#® ROYAL SOCIETY
PPN OF CHEMISTRY

Digital
Discovery

View Article Online

View Journal | View Issue

Navigating the Maize: cyclic and conditional

i '.) Check for updates ‘
computational graphs for molecular simulation

Cite this: Digital Discovery, 2024, 3,
2551
Thomas Lohr, & *2 Michele Assante,? Michael Dodds,? Lili Cao,? Mikhail Kabeshov,?

Jon-Paul Janet, 22 Marco Klahn? and Ola Engkvist 2 2¢

Many computational chemistry and molecular simulation workflows can be expressed as graphs. This
abstraction is useful to modularize and potentially reuse existing components, as well as provide
parallelization and ease reproducibility. Existing tools represent the computation as a directed acyclic
graph (DAQG), thus allowing efficient execution by parallelization of concurrent branches. These systems
can, however, generally not express cyclic and conditional workflows. We therefore developed Maize,
a workflow manager for cyclic and conditional graphs based on the principles of flow-based
programming. By running each node of the graph concurrently in separate processes and allowing
communication at any time through dedicated inter-node channels, arbitrary graph structures can be

Received 5th September 2024 .)) .)
Accepted 26th October 2024 executed. We demonstrate the effectiveness of the tool on a dynamic active learning task in
computational drug design, involving the use of a small molecule generative model and an associated

DOI: 10.1035/d4dd00288a scoring system, and on a reactivity prediction pipeline using quantum-chemistry and semiempirical

Open Access Article. Published on 28 Oktober 2024. Downloaded on 21.01.2026 22:02:14.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

rsc.li/digitaldiscovery approaches.

Introduction

Clearly defined workflows are essential for reproducibility in
computational sciences." They make it easier to reason about
processes, and allow modularization, fast experimentation, and
easy sharing. A workflow can be modelled as a graph, in which
each node represents a step of computation, and each edge
represents data being passed between steps. We can addition-
ally consider parameters for each node that determine how the
computation is performed. As an example, one can view a data
processing pipeline as a simple linear workflow, in which data is
first read, then processed with a certain set of parameters, and
then saved to a new location. Workflows like this are described
as directed acyclic graphs (DAGs, Fig. 1), because they are
unidirectional and do not involve cyclic data flows. This means
that data flows in one direction only, and each node is only
executed a single time. DAGs are a popular model for workflows
because they can represent many typical processing tasks, are
easy to parallelize using topological sorting,” and simple
enough to reason about. Many tools exist to execute DAGSs,

“Molecular AI, Discovery Sciences, R&D, AstraZeneca, 431 50 Gothenburg, Sweden.
E-mail: thomas.lohr@astrazeneca.com

*Innovation Centre in Digital Molecular Technologies, Department of Chemistry,
University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK

‘Compound Synthesis & Management, The Discovery Centre, Cambridge Biomedical
Campus, 1 Francis Crick Avenue, AstraZeneca, CB2 0AA Cambridge, UK

“University of St Andrews, KY16 9A] St Andrews, UK
‘Department of Computer Science and Engineering, Chalmers University of
Technology, Gothenburg, Sweden

© 2024 The Author(s). Published by the Royal Society of Chemistry

popular ones are Apache Airflow,* Luigi,* and Dagster.> Knime®
is another popular tool, featuring a simplified flow-based
architecture optimized for tabular data. Another recent
example designed in particular for linear computational
chemistry workflows is our tool Icolos.” Other recently devel-
oped tools focused on dynamic workflow creation are Jobflow,*
allowing cases in which the number of computations is not
known at workflow-compile time, as well as PerQueue,® allowing
the use of nodes that can run in a cyclic manner. The workflow
structure used by these tools is still fundamentally a DAG,
although they are significantly more flexible than the

Directed Acyclic Graph (DAG) Directed Cyclic Graph (DCG)

D
~

Fig.1 Directed Acyclic Graphs (DAGs, left) and Directed Cyclic Graphs
(DCGs, right). The latter workflow representation allows conditional
and iterative execution, common in computational chemistry
workflows.

Digital Discovery, 2024, 3, 2551-2559 | 2551

http://crossmark.crossref.org/dialog/?doi=10.1039/d4dd00288a&domain=pdf&date_stamp=2024-11-30
http://orcid.org/0000-0003-2969-810X
http://orcid.org/0000-0001-7825-4797
http://orcid.org/0000-0003-4970-6461
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD003012

Open Access Article. Published on 28 Oktober 2024. Downloaded on 21.01.2026 22:02:14.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

aforementioned workflow engines when it comes to conditional
and cyclic computation.

However, many workflows do not conform to this DAG
paradigm, but instead must be modelled as directed (cyclic)
graphs (DCGs, Fig. 1). This is the case whenever data is passed
through the same node repeatedly (without knowing the
number of cycles in advance) or passed to different nodes
depending on the nature of the data. Because of this, the
convenient topological sorting method can no longer be used,
so the graph must be modelled differently. One such approach
is termed flow-based programming.'®"* Here, each node in the
graph is represented as a separate system process, with data
being moved through uni-directional channels. Each node waits
for data to be received and can perform computation as soon as
all required data has arrived. Thus, every node is essentially
independent from and agnostic to the surrounding graph
structure. This model of computation has multiple advantages:
first, due to each node operating in isolation, unexpected
interactions and bugs resulting from different graph structures
can be minimized. Second, parallelism is intrinsic to the graph,
as each node operates as an independent process and can
perform computation as soon as data is available. Third, the use
of specific channels as edges makes it easier to reason about
data inputs and outputs and provides modularity of compo-
nents. Possible disadvantages are the potential overhead of
many system processes running concurrently, the potentially
unclear status of the graph execution (as halting of the
computation cannot be readily predicted), and the sometimes-
high complexity of the created graphs due to additional data
manipulation. Interestingly, this programming model shows
strong similarities to digital hardware design, specifically to the
concurrent paradigms of hardware description languages such
as Verilog and VHDL.

Here, we developed Maize, a workflow manager based on the
principles of flow-based programming. The flow-based and
non-linear nature sets it apart from our predecessor workflow
engine Icolos.” Maize is written in and interfaces through
Python, exposing a simple API to allow users to easily define
workflows and add custom nodes. Data handling is accom-
plished with channels enforcing type safety, thus making the
input and output requirements of individual nodes clearer and
minimizing the potential for errors during execution. In addi-
tion, Maize can handle the sending of both small chunks of data
in memory, as well as large files on disk while avoiding race
conditions. System and workflow configuration are separated,
allowing workflows to be transferable between systems. A
feature unique to Maize is that multiple nodes can be grouped
together into subgraphs, allowing easier reasoning and node
reuse, as well as the construction of highly hierarchical work-
flows that allow multiple levels of granularity in the workflow
specification. An important aspect of Maize, compared to a tool
such as Knime,® is the use of Python throughout, including the
ability to fully control the workflow execution and resource
allocation. This makes it easier to quickly integrate custom
software for computational scientists and allows seamless large-
scale parallelism. To make the integration into production
pipelines as straightforward as possible, workflows can also be

2552 | Digital Discovery, 2024, 3, 2551-2559

View Article Online

Paper

specified in JSON or other serialization formats for automated
deployments. A final focus has been the tight integration with
high-performance computing (HPC) environments, e.g., batch
submission systems.

We will first discuss the underlying principles of Maize in
more detail, discuss some of the useful emergent properties
with regards to processing of large amounts of data and paral-
lelism, and finally demonstrate its use on reinforcement
learning and dynamic active learning tasks for early-stage small
molecule drug discovery and a reactivity prediction task using
quantum-chemical and semiempirical methods.

Design
Workflow definition

Maize is written in Python using an object-oriented approach.
The computational graph is internally represented in a hierar-
chical manner as a tree (Fig. 2A), with the root as the full
workflow graph, tree-nodes as (optional) subgraphs, and leaf-
nodes as individual computation steps. Each leaf-node
(henceforth termed ‘node’ for brevity) can declare one or
more input or output ports representing data receivers and
senders respectively, as well as parameters that are static for the
duration of graph execution (Fig. 2B). The workflow is con-
structed by first initializing a Workflow object, followed by
adding individual nodes or predefined subgraphs (Fig. 2C) to
the workflow, and finally connecting specific inputs and
outputs (Fig. 2D). This last step creates a Channel object that can
pass both files and serialized in-memory data between nodes.
The ‘root” workflow object thus contains a list of child compo-
nents, made up of nodes that perform individual computations,
and possibly also subgraphs, themselves made up of nodes or
subgraphs and so on, with arbitrarily deep nesting possible.
Finally, the workflow can be transformed into an executable
script, with all node parameters exposed on the command line.
Alternatively, the workflow can also be specified using a suitable
serialization or configuration system such as JSON or YAML.

Execution

Nodes are declared by inheriting from a base node class,
declaring ports and parameters, and defining a run() method
(Fig. 3A). When running the workflow (Fig. 3B), each node's
run() method is executed in a separate process (using Python's
multiprocessing library), potentially with a different Python
interpreter, thus allowing the use of otherwise conflicting
environments in a single workflow. Each node will perform any
computations it can based on the data available to it through
inputs and/or parameters and can send data through its outputs
at any time. The run() method can either run a single time,
causing the node to complete upon returning from the method,
or run in a looped mode, ie., re-running the method upon
returning. This latter mechanism allows the creation of cyclic
workflows. Conditional execution is possible by sending data to
one of multiple outputs, as a result only nodes that receive data
will perform computation.

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a

Open Access Article. Published on 28 Oktober 2024. Downloaded on 21.01.2026 22:02:14.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

a

Workflow
Parent - Child
Subgraph
Node 1 Node 2 Node 3
b
Parameter[T]
Channel[T] Input[T] Channel[T]

Fig. 2

View Article Online

Digital Discovery

c
Subgraph
MultiParameter[T] v\—__ A
\ |
| \
Input[T] H
1
| \ ‘
\ |
K \ |
d
r Workflow
MultiParameter[T] | mmmmmm—mm
| s
s A N
MultiParameter(T] |¢ s

\
MultiParameter[T] k. \, (B (C Seals
\L I 1
k\\;,) b A

')

(a) Internal workflow representation as a tree (connections, i.e. channel objects are stored separately), (b) node, (c) subgraph, and (d)

workflow architecture. Nodes expose parameters (static values set prior to execution) and input and/or output ports (allowing data to be passed
dynamically). These ports are connected to channels, allowing different nodes to be connected. Subgraphs can group multiple nodes together
and themselves act like individual nodes with their own inputs and outputs. Workflows include many nodes and optionally subgraphs and can
group parameters together and expose them externally, thus abstracting the underlying structure.

During execution, all nodes communicate their status, log
messages, and possible errors to the main parent process
through separate message queues. The workflow is stopped if
one of the nodes raises an unrecoverable exception, all nodes
are completed, or a shutdown signal is set by one of the nodes or
an external process. Maize uses several heuristics to determine
when to shut down a node, as some nodes may be running in
a loop without necessarily performing useful computation.
When a node has finished computation and exits, it will close its
ports and by extension channels. This closing is communicated
to a connected node, which can use its own set of rules to

from maize.core.node import Node
from maize.core.interface import Input, Output
from maize.utilities.chem import IsomerCollection

class Smiles2Molecules(Node)
"""Converts SMILES codes into a set of molecules."""

inp: Input[list[str]] = Input()
“UMSMILES input”""

out: Output[list[IsomerCollection]] = Output()
"""Molecule output"""

n_variants: Parameter[int] = Parameter(default=1)
"""Maximum number of stereoisomers to generate"""

def run(self) -> None:
smiles = self.inp.receive()
mols = [IsomerCollection.from_smiles(
smi, max_isomers=self.n_variants.value)
for smi in smiles]
self.out.send(mols)

determine if it should also shutdown. Thus, node completion
can cascade through the workflow graph.

Patterns

In the flow-based programming paradigm, some useful patterns
can emerge (Fig. 4):

e Batch processing: if a very large number of datapoints
needs to be processed in a sequential workflow, it can be
especially efficient to process it in batches. In Maize, this
process is parallel by default, as one batch can be processed on
the second node while the next batch is processed on the

b

from pathlib import Path

from maize.core.workflow import Workflow
from maize.steps.mai.docking import Vina
from maize.steps.io import LogResult

flow = Workflow(name="docking")
embed = flow.add(Smiles2Molecules)
dock = flow.add(Vina)

result = flow.add(LogResult)

flow.connect_all((embed.out, dock.inp), (dock.out, result.inp))

embed.inp.set(["Nclnc(F)nc(c12)n(CCCC)c(n2)Cc3cc(0C)ccc30C"])
embed.n_variants.set(4)
dock.receptor.set(Path("./receptor.pdbqt"))
dock.search_center.set((3.3, 11.5, 24.8))

flow.execute()

Fig. 3 Maize workflow code. Definition of a custom node embedding a small molecule from a SMILES code (a) and a workflow definition using

this node in a linear workflow for docking (b).

© 2024 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2024, 3, 2551-2559 | 2553

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a

Open Access Article. Published on 28 Oktober 2024. Downloaded on 21.01.2026 22:02:14.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Digital Discovery Paper
Batch processing Parallelization Iteration
M) —)
Input Input Input
—a -/ -/
[A, B, C, D] [A, B, C, D]
—— — Looped ——L—
Batch Merge
Looped - J - J
[A, B] A
Conlpute Compute Compute Compute A
~—/ —
[A, B'] N
,_"_\ 4 L
Cor%pute Merge Done?
D E— -/ -/
| [A”, B”]] [A, B, C’, D] |
) M) M)
Combine Output Output
—/ — —

Fig. 4 Useful patterns in flow-based programming. Shaded areas indicate domains of the workflow that are run in a loop, and example data
represents the first iteration. Batch processing (left) allows breaking up a large amount of data into chunks, and processing them in parallel,
despite the sequential nature of the workflow. Parallelization (middle) allows splitting the data over multiple identical compute nodes. Iteration

(right) allows the common pattern of checking a computation for com

previous node. An example of this is the process of docking
small molecules to a target protein in early-stage drug discovery.
The small molecule first needs to be prepared, a process that is
typically performed on the CPU, and is then docked, an opera-
tion that can often be accomplished on the GPU. Thus, a batch
of molecules can be prepared on the CPU, while the previous
batch is docking on the GPU.

o Parallelization/load-balancing: another commonly seen
pattern is parallelization. In Maize, this can be accomplished by
creating multiple identical workflow branches and distributing
the incoming datapoints over all branches. This workflow
pattern can be automatically generated and implemented as
a subgraph, allowing any kind of computation to be parallelized
naturally without having to worry about locks or race
conditions.

e Iteration: many workflows in computational chemistry
require performing costly computations until some final
condition is fulfilled. This is possible in Maize by creating
a node that checks if the computation has completed, sending it
either to some final node or back to the computation node for
another iteration.

Additional features

Maize exposes several convenience functions to make the defi-
nition and running of complex workflows easier and more
flexible. These include the ability to submit jobs to a queuing
system instead of executing locally, re-executing failed nodes
multiple times, loading modules (using the LMOD system) from
the Python interpreter, automatically connecting nodes based
on their port types, renaming and combination of multiple

2554 | Digital Discovery, 2024, 3, 2551-2559

pletion and potential re-calculation.

parameters into one, and shortcuts to create for instance the
parallelization pattern mentioned above. Because each node
runs in its own separate process (using Python's multipro-
cessing module), each node can run a different Python envi-
ronment, as long as it contains a Maize installation. This is
because both the interpreter path and the sys.path global vari-
able (indicating to Python where it can find installed modules)
can be changed directly before starting the new process. This
allows the use of potentially conflicting packages within the
same workflow.

Implemented software

We have implemented interfaces to various software packages
common in computational chemistry as Maize nodes. So far,
these include quantum chemistry software Gaussian," semi-
empirical packages xTB' and CREST,"*'* small molecule
docking tools such as, AutoDock-GPU,'® AutoDock Vina,"”
GNINA,"™ and GLIDE,"” GROMACS**?** for molecular dynamics
(MD) trajectory analysis, Gypsum-DL** for small molecule
embedding, and our in-house developed tools REINVENT?> for
Al-based small molecule de novo drug design and QpTuna,
a tool that automatically generates machine learning models for
compound property prediction, as well as various input/
output functionality. The domain-agnostic part of Maize also
features nodes to enable easier data movement, such as
copying, merging, and splitting data. The scope of Maize
interfaces is currently expanding rapidly to encompass various
tools related to MD simulations including free energy pertur-
bation methods, quantum chemical software and other tools.

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a

Open Access Article. Published on 28 Oktober 2024. Downloaded on 21.01.2026 22:02:14.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

Applications
De novo design

Motivation. In this first example we apply Maize on
a complex drug discovery workflow, small molecule generation
with reinforcement learning.”**® The hit-to-lead drug design
process typically begins with small molecule hits for a particular
target protein. The atomistic structure of these protein-ligand
complexes is often available and details the exact position and
orientation of the ligand in the protein binding pocket. These
initial hit compounds usually exhibit suboptimal properties -
they are often not strong and specific binders, and they may
have problematic pharmacokinetic properties. It is therefore
necessary to find small molecule binders with improved prop-
erties using computational approaches, while making use of the
information gained from our initial hits. Potential candidates
can either be picked from existing compound libraries or
created de novo using small molecule generative models such as
REINVENT.””* The latter method allows guided generation
using reinforcement learning,* i.e., we can feed back a score for
each generated molecule indicating if it should be considered
favorable or not. As a result, over many iterations, REINVENT
will learn to create more suitable molecules. The scoring func-
tion used can take many different forms, but here we will be
focusing on the docking score, in which a small molecule is fit
into a binding pocket by various geometric transformations and
the binding energy evaluated using a physics-based approach.*

Implementation. We implemented the workflow described
above in Maize, using nodes for REINVENT,*” AutoDock GPU,'*
Gypsum-DL,** and various data-handling (Fig. 5). The param-
eter system in Maize allows different configurations of the
involved software, as well as changes in how the data is piped

)
Docking
~—

SMILES

Generator

s

Scores Molecules with scores

A 4

—)
RMSD

—
Good pose

Bad pose

Dock (high
precision)

Fig. 5 Small-molecule generation reinforcement learning workflow.
Molecules are generated and evaluated by docking them to a target
protein structure. Molecules with a large deviation from the reference
pose are docked again with higher precision and more conformational
sampling. The resulting scores are fed back to the generative model
and the process repeated.

© 2024 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

through the system. In practice the workflow exhibits some
additional complexity: the generated small molecules first need
to be embedded, i.e., the SMILES?*? codes need to be converted
to an actual 3D representation, which also involves selecting an
adequate protonation state and stereo-isomer for the corre-
sponding compound (using Gypsum-DL??)). To demonstrate
Maize's control flow abilities, we added an additional docking
node with higher precision that is triggered whenever the root-
mean-square deviation of the docked small molecule to the
original reference compound is above a certain threshold.

A flow-based implementation of such a workflow has
multiple advantages: first, nodes can be treated completely
independently, and are isolated from one another, reducing
possible side-effects. Second, the docking node can be re-used
in two locations, with the only difference being a slightly
different set of parameters. Third, because every node runs in
its own process, environments can be kept separate, and code
can run in parallel.

Active learning

Motivation. As the number of iterations required to find
more favorable small molecules can be quite high, and some
scoring methods are often computationally expensive, we would
like to replace some of these calculations with a simple machine
learning model that can learn an approximation of a physics-
based score. This way, instead of always calculating a score
using the expensive scoring function, we can in some cases fall
back on our fast-to-evaluate approximate model.

This is the main idea behind dynamic active learning:>>%*¢
we first generate a set of small molecules to score against our
target protein. In the first iteration, these molecules are evalu-
ated using our physics-based oracle function such as docking,
and the scores fed back to our generator, as well as used to train
a simple surrogate model emulating our oracle function for
future iterations. In subsequent iterations we start by predicting
a score for each molecule using this surrogate model. Next, we
pick a subset of these compounds using an acquisition function
to send to our oracle and use the calculated scores to re-train
our surrogate model. Finally, we send all scores back to the
small molecule generator and repeat the process. This process
has large potential savings in computational time, as the
accurate but expensive physics-based calculations are reduced.
Additionally, the resulting surrogate model can feature high
accuracy despite being a simple model such as a random forest
due to the very narrow domain. Here, model training will be
limited to a single target protein and is thus non-transferable to
other targets. Commonly used acquisition functions use various
strategies: we could pick a random subset of molecules, pick the
ones predicted to have the highest scores (greedy sampling), use
a combination of both (epsilon-greedy), or pick ones with a high
uncertainty in their score prediction (e.g., using the upper-
confidence bound).

Implementation. Building on the reinforcement learning
workflow described above, we implemented an active learning
system. We used the same nodes as described above, with the
addition of Qptuna®*~*® to provide the surrogate model (Fig. 6).

Digital Discovery, 2024, 3, 2551-2559 | 2555

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a

Open Access Article. Published on 28 Oktober 2024. Downloaded on 21.01.2026 22:02:14.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

SEEE—

Surrogate
Predict

N/

SMILES

Trained model

Generator

Molecules with scores

Scores

A

B —
Acquisition
Function
) S—

Oracle
(Docking)

Surrogate
Train

(I

Fig. 6 Simplified active learning workflow. The generator (in this case
REINVENT) proposes several molecules, which are fed to a surrogate
machine learning model predicting how well these molecules may
bind the target protein. Based on these scores, the acquisition function
sends a small fraction of the molecules to the computationally
expensive oracle (in this case docking). The computed scores are
merged with the predicted ones and sent back to the generator to
update it. A copy of the scored molecules is sent to the surrogate
model for retraining.

The surrogate model is split into separate nodes for training
and prediction to simplify the graph dependencies. Finally, the
first n iterations will be pooling runs to build up the first
training dataset for the surrogate model, i.e. during this initial
phase all compounds are scored by the oracle only.

As a result of this design, parallelization emerges naturally
from the graph definition, for instance, the surrogate model can
be re-trained while the next batch of molecules is generated,
despite this independence not being explicitly accounted for.
The nodes for the tools mentioned above are run in separate
Python environments, thus avoiding conflicting dependencies.

To evaluate the efficiency gains from the above-mentioned
parallelism, we ran the active learning workflow in a sequen-
tial and fully parallel manner and compared execution times.
We limited the run to 10 iterations and used a batch size of 512
generated compounds at each iteration, with 128 acquired
molecules to be evaluated by the oracle. The parallel workflow
was 13% faster than the naive sequential workflow due to the
more efficient resource utilization. For a more detailed
demonstration of the capabilities of dynamic active learning,
see ref. 36.

Automated first-principles calculations

Motivation. First-principles calculations, such as Quantum-
Mechanics and Density Functional Theory, can offer great
insight into chemical systems. Molecular properties obtained
with such calculations can predict reactivity of chemical
compounds and be used as advanced features in data-driven

2556 | Digital Discovery, 2024, 3, 2551-2559

View Article Online

Paper

models to increase performances.***' A promising application
is the integration of the above-mentioned features in reaction
prediction and optimization routines, especially if experimental
data is scarce. However, these types of methods often require
significant computational resources to be performed as well as
specific expertise to be initialized and analyzed correctly. In this
context, automation of first-principles calculations could be
a remedy to this limitation by providing a faster, more reliable,
and more systematic way to perform such calculations. Indeed,
to achieve accurate results, a correct description of the system is
required; choice of functional, basis set, molecular flexibility
and solvent environment are some of the aspects to take in
account when defining the system of interest.** At the same
time, it is crucial to find the right balance between the level of
accuracy to be achieved and the computational resources
available. In practice, this results in the selection of different
computational methods for different tasks, often involving the
utilization of multiple software. In this sense, a workflow
manager able to orchestrate the requirements of several
computational chemistry software is crucial to achieve auto-
mation of first-principles calculations and ultimately the inte-
gration of such techniques in data-driven methods.

Implementation. Information about the reaction and the
chemical structure of its components is received in tabular
format and loaded into a control node (Fig. 7). Here, depending
on the type of reaction, 3D-geometries for relevant chemical
structures in the reaction are generated either through the rdkit
package** or with custom in-house functions. These input
geometries are sent to the first sub-workflow. Initially a molec-
ular mechanics pre-optimisation step removes potential arti-
facts from the geometries, these are then used as inputs for the
conformer generation step performed with semiempirical
based metadynamics calculations.

The generated conformers are later inspected by the control
node for any inconsistencies or artifacts and later submitted to
the second sub-workflow. Here all the conformers of each
component undergo geometry optimization at semiempirical

| Input Data
e/

SMILES

—

Control
Node

Geometry
Optimization
(sam)

Single point
(DFT)

Fig. 7 Reaction prediction workflow based on first-principles calcu-
lations. Control node initially generates molecular structures for
reactants, products, intermediates, and transition states. Pre-defined
structural templates are used to generate geometries for intermedi-
ates and templates.

Computed
Results

Optimized Geometries
Molecular Properties

Input Geometries

Pre-
optimization
(MM)
Conformer
Generation
(sQm)

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a

Open Access Article. Published on 28 Oktober 2024. Downloaded on 21.01.2026 22:02:14.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

level and single point calculation at DFT level. Once completed,
the calculations results are redirected back to the control node
which in turn handles potential errors in calculations.
Depending on the types of error, individual jobs can be either
removed from the workflow or re-submitted. Successful calcu-
lations are sent to a return node, which simply reports results in
a tabular format.

Discussion

We have presented Maize, a workflow manager capable of
executing cyclic and conditional workflows as commonly found
in computational chemistry and early-stage drug discovery. We
detailed the design and demonstrated its use on a complex
active learning workflow to identify possible new small mole-
cule drug candidates. We showed how parallelization emerges
naturally from the graph structure, enabling efficiency
improvements in possibly unexpected ways. We also detailed
useful patterns providing potentially significant speedups to
certain workflows.

While Maize was written with computational chemistry in
mind, its architecture and design were deliberately kept
domain-agnostic to enable its use in other fields. To enable ease
of contributing custom nodes, subgraphs, and workflows, the
core domain-agnostic part of Maize is a separate package, and
all domain-specific components and utilities are in a separate
contribution namespace package. This mechanism allows
straightforward extensions and simplifies code reuse.

However, Maize is not necessarily suitable for all workflows:
while communication between nodes is fast, it is not intended
for low-latency, high-frequency, or inter-processor message
passing - here, a system such as the Message Passing Interface
(MPI) would be more suitable. Related to the previous point is
that Maize is not intended to be run on multiple compute nodes
the way that MPI applications are, instead Maize can submit
jobs to existing job queuing systems such as SLURM and wait
for jobs to complete. This means that compute-intensive
workflows that potentially require multiple compute nodes
will run on a single compute node but submit jobs to other
compute nodes and collect the results. Additionally, while we
have not observed slowdowns, the use of many Python
processes — one for each workflow node - in complex workflows
could result in undesirable overheads. Python essentially
features two parallelization primitives: threads and processes.
Threads have low overhead and allow the use of shared memory
but are currently limited by Python's global interpreter lock
(GIL), which only allows a single thread to make use of the
interpreter at a time. Maize by contrast is implemented using
Python's processes, which have a higher overhead and no
shared memory, but allow distribution over multiple cores.
Future versions of Python will likely remove the GIL, thus in
principle allowing the use of threads for Maize, reducing the
overhead for very large workflows.

To conclude, we envision Maize as a useful and versatile tool
to handle the complexity and many diverse workflows in
molecular simulation, computational chemistry, and drug
design. It is distributed under the permissive Apache 2.0 license

© 2024 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

and available at https://github.com/MolecularAl/maize and
https://github.com/MolecularAl/maize-contrib. ~ The Ilatter
includes several prepared workflows for
computational chemistry tasks.

common

Data availability

The code for Maize can be found at https://github.com/
MolecularAl/maize and https://github.com/MolecularAl/maize-
contrib. The versions of the code employed for this study are
maize 0.8.3 and maize-contrib 0.5.5.

Author contributions

Conceptualization - TL, MaK, OE; Software — TL, MA, MD, LC,
MiK, JP], MaK; writing - original draft - TL, MA; writing - review
& editing - TL, MA, MD, LC, MiK, JPJ, MaK, OE.

Conflicts of interest

The authors declare no conflict of interest.

References

1 S. Cohen-Boulakia, K. Belhajjame, O. Collin, J. Chopard,
C. Froidevaux, A. Gaignard, K. Hinsen, P. Larmande,
Y. L. Bras, F. Lemoine, F. Mareuil, H. Ménager, C. Pradal
and C. Blanchet, Scientific Workflows for Computational
Reproducibility in the Life Sciences: Status, Challenges and
Opportunities, Future Gener. Comput. Syst., 2017, 75, 284~
298, DOI: 10.1016/j.future.2017.01.012.

2 A. B. Kahn, Topological Sorting of Large Networks, Commun.
ACM, 1962, 5(11), 558-562, DOIL: 10.1145/368996.369025.

3 Apache Airflow, 2023, https://github.com/apache/airflow,
accessed 2023-10-17.

4 Spotify/Luigi, 2023,
accessed 2023-07-31.

5 Dagster-Io/Dagster, 2023,
dagster, accessed 2023-07-31.

6 M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kotter,
T. Meinl, P. Ohl, C. Sieb, K. Thiel, B. Wiswedel, KNIME:
The Konstanz Information Miner, in Data Analysis, Machine
Learning and Applications, ed. C. Preisach, H. Burkhardt, L.
Schmidt-Thieme, R. Decker, Studies in Classification, Data
Analysis, and Knowledge Organization, Springer, Berlin
Heidelberg: Berlin, Heidelberg, 2008, pp 319-326, DOL:
10.1007/978-3-540-78246-9_38.

7 J. H. Moore, M. R. Bauer, J. Guo, A. Patronov, O. Engkvist and
C. Margreitter, Icolos: A Workflow Manager for Structure-
Based Post-Processing of de Novo Generated Small
Molecules, Bioinformatics, 2022, 38(21), 4951-4952, DOL:
10.1093/bioinformatics/btac614.

8 A. S. Rosen, M. Gallant, J. George, J. Riebesell,
H. Sahasrabuddhe, J.-X. Shen, M. Wen, M. L. Evans,
G. Petretto, D. Waroquiers, G.-M. Rignanese, K. A. Persson,
A. Jain and A. M. Ganose, Jobflow: Computational

https://github.com/spotify/luigi,

https://github.com/dagster-io/

Digital Discovery, 2024, 3, 2551-2559 | 2557

https://github.com/MolecularAI/maize
https://github.com/MolecularAI/maize-contrib
https://github.com/MolecularAI/maize
https://github.com/MolecularAI/maize
https://github.com/MolecularAI/maize-contrib
https://github.com/MolecularAI/maize-contrib
https://doi.org/10.1016/j.future.2017.01.012
https://doi.org/10.1145/368996.369025
https://github.com/apache/airflow
https://github.com/spotify/luigi
https://github.com/dagster-io/dagster
https://github.com/dagster-io/dagster
https://doi.org/10.1007/978-3-540-78246-9_38
https://doi.org/10.1093/bioinformatics/btac614
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a

Open Access Article. Published on 28 Oktober 2024. Downloaded on 21.01.2026 22:02:14.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

10

11

12

13

14

15

16

17

18

Workflows Made Simple, J. Open Source Softw., 2024, 9(93),
5995, DOIL: 10.21105/j0ss.05995.

B. H. Sjolin, W. S. Hansen, A. A. Morin-Martinez,
M. H. Petersen, L. H. Rieger, T. Vegge,]J. M. Garcia-Lastra
and I. E. Castelli, PerQueue: Managing Complex and
Dynamic Workflows, Digital Discovery, 2024, 3(9), 1832-
1841, DOI: 10.1039/D4DD00134F.

J. P. Morrison, Data Stream Linkage Mechanism, IBM Syst. J.,
1978, 17(4), 383-408, DOI: 10.1147/sj.174.0383.

J. P. Morrison, Flow-Based Programming, A New Approach to
Application Development, CreateSpace Independent
Publishing Platform, Unionville, Ont, 2nd edn, 2010.

M.]. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato,
A. V. Marenich,]J. Bloino, B. G. Janesko, R. Gomperts,
B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov,
J. L. Sonnenberg, F. Williams; Ding, F. Lipparini, F. Egidi,
J. Goings, B. Peng, A. Petrone, T. Henderson,
D. Ranasinghe, V. G. Zakrzewski,]J. Gao, N. Rega,
G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, K. Throssell,
J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro,
M.]J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin,
V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar,
J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo,
R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma,
O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Rev. C.01,
2016.

C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen,
P. Pracht, J. Seibert, S. Spicher and S. Grimme, Extended
Tight-Binding Quantum Chemistry Methods, Wiley
Interdiscip. Rev.: Comput. Mol. Sci., 2021, 11(2), e1493, DOLI:
10.1002/wems.1493.

P. Pracht, F. Bohle and S. Grimme, Automated Exploration of
the Low-Energy Chemical Space with Fast Quantum
Chemical Methods, Phys. Chem. Chem. Phys., 2020, 22(14),
7169-7192, DOI: 10.1039/C9CP06869D.

S. Grimme, Exploration of Chemical Compound,
Conformer, and Reaction Space with Meta-Dynamics
Simulations Based on Tight-Binding Quantum Chemical
Calculations, J. Chem. Theory Comput., 2019, 15(5), 2847-
2862, DOIL: 10.1021/acs.jctc.9b00143.

D. Santos-Martins, L. Solis-Vasquez, A. F. Tillack,
M. F. Sanner, A. Koch and S. Forli, Accelerating AutoDock4
with GPUs and Gradient-Based Local Search, J. Chem.
Theory Comput., 2021, 17(2), 1060-1073, DOIL 10.1021/
acs.jete.0c01006.

O. Trott and A.]J. Olson, AutoDock Vina: Improving the
Speed and Accuracy of Docking with a New Scoring
Function, Efficient Optimization, and Multithreading, J.
Comput. Chem., 2010, 31(2), 455-461, DOL 10.1002/
jee.21334.

A. T. McNutt, P. Francoeur, R. Aggarwal, T. Masuda, R. Meli,
M. Ragoza, J. Sunseri and D. R. Koes, GNINA 1.0: Molecular

2558 | Digital Discovery, 2024, 3, 2551-2559

19

20

21

22

23

24

25

26

27

28

29

View Article Online

Paper

Docking with Deep Learning, J. Cheminf., 2021, 13(1), 43,
DOI: 10.1186/s13321-021-00522-2.

R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren,
J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll,
M. Shelley, J. K. Perry, D. E. Shaw, P. Francis and
P. S. Shenkin, Glide: A New Approach for Rapid, Accurate
Docking and Scoring. 1. Method and Assessment of
Docking Accuracy, J. Med. Chem., 2004, 47(7), 1739-1749,
DOI: 10.1021/jm0306430.

M.]J. Abraham, T. Murtola, R. Schulz, S. Pall, J. C. Smith,
B. Hess and E. Lindahl, GROMACS: High Performance
Molecular Simulations through Multi-Level Parallelism
from Laptops to Supercomputers, SoftwareX, 2015, 1-2, 19-
25, DOI: 10.1016/j.s0ftx.2015.06.001.

S. Pall, A. Zhmurov, P. Bauer, M. Abraham, M. Lundborg,
A. Gray, B. Hess and E. Lindahl, Heterogeneous
Parallelization and Acceleration of Molecular Dynamics
Simulations in GROMACS, J. Chem. Phys., 2020, 153(13),
134110, DOI: 10.1063/5.0018516.

P.]. Ropp, J. O. Spiegel, J. L. Walker, H. Green, G. A. Morales,
K. A. Milliken, J. J. Ringe and J. D. Durrant, Gypsum-DL: An
Open-Source Program for Preparing Small-Molecule
Libraries for Structure-Based Virtual Screening, J. Cheminf.,
2019, 11(1), 34, DOI: 10.1186/513321-019-0358-3.

H. H. Loeffler, J. He, A. Tibo, J. P. Janet, A. Voronov,
L. H. Mervin and O. Engkvist, Reinvent 4: Modern Al-
Driven Generative Molecule Design, J. Cheminf., 2024,
16(1), 20, DOI: 10.1186/s13321-024-00812-5.

L. Mervin, A. Voronov, M. Kabeshov and O. Engkvist,
QSARtuna: An Automated QSAR Modeling Platform for
Molecular Property Prediction in Drug Design, J. Chem. Inf.
Model., 2024, 64(14), 5365-5374, DOL 10.1021/
acs.jcim.4c00457.

D. E. Graff, E. I. Shakhnovich and C. W. Coley, Accelerating
High-Throughput Virtual Screening through Molecular Pool-
Based Active Learning, Chem. Sci., 2021, 12(22), 7866-7881,
DOI: 10.1039/D0SC06805E.

1. Filella-Merce, A. Molina, M. Orzechowski, L. Diaz,
Y. M. Zhu,]J. V. Mor, L. Malo, A. S. Yekkirala, S. Ray and
V. Guallar, Optimizing Drug Design by Merging Generative
Al With Active Learning Frameworks, arXiv, 2023, preprint,
arXiv:2305.06334, DOI: 10.48550/arXiv.2305.06334.

T. Blaschke, J. Arus-Pous, H. Chen, C. Margreitter,
C. Tyrchan, O. Engkvist, K. Papadopoulos and A. Patronov,
REINVENT 2.0: An Al Tool for De Novo Drug Design, J.
Chem. Inf Model., 2020, 60(12), 5918-5922, DOI: 10.1021/
acs.jcim.0c00915.

J. He, E. Nittinger, C. Tyrchan, W. Czechtizky, A. Patronov,
E. J. Bjerrum and O. Engkvist, Transformer-Based
Molecular Optimization beyond Matched Molecular Pairs,
J. Cheminf., 2022, 14(1), 18, DOIL 10.1186/s13321-022-
00599-3.

J. P. Janet, L. Mervin and O. Engkvist, Artificial Intelligence
in Molecular de Novo Design: Integration with Experiment,
Curr. Opin. Struct. Biol., 2023, 80, 102575, DOIL: 10.1016/
j-sbi.2023.102575.

© 2024 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.21105/joss.05995
https://doi.org/10.1039/D4DD00134F
https://doi.org/10.1147/sj.174.0383
https://doi.org/10.1002/wcms.1493
https://doi.org/10.1039/C9CP06869D
https://doi.org/10.1021/acs.jctc.9b00143
https://doi.org/10.1021/acs.jctc.0c01006
https://doi.org/10.1021/acs.jctc.0c01006
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1186/s13321-021-00522-2
https://doi.org/10.1021/jm0306430
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1063/5.0018516
https://doi.org/10.1186/s13321-019-0358-3
https://doi.org/10.1186/s13321-024-00812-5
https://doi.org/10.1021/acs.jcim.4c00457
https://doi.org/10.1021/acs.jcim.4c00457
https://doi.org/10.1039/D0SC06805E
https://doi.org/10.48550/arXiv.2305.06334
https://doi.org/10.1021/acs.jcim.0c00915
https://doi.org/10.1021/acs.jcim.0c00915
https://doi.org/10.1186/s13321-022-00599-3
https://doi.org/10.1186/s13321-022-00599-3
https://doi.org/10.1016/j.sbi.2023.102575
https://doi.org/10.1016/j.sbi.2023.102575
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a

Open Access Article. Published on 28 Oktober 2024. Downloaded on 21.01.2026 22:02:14.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

30 M. Olivecrona, T. Blaschke, O. Engkvist and H. Chen,
Molecular De-Novo Design through Deep Reinforcement
Learning, J. Cheminf., 2017, 9(1), 48, DOI: 10.1186/s13321-

017-0235-x.

31 J. Li, A. Fu and L. Zhang, An Overview of Scoring Functions
in Molecular
Docking, Interdiscip. Sci.: Comput. Life Sci., 2019, 11(2),

Used for Protein-Ligand Interactions
320-328, DOL: 10.1007/s12539-019-00327-w.

32 D. Weininger, SMILES, a Chemical Language

36, DOI: 10.1021/¢i00057a005.

33 J. Sacks, S. B. Schiller and W. J. Welch, Designs for Computer
41-47, DOI:

Experiments, Technometrics, 1989,
10.1080/00401706.1989.10488474.

31(1),

34 D. R. Jones, M. Schonlau and W. J. Welch, Efficient Global
Optimization of Expensive Black-Box Functions, J. Glob.
10.1023/

Optim., 1998, 455-492, DO

A:1008306431147.

13(4),

35 J. Yu, X. Li and M. Zheng, Current Status of Active Learning
for Drug Discovery, Artif. Intell. Life Sci., 2021, 1, 100023,

DOI: 10.1016/j.ailsci.2021.100023.

36 M. Dodds,]J. Guo, T. Lohr, A. Tibo, O. Engkvist and J. Paul
Janet, Sample Efficient Reinforcement Learning with Active
Learning for Molecular Design, Chem. Sci., 2024, 15(11),

4146-4160, DOI: 10.1039/D3SC04653B.

37 T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A
Next-Generation Hyperparameter Optimization Framework,

© 2024 The Author(s). Published by the Royal Society of Chemistry

and
Information System. 1. Introduction to Methodology and
Encoding Rules, J. Chem. Inf. Comput. Sci., 1988, 28(1), 31-

38

39

40

41

42

43

View Article Online

Digital Discovery

in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’19;
Association for Computing Machinery, New York, NY, USA,
2019, pp 2623-2631, DOI: 10.1145/3292500.3330701.
QPTUNA: QSAR Using Optimization for Hyper-Parameter
Tuning, 2023, https://github.com/MolecularAl/Qptuna,
accessed 2023-07-31.

M. H. Samha, L. J. Karas, D. B. Vogt, E. C. Odogwu, J. Elward,
J. M. Crawford, J. E. Steves and M. S. Sigman, Predicting
Success in Cu-Catalyzed C-N Coupling Reactions Using
Data Science, Sci. Adv., 2024, 10(3), eadn3478, DOIL
10.1126/sciadv.adn3478.

S. M. Maley, D.-H. Kwon, N. Rollins, J. C. Stanley,
O. L. Sydora, S. M. Bischof and D. H. Ess, Quantum-
Mechanical Transition-State Model Combined with
Machine Learning Provides Catalyst Design Features for
Selective Cr Olefin Oligomerization, Chem. Sci., 2020,
11(35), 9665-9674, DOI: 10.1039/D0SC03552A.

K. Jorner, T. Brinck, P.-O. Norrby and D. Buttar, Machine
Learning Meets Mechanistic Modelling for Accurate
Prediction of Experimental Activation Energies, Chem. Sci.,
2021, 12(3), 1163-1175, DOIL: 10.1039/D0SC04896H.

M. Bursch, J.-M. Mewes, A. Hansen and S. Grimme, Best-
Practice DFT Protocols for Basic Molecular Computational
Chemistry, Angew. Chem., 2022, 134(42), 202205735, DOL:
10.1002/ange.202205735.
RDKit: Open-Source
www.rdkit.org.

Cheminformatics. https://

Digital Discovery, 2024, 3, 2551-2559 | 2559

https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1007/s12539-019-00327-w
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1080/00401706.1989.10488474
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1016/j.ailsci.2021.100023
https://doi.org/10.1039/D3SC04653B
https://doi.org/10.1145/3292500.3330701
https://github.com/MolecularAI/Qptuna
https://doi.org/10.1126/sciadv.adn3478
https://doi.org/10.1039/D0SC03552A
https://doi.org/10.1039/D0SC04896H
https://doi.org/10.1002/ange.202205735
https://www.rdkit.org
https://www.rdkit.org
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a

	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation

	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation

	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation

