns to be considered. Consequently, the recent emergence of machine-learning
(ML) methodologies in atomistic modelling® offers appealing perspectives for

1 https://www.iyog2022.org/
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accessing larger system sizes and time scales. In solid-state NMR, kernel ridge
regression (KRR) techniques were applied to predict NMR shifts in organic
molecular solids by Paruzzo et al.>> and in organic molecules by Rupp et al.>* The
first application to silicate glasses was provided by Cuny et al.>* using a neural
network and by Chaker et al.*® in sodium aluminosilicate glasses with linear ridge
regression (LRR). Gaumard et al.*® studied the performances of different kernel
regressions in zeolites. Recently, the positions of cesium in clays were refined by
Ohkubo et al.*” by using predicted NMR chemical shifts from LRR. In the context
of amorphous molecular solids, Cordova et al.>** combined MD and KRR-SOAP
predicted shifts (ML-Shift),* to match structural models to experimental MAS
NMR spectra. In the context of oxide glasses where quadrupolar nuclei are
predominant, prediction of the EFG tensor is needed.

For atomistic modelling by ML, the so-called atom-centered descriptors (ACDs)
play a central role. In the ML context, they were introduced in the seminal work of
Behler et al® and Bartok et al®* The variety of descriptors that have been
proposed in the literature is too vast to be covered here (see for, example, ref.
62-64). ACDs must provide a faithful and symmetry-adapted representation of the
local environment of a central atom (chemically and geometrically): they must be
invariant to translations and permutations, and equivariant to rotations and
inversions with regard to the nature of the property of interest. Indeed, for
prediction of a scalar property (such as the isotropic magnetic shielding, a charge
or an energy), they must be invariant.®* In contrast, for tensorial properties (in our
case the electric field gradient (EFG) tensor), they must respect the rotational
properties of the second-rank tensors, as was first discussed by Grifasi et al.® In
this work, we have chosen the popular smooth overlap of atomic positions (SOAP)
descriptors, which have extensively been studied®-**** and shown to have excel-
lent performances for NMR shifts prediction.>***>¢

We present a fully-integrated methodology based on ML kernel tools (linear
and kernel ridge regression, least-squares support vector regression, kernel
density estimation, and dimensional reduction with incomplete Cholesky
decomposition of the kernel Gram matrix) for simulation of the NMR spectra of
structural models containing up to several thousands of atoms (calculations were
performed on a standard workstation). Our strategy for building a database for
ensuring a good transferability of the ML predictions (between various glass
compositions and MD temperatures) is presented, as well as ideas for application
to the study of the impact of local mobilities (vibrations, or diffusion of atoms) on
the NMR spectrum. This opens an appealing perspective for the investigation of
ionic conduction in glasses via NMR. Sodium-silicate glasses Si,O-Na,O have
been chosen as a representative model of oxide glasses: they contain both I = 1/2
(*si) and quadrupolar nuclei (**Na and *’0), one with a high local mobility (Na™).
Experimental data were taken from previous studies.>”**

Theory and methods
SOAP descriptors for representing the local environment

To represent the local environment of an atom, the SOAP descriptors were
chosen.®>* They are constructed from the expansion of the smoothed atomic
density p{r) of a central atom i as:
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Egrr — fc r,, E (’nlm Yiu (F) R (1) (1)

JEN; wn,lm

N;is the set of atomsj that are in the neighbourhood within a cutoff radius 7.y g5
is a (3D) Gaussian function of width ¢ and fi(r) = (1/2)}{cos(wr/rey) + 1} is the
function used to smooth the density at the cutoff radius. Y;,(7) are spherical
harmonics (7 = (0,¢) are the polar and azimuthal angles) and R,,(r) are radial
functions. u is an index that runs on the various atomic species (here, Na, Si and
0). In this work, we employ real spherical harmonics (RSH) Y;,,(7) and spherical
Bessel functions R,(r) = jiaur/Teut)- o4y is the nth root of the Bessel function j.
This choice ensures that the R,,(r) form an orthonormal set on the segment [0,7c,]
(see Section S4 of the ESIT). With eqn (1), the local environment p(r) of the central
atom is represented by the set of parameters c;,,. For computations, the
expansion of eqn (1) is truncated to values ne€ [0,Nyay| and I€[0,Lay]- Thus, (7eut,
Nmaxs Lmax), Which are called hyper-parameters, have to be optimized during the
training of the ML algorithm. The c,;,, are invariant to permutations of the
neighbouring atoms and to translations, and they behave like an l-rank tensor
under rotations. They represent the local environment of a central atom X in
terms of two body interactions. Indeed, for Na,0-SiO, glasses, the expansion on
the index u yields X-Si, X-O and X-Na terms.

For the prediction of the scalar isotropic magnetic shielding value oy, (Or
equivalently, the isotropic chemical shift), we need rotation-invariant descriptors.
The symmetry-adapted descriptors are therefore reduced to c}, o, values, which
severely limits the number of descriptors for an environment that can contain
around ten atoms (in practice, Ny,.x ranges from 2 to 12). To overcome this limi-
tation in their seminal work, Bartok et al.®* introduced the power spectrum, a set of
descriptors that combine the c},;,, into a sum of rotationally invariant products:

pnlml_ § Cnl/+m nzl —m (2)

The power spectrum contains three-body terms, which account for the
distribution of angles around the central atom (i.e., Si-X-Si, Si-X-0, Si-X-Na, O-
X-0, O-X-Na and Na-O-Na) as was explicitly shown in ref. 67. For tensorial
properties of rank A (i.e., using the familiar notation in NMR, T ,,), eqn (2) can be
easily generalized to become equivariant:

<q5'] ::;1 b) m - Z (A m|11m112m2) "1 J mlLZzzv/z-mz (3)

my,my

where (A,m|lymyl,m,) are the Clebsch-Gordan coefficients. These descriptors,
referred to as A-SOAP, were introduced by Grifasi et al.,* generalizing thereby the
SOAP power spectrum to represent a tensorial quantity. One can easily recognise
that eqn (2) is a special case of eqn (3) with the choice A = 0 (then /; = ,). In the case
of the EFG tensor or the symmetric part of chemical shift anisotropy (CSA) tensor,
A = 2. The NMR tensor (we consider only the EFG in this work) is then represented
by a 5-dimensional vector denoted V;, in its spherical form (see Section S6 of the
ESIt), which is the form that is used in our linear ridge regression (LRR) algorithm.
Note that the dimensions of A»-SOAP descriptors can be very high (in our case, from
10 to 10%), thus necessitating a large dataset for training the LRR algorithm.
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Least-squares support vector and linear ridge regression

The kernel ridge regression (KRR) is a generalization of the popular linear ridge
regression (LRR) by introducing non-linearities through a kernel function, which
can be seen as a measure of the similarity between two environments, here
denoted x. For the isotropic magnetic shielding o;s,(x), the prediction is per-
formed via a linear combination of similarities between the new environment
Xnew and the training ones x;, as follows:

Giso(chw) = Z K(chw7 X[)ai (4)
ie train

where K(x;x;) is the kernel function. In LRR, the kernel is the scalar product
K(xsX;) = Xx:"X;~ A standard choice is the Gaussian function (in this case KRR
shares similarities with Gaussian Processes™) K(x;,x;) = exp{—||x; — x,/|*} where 6
is a (hyper-)parameter that needs to be optimized. Note that considering all points
in the dataset, eqn (4) can be rewritten in a “matrix form” as ¢ = Ka. Conse-
quently, the determination of the regression parameters « (ie., the training
phase) is obtained from a = (K + ¢I) " 'a. ¢ is the ridge parameter that controls the
norm of the regression parameters « in order to prevent the ML predictor from
overfitting the training data. e therefore has to be optimized from a second set of
independent data (the validation set) in order to ensure a good transferability of
the ML prediction to new data (the testing set).

Because of the high dimensionality of the training set, the resolution of the
linear system eqn (4) can be cumbersome. The idea of the least-squares
support vector regression (LSSVR)” is to use a reduced set of representative
data, denoted &, generally referred to as the inducing points or the landmark
points. Restricted to this small set, the inversion of the kernel matrix (K + el) "
is then tractable. From a NMR perspective, it can be easily understood that
many environments in the database are similar (and thus their NMR param-
eters are also very close), so that fewer points are necessary to support the
linear regression eqn (4) (the support vectors). Mathematically, the kernel
matrix is then approximated by K, , = K, ¢K:: 'K, with N; = 103, whereas N,
=~ 105 in our study. This is the Nystrém approximation. Resolution of eqn (4)
then only requires the diagonalization of K; ¢, as detailed in ref. 71, but the
determination of the regression parameters a proceeds so as to account for all
samples of the training set. To determine the inducing points &; from the
training set, we found that the incomplete Cholesky decomposition (ICD) of
the kernel matrix K, , (ref. 72) was very efficient and informative, as will be
discussed below.

Concerning the EFG tensor, it was predicted in spherical form using the -
SOAP descriptors, eqn (3), with LRR:

= Mok 15K
I/”" - § anl 2,0, (qn] oLl ,/2) m (5)

Kt i 5h2,0 0

Note that the summation over /; and I, is limited to values such that (2 =
2,m|lymyl,m,) # 0. In our work with L,.x = 4, from the 25 (I3,l,) pairs, only 16
contribute in eqn (5).
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NMR simulations with kernel density estimation

From DFT-GIPAW computations or ML predictions, the NMR parameters
x = (8is0,CqyNq) for each atom (here >°Si, **Na, and '70) are obtained. A simple
approach for simulating the NMR spectrum consists in summing the individual
NMR spectra for each atom. This would however be quite ineffective and time-
consuming. As was discussed in earlier works,*”* a better strategy for glasses
consists in first reconstructing the NMR parameter distribution. The latter can of
course be multi-modal if various species are present; in this case, a clustering
algorithm can advantageously help to identify the speciations, an option that is left
for future studies. Here a kernel density estimation (KDE)* approach is adopted for
building the NMR parameter distribution p(6is0,Cq,nq) on a 3D grid of pre-
computed NMR spectra. In the case of silicon-29, quadrupolar parameters can
be replaced by CSA values for an accurate modelling, but here a simple 1D
approach is adopted so that only p(d;s,) is considered (for the reconstruction of
anisotropic/isotropic 2D correlation with KDE, see for example ref. 41). In this
work, we focus on MQMAS reconstruction of the two quadrupolar nuclei of interest,
70 and **Na.

In the KDE formalism, the value of the distribution is estimated for each grid
point x, from the database points x; as:

plx) = 3 X Kl —x) ©)

where the kernel Ky is chosen as a Gaussian distribution of which the shape and
width is controlled by the covariance matrix ¥ (also referred to as the bandwidth
matrix), which is calculated from the (training) x; points. This matrix is essential to
account for the correlation effects that exist between the NMR parameters, as was
observed in oxygen-17 MQMAS NMR of silicate glasses.””*>** To lower the compu-
tational cost of eqn (6), numerous strategies exist to reduce the number of distance
evaluations, such as an approximate nearest-neighbour search based on a graph.”™

From p(x,) and precomputed spectra on the 3D grid, the simulation of the MAS
and MQMAS spectra can then be reduced to simple matrix multiplications. In the
case of a MQMAS simulation, equations were given in ref. 41. The pre-computed
spectra can optionally account for the finite-pulse-width effects (intensity and
lineshape distortion) and finite spinning rate. Denoting I(v;0is0,Cq,Mq) the pre-
computed spectra on the grid and neglecting offset effects so that I(v;0i50,Cqsq) =
I(v — 8is5030,Cq,Mq), only a 2D grid of (Cq,nq) parameters is necessary. Typical grids
have the following resolution (boundary values depend on the nucleus): Cq 0.1
MHz, 7q 0.05, and v (or equivalently d;5,) 0.2 ppm.

This KDE approach underlines that, in the specific case of glasses, the primary goal
of the ML prediction is to reconstruct the NMR parameter distribution p(diso,Cq,7q)
from the set of environments generated with the MD model(s). Thus, in addition to
the quantification of prediction error for each point of the dataset, it is important to
compare the reconstructed NMR parameter distribution from predicted ML values
(and simulated NMR spectra) with the one computed from the DFT values. Accord-
ingly, many (small) structural models are used to provide a set of sufficiently densely
distributed points to estimate p(diso,Cqynq)- The alternative of using larger models
offered by ML prediction enables investigation of size effects (such a spurious
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correlation effect can be induced by the periodic boundary conditions (PBC) in MD
simulations).

Optimisation of the hyper-parameters: k-fold cross-validation

Beside the determination of the regression parameters in eqn (4) and (5), the
SOAP, kernel and ridge parameters need to be optimized. They are generally
referred to as hyper-parameters (with respect to the regression parameters « in
eqn (4)). We use a k-fold cross-validation approach which consists in splitting the
database into k subsets (in practice, k = 5): the testing set, the validation set and
the remainder subsets are in the training set. In LSSVR and LRR, the regression
parameters are determined with the training set and the ridge regression
parameter is optimized by minimizing the error on the validation set. Note that
the inducing points are restricted to being in the training set. The reported error
is computed with the testing set. In order to have each point tested, the procedure
is repeated k-times by shifting the k-folds. With an initial random shuffling of the
database points, the whole procedure can be repeated so that each point can be
a testing point more than once, and it provides a robust value of the error stan-
dard deviation value. The (hyper-)parameters of the descriptors and kernel width
are optimized in an outer loop. Two errors are reported: the mean absolute error
(MAE) and root mean square error (RMSE). The latter is sensitive to outliers so
that both values are complementary.

Design of the NMR database

Structural models of Na,0-SiO, glasses with % mol Na,O ranging from 10% to
50% (by steps of 10%) were generated with classical MD simulations, as
detailed in Sections S1 and S2 of the ESI.f For each composition, 20 inde-
pendent small models of 300 atoms and 2 supplementary models of 600 atoms
were generated for testing the transferability of ML algorithms to larger
models when trained on small models. To investigate increased geometrical
diversity, structures were extracted at 300 K, 1000 K (both forming the refer-
ence set), 1500 K and 2000 K. Long MD trajectories (up to 1 ns) were simulated
to study the impact of vibrations on the NMR spectra. Additionally, for each
composition, a model of 14400 atoms was generated to demonstrate the
applicability of machine learning NMR (ml-NMR) simulations to very large
systems in short CPU times (here, ~2 s).

Part of the database was recently used for training a machine-learning
potential (MLP).”* Two compositions, denoted NS22.5 and NS43.1 (22.5 and
43.1% mol Na,O, respectively) were chosen from this work (~700 atoms, see
Table S2 of the ESI}) for the comparison of the mI-NMR spectra with experi-
mental data (>°Si, >*Na and '70).”” To this end, ab initio MD simulations at 300 K
were performed (with CP2K”’) for incorporating effects of vibrations at 300 K in
the NMR simulations through the computation of correlation functions as
detailed below. About 41 structures were extracted every 50 fs to built a NMR
database from the first 2ps of the trajectory. In the last 10ps, 8 structures were
extracted every 500 fs to check the accuracy of ML prediction.

The NMR properties, the magnetic shielding and electric field gradient
tensors, were calculated with the DFT-GIPAW method* as implemented in VASP
(version 5.3.x).>* For referencing the NMR-GIPAW outputs o;, to the isotropic
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chemical shift values d;5,, SiO, (cristobalite and quartz), Na,SiO; and «- and B-
Na,Si,05 were used, but in a consistent approach with the MD models: for each
system, a supercell of ~300 atoms was built, its geometry (atomic positions and
unit cell parameters) was optimized with CP2K, and the NMR-GIPAW values
computed with VASP. Details are given in Section S3 of the ESI. Notably, the
calibration parameters (« and oggg) of the linear regression 6;s, = —(0iso — Trer)
are given in Table S4 of the ESIL.}

Results and discussion
Examination of the NMR database

We propose to examine the diversity of environments in the database by visualizing
their respective NMR parameter distribution. For the quadrupolar nuclei, the NMR
parameters were efficiently represented with the 2D distribution p(6iso,Pq) using the
quadrupolar product P,* = Cq(1 + 1%/3). Indeed, Pq (in contrast to Cq and 1) is
invariant to both the orientation and the ordering principal values of the EFG
tensor (Vxx,Vyy,Vzz). This parameter should therefore be preferred for representing
the EFG tensor strength rather than Cg in glasses and during MD trajectories. As
shown in Fig. 1, a broadening effect with increasing MD temperature is clearly seen
in all data (resulting from a higher geometrical diversity). The aiMD data shows
narrower distributions with more pronounced effects of correlation between the
NMR parameters for oxygen-17 (note the opposite sign of the linear correlation
between NBO and BO). As the MD and aiMD distributions do not overlap, it is
therefore expected that MD data cannot predict the aiMD data well. This also points
out that, even if less accurate, classical MD produces more disordered structures,
and thus is more suitable for building a database with high transferability (a
specialized database can be of course generated depending on the aim of the ML
prediction). All datasets of the NMR database are given in Table S3 in the ESL

NS43,

io,, (pPm) 1600

iso

*Na B, (MHz)

29g; BNa

Fig.1 2°Si, O and 2*Na NMR parameter distributions of datasets from the database. MD-
xxx (xxx = 300 K, 1000 K, 1500 K and 2000 K) are classical MD models, and NS22.5 and
NS43.1are MLP models extracted from aiMD data at 300 K. For O and 2*Na, p(6iso,Pq) was
calculated using KDE egn (6).
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Fig. 2 Convergence of gisc MAE with respect to the Nystrém size N; and the number of
radial functions (Nrag = Nmax) in the SOAP descriptors for the MD-300 K training set (other
SOAP parameters are given in Table 1).

Learning the isotropic magnetic shielding

For the prediction of ;s (or equivalently d;s,), we performed a systematic grid
search on the SOAP hyper-parameters as follows: gsosp in [0.2, 1] A (step 0.2 A);
Feat = 3, 4, 5 and 6 A; Nyay from 2 to 12; L. was fixed to 4. Details on the
computation and optimization of the SOAP descriptors for the MD-300 K and MD-
1000 K datasets are given in Sections S4 and S5, respectively, of the ESI.T For each
set of (soapsTcutsNmax) Values, the Nystrom size (denoted N:) was incremented
until the MAE had converged (denoted N£™). N; strongly depends on the variety of
environments present in the training set and N£P* can be therefore considered as
a measure of the diversity of the database. An optimal value of ggoap Of 0.4 A was
obtained for all studied nuclei (**Si, 7O and *Na). Note that no attempt was
made to set a different value for each atom. Representative MAE convergence
curves are shown in Fig. 2 using MD-300 K as the training set. We observe that

Table 1 Parameters of SOAP descriptors ch;, (egn (1)), and g5, mean absolute error
(MAE) and root mean square error (RMSE) (with standard deviation values in parentheses)

NgP*
Atom  0soap (A) 7ewe (A) Lpmax Nmax (MD-300 K + 1000 K) MAE (ppm) RMSE (ppm)
Si 0.4 5 4 4 2000 0.93 (0.02)  1.25 (0.03)
Na 04 5 4 6 1000 1.39 (0.02)  1.79 (0.03)
o 0.4 6 4 5 4000 2.25 (0.02)  3.15 (0.07)
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Fig. 3 Convergence of the gisc MAE with respect to the Nystrém size N; for MD-300 K +
1000 K training sets (SOAP parameters are given in Table 1).

increasing the number of radial functions (to better capture the diversity of the
environment) effectively requires an increase in Ng”'. The final optimal values that
were determined from the dataset MD-300 K + MD-1000 K (the sets used to built
the final LSSVR predictors) are given in Table 1 and convergence curves (MAE and
RMSE) are shown in Fig. 3. Note that a higher value of N2** is necessary with this
composite set versus the individual set (for example, NgP* = 1200 for 70 in MD-
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Fig. 4 Distribution of isotropic magnetic shielding a5, values from MD-300 K + 1000 K
datasets, with inducing points selected by ICD and the LSSVR predictions. Distributions are
normalized to the same area. Black boxes highlight the weak intensity regions that are
well-captured by ICD.
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300 K and MD-1000 K, see Section S5 of the ESIT) showing the complementarity of
the two datasets.

Similarly to Fig. 1, the selection of the inducing points § by ICD can be
effectively visualized by examination of the NMR parameter distribution, as
shown in Fig. 4. We first note the excellent prediction by LSSVR. Interestingly, ICD
produces a distribution that differs from the original datasets by enhancing, for
example, regions in the tails. Taking as an example the >°Si data, clearly the Q¥
and Q® regions are significantly enhanced (which thus suggests a higher local
structural diversity) versus the (more regular) Q" region. Note that the weak
region Q) is well-retained by ICD. These results also confirm that the SOAP
descriptors combined with a kernel-ICD approach are providing an efficient
procedure for extracting the representative set of environments in a database.
Attempts to force the selection of inducing points uniformly distributed on o5,
did not improve the LSSVR predictions.

Transferability tests between the different training sets were performed and
are reported in Section S5 of the ESL.T As expected, high-temperature sets give
better accuracy when tested on a lower temperature, compared to the opposite
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case. Transferability to larger systems (i.e., from 300 to 600 atoms) was also
excellent and is illustrated in Fig. 5.

Learning the EFG tensor

It would tempting to use LSSVR to predict the scalar quadrupolar parameters (Cq,
n). However, both quantities depend on the ordering of the eigenvalues of the EFG
tensor and are therefore discontinuous. Effectively, they are very poorly predicted
by LSSVR, as shown in Section S6 of the ESL.f Other ML algorithms (not inves-
tigated here) that are robust to discontinuities (such as neural networks or
random forests) could be better adapted, but their investigation is out of the scope
of the present study. Better LSSVR results are obtained for Pq (which is invariant
to rotation), but still show some discrepancies. For these reasons, the option of
predicting the full EFG tensor appeared to be the best one.

Optimizations of the A-SOAP descriptors for >*Na and 'O EFG tensors are
summarized in Fig. 6. Despite contributions from long-range coulombic
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Fig. 7 LRR A-SOAP versus DFT-GIPAW EFG tensor components of the 600-atom MD
datasets (300 K + 1000 K).
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300 K + 1000 K datasets.

interactions, the full EFG tensor is very well captured by the short-range SOAP
descriptors (with 7y = 5 A). As was observed for LSSVR, increasing r.,; requires
a larger number of radial functions. For the sake of simplicity and efficiency, the
values in Table 1 were chosen (so that the SOAP descriptors need only to be
computed once for predicting the three NMR parameters). Such good perfor-
mances of A-SOAP can be understood as resulting from the correlation that exists
between the short- and long-range contributions to the EFG, analogous to the
Sternheimer approximation.” Such correlations were observed in water for
quadrupolar nuclei.” With the MD-300 K + 1000 K datasets, the LRR predictions’
MAEs (RMSEs) for the 70 and >*Na EFG components are 1.6 VA~ > (2.0 VA~ ") and
0.8 VA2 (1.0 VA™") respectively, representing ~1% of their respective total spans.
Using the 600-atom MD models (300 K + 1000 K), the same numbers were ob-
tained, showing therefore an excellent transferability, as shown in Fig. 7. >*Na and
0 quadrupolar parameter distributions are very well predicted by LRR A-SOAP,
as shown in Fig. 8.

KDE simulation of the MAS and MQMAS NMR spectra

The original motivation for the ML prediction of NMR parameters was to enable
the modelling of NMR spectra from structural models of large size (here, 14 440
atoms) as with modern HPC resources DFT-GIPAW typically addresses 800 atoms
with VASP. All subsequent simulations were performed on a standard single
processor (Intel CORE i7). Calculations for the large models took around 2
seconds; the most time-consuming part was the calculation of the SOAP
descriptors (see Fig. S5 in the ESIT). **Na and ”O MAS NMR spectra (for the latter
we show the isotropic projections of the MQMAS spectrum) are shown in Fig. 9
(MQMAS spectra are given in Sections S8 and S9 of the ESIY).

Focusing first on the >*Na NMR data and classical MD models, we observe
a discrepancy between the large- and small-model spectra. This is indicative of the
effect of the PBC on the structure of the small models, but without impacting the
transferability of the ML predictors (Fig. 5 and 7). The comparison with experi-
mental data shows a good agreement, except for the width of the spectra, which is
due to an overestimated mean value of the quadrupolar coupling constant, as
already observed.”® As will be shown below, accounting for short-time-scale
averaging by vibrations significantly reduces the discrepancies. Considering the
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Fig. 9 ML simulations of 2°Na (left) and O (right) MAS and isotropic (isotropic projection
of the MQMAS spectra) NMR spectra of the SiO,—Na,O glasses from 10% to 50% mol.
Na,O (denoted *°Na to *°Na). For the purpose of comparison, experimental data from ref.
27 are shown (22.5% and 43.1% mol. Na,O, denoted NS22.5 and NS43.1, respectively). For
0, ML simulations from aiMD structural models (aiMD-300 K) are also shown.

70 NMR data, we note a strong deviation of the classical MD NMR model spectra
from the experimental data. This is due to the approximate Si-O and Si-O-Si
bond angle values predicted in classical MD, in contrast to aiMD (DFT) data,
which yields an excellent agreement in the position of the NBO and BO peaks
(intensities differ because the impact of the MQMAS pulse sequence was not
taken into account for the sake of simplicity). Those simulated spectra can be
useful for many purposes. One of them is the assessment of analytical models of
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Fig. 10 **Na and YO EFG correlation functions Gera(t) = (V(t + to)Vlto))e,. In the left and
right panels, plateauing values used as EFG scaling factors for finite-temperature simu-
lations are indicated.
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NMR parameter distributions, such as the Gaussian Isotropic Model**** (GIM) for
fitting the **Na NMR data, for example.

To quantify the impact of atomic vibrations on the NMR parameters, we
investigated the auto-correlation functions of the two NMR interactions of
interest in this work, Gs(t) = (d(t + )d(to)), and Ggrg(t) = (V(t + to)V(to))s,
calculated on MD trajectories at 300 K. (), denotes the ensemble average that
includes here the averaging over all initial times ¢, and over all atoms. At short-
time scales, G4(7) is a constant function (~1) at 300 K, thus meaning a very
minimal impact of vibrations. In contrast, Ggpg(t) is decaying on the typical time-
scale of vibrations (10-100 fs), with a stronger effect for **Na in contrast to 70, as
illustrated in Fig. 10. After that first decay, the EFG time-correlation function
reaches a plateau that can be considered, in a first approximation, as the time-
averaged EFG that really contributes to the NMR spectra (whereas the initial
decaying part controls the relaxation times,*® but this will be not discussed here).
Using the plateauing value as a scaling factor of the frozen EFG tensors (we
assume an isotropic scaling), vibrations can then be simply incorporated into the
NMR spectra, as shown for *’Na (left panel in Fig. 10, dashed lines). This clearly
improves the simulations (see especially *°Na). We note that for *°Na, the
experimental width is still overestimated. Indeed, a longer time-scale would be
needed to account for the diffusion of Na atoms at 300 K (Na-rich glasses show
a higher Na mobility*®). The time-scale of the MD simulations is still well below
the typical Larmor period for **Na (here ~8 ns at 11.7 T). Interestingly, aiMD
simulations gave very close curves for the EFG correlation functions, as shown in
Section S10 of the ESI.f This means that classical MD potentials are able to
capture the vibrational averaging with a good accuracy.

Conclusion

We have described in this paper new computational methodologies for modelling
NMR spectra of oxide glasses, combining prediction of NMR properties by ML
kernel methods with efficient simulations using KDE of the NMR parameter
distribution. We have shown that the SOAP descriptors are very efficient and
symmetry-adapted for representing the local environment in the prediction of
NMR interactions, be it a scalar (isotropic magnetic shielding value) or a matrix
(the EFG second-rank symmetric tensor). Our strategy to build an NMR database
that embraces a sufficiently large variety of environments (in terms of both
geometrical and chemical disorder) was based on MD simulations at various
temperatures and for various glass compositions. It was shown that small models
were suitable to build ML predictors that are transferable to much larger systems
(here, more than 10000 atoms). Most representative environments could be
extracted with incomplete Cholesky decomposition of the kernel Gram matrix of
the dataset, providing an efficient tool for analysis of the database, as confirmed
by the examination of the NMR parameter distributions. Appealing perspectives
for an easy incorporation of finite-temperature effects (vibrations) in NMR
simulations were presented. Because of its fundamental importance in glass
science, mI-NMR will clearly enable NMR investigations of melts (with high-
temperature NMR*) to be now more closely connected to MD simulations by
computation of the underlying correlation functions of NMR observations. The
next step is the incorporation of NMR spectra as direct constraints in the
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reconstruction of the 3D glass structure of glasses, in the Reverse Monte-Carlo
simulations widely used in glass science.'***
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