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ion to accelerate multi-objective
virtual screening†

Jenna C. Fromer, a David E. Graff ab and Connor W. Coley *ac

The discovery of therapeutic molecules is fundamentally a multi-objective optimization problem. One

formulation of the problem is to identify molecules that simultaneously exhibit strong binding affinity for

a target protein, minimal off-target interactions, and suitable pharmacokinetic properties. Inspired by

prior work that uses active learning to accelerate the identification of strong binders, we implement

multi-objective Bayesian optimization to reduce the computational cost of multi-property virtual

screening and apply it to the identification of ligands predicted to be selective based on docking scores

to on- and off-targets. We demonstrate the superiority of Pareto optimization over scalarization across

three case studies. Further, we use the developed optimization tool to search a virtual library of over 4M

molecules for those predicted to be selective dual inhibitors of EGFR and IGF1R, acquiring 100% of the

molecules that form the library's Pareto front after exploring only 8% of the library. This workflow and

associated open source software can reduce the screening burden of molecular design projects and is

complementary to research aiming to improve the accuracy of binding predictions and other molecular

properties.
1 Introduction

Molecular discovery aims to identify molecules that balance
multiple, oen competing, properties. The need to simulta-
neously optimize multiple properties is especially notable in
drug discovery workows. Small molecule drugs operating
through direct single-target binding interactions must exhibit
not only strong binding affinity for the target protein but also
minimal off-target interactions and suitable pharmacokinetic
properties.1–3 One formulation of small molecule drug discovery
is to identify compounds that bind strongly to a protein of
interest and subsequently modify them to fulll remaining
property constraints.1,4,5 A candidate molecule with high activity
but a poor pharmacokinetic prole may ultimately be aban-
doned, resulting in wasted time and resources.3,6

Selectivity is one property that is oen considered only aer
a hit with promising primary activity is identied.1 Selectivity
may be measured with binding assays against off-targets that
are structurally similar to the primary target or known to be
associated with adverse side effects (e.g., cytochromes P450 and
the hERG channel).3,7 Non-specic ligands that bind to many
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the Royal Society of Chemistry
proteins in addition to the target may require additional opti-
mization steps when compared to their selective counterparts.2,8

Consideration of promiscuity early in a drug discovery project
may aid in deprioritizing chemical series that are inherently
nonselective.9,10 In other settings, binding interactions with
multiple targets can be advantageous.11 Therapeutics for Alz-
heimer's disease12,13 and thyroid cancer14,15 have exhibited
improved efficacy through affinity for multiple protein targets.
Optimizing affinity to multiple targets is another goal that can
be brought into earlier stages of hit discovery.16,17

Anticipating protein–ligand interactions that contribute to
potency and selectivity is possible, albeit imperfectly, with
structure-based drug design techniques that employ scoring
functions to estimate energetic favorability. Docking to off-
targets has been applied to improve the selectivity proles of
identied compounds.18–20 These demonstrations have revealed
that falsely predicted non-binders may incorrectly be catego-
rized as selective because scoring functions designed for hit-
nding typically aim to minimize the false positive rate (i.e.,
weak binders predicted to bind strongly), not the false negative
rate (i.e., binders predicted not to bind).20,21 Although structure-
based methods like docking are limited in their predictive
accuracy,22–27 docking-based virtual screens can still effectively
enrich a virtual library for molecules that are more likely to
exhibit target activity.28–32

The computational cost of virtual screening33 has motivated
the development of model-guided optimization methods that
reduce the total number of docking calculations required to
recover top-performing molecules.34–40 As one example, Graff
Digital Discovery, 2024, 3, 467–481 | 467
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et al.37 only require the docking scores of 2.4% of a 100M
member virtual library to identify over 90% of the library's top-
50 000 ligands. Similar principles apply when using more
expensive evaluations such as relative binding free energy
calculations,41 where a reduction of computational cost can be
particularly benecial. These methods are designed to optimize
a single property and are inherently single-objective
optimizations.

The need for model-guided optimization methods in virtual
screening is heightened when multiple properties are screened.
The resources required for a multi-objective virtual screen scale
linearly with the number of screened properties (“objectives”)
and library size. In some settings, exhaustive screens of large
virtual libraries (millions to billions) may be infeasible. Model-
guided multi-objective optimization has the potential to reduce
the computational cost of a multi-objective virtual screen
without sacricing performance. Mehta et al.42 have previously
applied Bayesian optimization to identify molecules that
simultaneously optimize the docking score to Tau Tubulin
Kinase 1, calculated octanol–water partition coefficient
(clogP),43 and synthetic accessibility score (SA_Score).44 Their
implemented acquisition function is a product of acquisition
scores for individual objectives,42 leading to the recovery of over
90% of the most desirable molecules aer scoring only 6% of
the virtual library. Multi-objective virtual screens involve
multiple design choices primarily related to the acquisition
strategy, which have not yet been compared in the context of
virtual screening. Further, existing methods for multi-objective
virtual screening do not implement Pareto optimization. Pareto
optimization aims to identify the molecules that form or are
close to the Pareto front, for which an improvement in one
objective necessitates a detriment to another. Molecules that
form the Pareto front optimally balance multiple desired
properties, illustrate which combinations of objective values are
possible, and reveal trade-offs in the objective space; this is not
possible with scalarization.

In this work, we extend the molecular pool-based active
learning tool MolPAL37 to this setting of multi-objective virtual
screening. MolPAL is publicly available, open source, and can
be adopted for multi-objective virtual screening with any
desired set of objective functions, including those beyond
structure-based drug design. We demonstrate through three
retrospective case studies that MolPAL can efficiently search
a virtual library for putative selective binders. We compare
optimization performance across multi-objective acquisition
functions and demonstrate the superiority of Pareto-based
acquisition functions over scalarization ones. We also imple-
ment a diversity-enhanced acquisition strategy that increases
the number of acquired scaffolds by 33% with only a minor
impact on optimization performance. Finally, we apply MolPAL
to efficiently search the Enamine Screening Collection45 of over
4 million molecules for selective dual inhibitors of EGFR and
IGF1R as an exemplary 3-objective optimization. Aer explora-
tion of only 8% of the virtual library, 100% of the library's non-
dominated points and over 60% of the library's top ∼0.1%,
dened by non-dominated sorting, are identied by MolPAL.
468 | Digital Discovery, 2024, 3, 467–481
2 Multi-objective virtual screening
with MolPAL

MolPAL applies the multi-objective pool-based workow
described in ref. 46, combining multi-objective Bayesian
optimization and surrogate models to efficiently explore
a virtual library for molecules that simultaneously optimize
multiple properties (Fig. 1). Similar workows have been
demonstrated for the design of battery materials47–49 and other
functional materials.50–52 As summarized in Algorithm S2,†
objective values are rst calculated for a subset of the library,
and surrogate models that predict each objective are trained
on these initial observations. Aer objective values are pre-
dicted for all candidate molecules, an acquisition function
selects a set of promising molecules for objective function
evaluation. The surrogate models are then retrained with new
observations, and the iterative loop repeats until a stopping
criterion is met.

Relative to its initial release in ref. 37, MolPAL was extended
primarily through modication of the acquisition strategy and
handling of multiple surrogate models. The multi-objective
extension of MolPAL allows users to select between Pareto
optimization and scalarization strategies.

Scalarization reduces a multi-objective optimization problem
into a single-objective problem, oen through a weighted sum:

fscalðxÞ ¼
X
i

lifiðxÞ; (1)

with each li denoting the relative importance of objective fi.
Weighted sum scalarization requires the relative importance of
objectives to be known before the optimization in order to assign
weighting factors l. Alternative scalarization strategies beyond
a weighted sum include random scalarization54,55 and Chebyshev
scalarization,56,57 but these are not yet implemented in MolPAL.
Scalarization enables the use of single-objective acquisition func-
tions, which include probability of improvement (PI)58 or expected
improvement (EI)59 (Fig. 2A), greedy, and upper condence bound
(UCB)60 (Table 1). Scalarization is implemented prior to surrogate
model training, i.e., only one single-task surrogate model is
necessary. Algorithm S1† summarizes MolPAL's implementation
of scalarized multi-objective optimization.

Pareto optimization is a multi-objective optimization
strategy that reveals the trade-offs between objectives and does
not require any measure of the relative importance of objec-
tives. Further, Pareto optimization aims to identify the entire
Pareto front, a feature not guaranteed by single-objective
methods such as weighted sum scalarization.61,62 Common
multi-objective acquisition functions include the probability
of hypervolume improvement (PHI),53 expected hypervolume
improvement (EHI),53 non-dominated sorting (NDS),63,64 and
Pareto upper condence bound (P-UCB).65 These are natural
extensions of single-objective acquisition functions (Table 1)
that instead aim to increase the region, or hypervolume,
dominated by the acquired points (Fig. 2). P-UCB and its
single-objective analog UCB are not considered in this work.
For model-guided Pareto optimization, either a multi-task
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Overview of MolPAL's workflow for multi-objective optimization. A surrogate model is first trained with an initial training set of randomly
sampled molecules. Predictions and uncertainties from each surrogate model inform which molecules in the library to score next. After these
acquired molecules are scored, each surrogate model is retrained, and the iterative loop continues. Once a stopping criterion is met, the set of
observed points and their objective values can be analyzed.

Fig. 2 Depiction of acquisition functions in Bayesian optimization. (A) Probability of improvement (PI) estimates the likelihood that an as-yet
unobserved objective function value exceeds the current maximum value f*. Expected improvement (EI) estimates the amount that f* would
increase if an unobserved point is acquired.53 (B) Non-dominated sorting assigns integer “Pareto ranks” to each candidate. (C) Hypervolume-
based acquisition functions53 extend the principles of PI and EI to multiple dimensions using the observed Pareto front (grey dashed line) rather
than f*. Probability of hypervolume improvement (PHI) represents the likelihood that acquisition of an unobserved point would increase the
hypervolume by any amount. Expected hypervolume improvement (EHI) estimates the increase in hypervolume if the objective function value of
such a point is scored.53 Objectives are defined so that optimization corresponds to maximization.
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surrogate model, multiple single-task surrogate models, or
a combination thereof is needed to predict the set of objective
function values. As outlined in Algorithm S2,†MolPAL trains N
Table 1 Common single-objective acquisition functions and their mult
respectively. f* is the current best objective value, HV is hypervolume, an
and standard deviations s for the objective value f of candidate point x. X
vectors. N ðm;sÞ implies that the covariance matrix is treated as diago
functions

Single-objective

PI58 ℙf ðxÞ�N ðmðxÞ;sðxÞÞ½f ðxÞ. f *�
EI59 Ef ðxÞ�N ðmðxÞ;sðxÞÞ½maxff ðxÞ � f *; 0g�
Greedy m(x)
UCB60 m(x) + bs(x)

© 2024 The Author(s). Published by the Royal Society of Chemistry
single-task surrogate models to predict N objectives to
circumvent the challenge of loss function weighting in multi-
task learning.66
i-objective analogs. ℙ and E represent probability and expected value,
d rank is the Pareto rank. Surrogate models provide prediction means m

acq is the set of points acquired in previous iterations. Bold variables are
nal with entries si

2, i.e., uncertainty is uncorrelated across objective

Multi-objective

PHI53 ℙfðxÞ�N ðmðxÞ;sðxÞÞ½HVðX acqWxÞ.HVðX acqÞ�
EHI53 EfðxÞ�N ðmðxÞ;sðxÞÞ½HVðX acqWxÞ �HVðX acqÞ�
NDS63,64 rank(m(x))
P-UCB65 rank(m(x) + bs(x))

Digital Discovery, 2024, 3, 467–481 | 469
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Acquiring a batch of k points in a single iteration may be
more efficient than sequential acquisition when objectives
functions can be calculated in parallel. “Top-k batching” naively
selects the k points with the highest acquisition scores.67 More
sophisticated batch acquisition strategies iteratively construct
optimal batches one point at a time by hallucinating objective
function values.68–73 Other strategies use heuristics to select
batches that are diverse in the design space or objective space in
order to improve the utility of a batch.74–79 MolPAL implements
both naive top-k batching and diversity-enhanced acquisition
strategies that apply clustering in both the design space and in
the objective space (Section 5.5).

3 Results and discussion
3.1 Description of case studies

We test MolPAL with three retrospective case studies with an
emphasis on docking-predicted binding selectivity to compare
optimization performance across acquisition functions. The
pairs of objectives used in these case studies are exclusively
docking scores even though the framework of MolPAL is more
general. For example, this workow may be used to optimize
docking scores to an ensemble of protein structures80

(“ensemble docking”) or optimize multiple docking scoring
functions provided with a single target.81–83

Each case explores a virtual library of approximately 260k
molecules and optimizes two competing docking score objectives
from the DOCKSTRING benchmark.84 Case 1's goal is modeled
aer identifying antagonists of dopamine receptor D3 (DRD3) that
are selective over dopamine receptor D2 (DRD2), whichmay enable
effective treatment of various conditions without the side effects
triggered by DRD2 antagonists.85–87 Case 2 treats Janus Kinase 2
(JAK2), a lukemia target, as the on-target and lymphocyte-specic
protein tyrosine kinase (LCK) as the off-target.88,89 Finally, case 3
aims to identify selective inhibitors of insulin-like growth factor 1
receptor (IGF1R)90,91 that do not bind to cytochrome P450 3A4
(CYP3A4),92,93 an off-target known to impact the pharmacokinetic
properties of drugs though metabolism.94–96 The property trade-
offs for each case are shown in Fig. 3. Because both positive
docking scores and scores of 0 should be interpreted as non-
binders, we clip docking scores to 0.
Fig. 3 Docking scores in the DOCKSTRING dataset84 for (A) case 1, (B
determined by NDS rank (Section 5.6), are shown as magenta points, wit
3261 (1.25%) molecules in the top ∼1% for cases 1, 2, and 3, respectively

470 | Digital Discovery, 2024, 3, 467–481
We employ single-task directed message-passing neural
networks97,98 for each objective as surrogate models (Section
5.4). An initial set of 2602 molecules is randomly sampled at the
zeroth iteration, and 1% of the library (2602 molecules) is
acquired in each subsequent iteration. Scalarization weighting
factors (l1 and l2 in eqn (1)) were set to 0.5. Five trials with
distinct initialization seeds were completed for each acquisition
function. Section 5 contains full implementation details.
3.2 Pareto acquisition functions outperform scalarization

We characterize optimization performance with three metrics:
fraction of the top ∼1% acquired, hypervolume (HV), and
fraction of non-dominated points acquired. We motivate the
selection of these metrics and describe their implementation in
Section 5.6.

All Pareto optimization acquisition functions show substan-
tial improvement over random acquisition according to the top
∼1%metric, with PHI performingmost consistently across cases
(Fig. 4A–F). Analyzing the same metric, greedy is clearly the best
scalarized acquisition function despite its poor performance in
case 3 relative to PHI and EHI. Only in case 1 does the best
scalarization acquisition function outperform the best Pareto
acquisition function. Performance metrics using the acquisition
function described by Mehta et al.42 (MO-MEMES) are included
as an additional baseline in Tables S1–S3.† Pareto optimization
acquisition functions consistently outperform MO-MEMES.

When performance is measured by the fraction of non-
dominated points acquired, EHI and PHI outperform scalari-
zation acquisition functions (Fig. 5) even though the degree of
improvement varies across cases. The sensitivity of the hyper-
volume metric to outliers on the Pareto front leads to noisy
hypervolume proles (Fig. S2†). Similar trends are observed
when measuring the inverted generational distance metric
(Fig. S3†). Overall, Pareto optimization acquisition functions
strongly outperform or match the performance of scalarization
for the pairs of objectives and virtual library considered.

The variation in relative performance of different acquisition
functions across evaluation metrics is noteworthy. For example,
greedy scalarization performs quite well in the top ∼1% metric
for all cases but worse than random acquisition according to
) case 2, and (C) case 3. All molecules considered in the top ∼1%, as
h the remaining data in grey. There are 2986 (1.15%), 2651 (1.02%), and
.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Fraction of the top∼1% acquired and inverted generational distance (IGD) for case 1, 2, and 3. (A, C and E) Fraction of top∼1% using Pareto
optimization acquisition functions (left) and scalarized acquisition functions (right). (B, D and F) Fraction of the top∼1% acquired after 6 iterations.
(G–I) IGD after 6 iterations for case 1 (G), case 2 (H), and case 3 (I). Error bars (B, D, F, G–I) and shaded regions (A, C and E) denote± one standard
deviation across five runs.
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hypervolume and fraction of non-dominated points in case 3. The
results shown here highlight the importance of assessing the
performance across different sets of objectives. Despite the vari-
ation across cases andmetrics, EHI and PHI consistently perform
as well as scalarization or substantially better than scalarization.
These acquisition functions are suitable choices for new sets of
objectives. Alternatively, when a previously unexplored set of
objectives is to be optimized, a retrospective study on a scored
subset of the library can inform the selection of a suitable
acquisition strategy. Each reportedmetric corresponds to distinct
optimization goals (Section 5.6); the primary application of
a multi-objective virtual screen should inform which metric to
use for acquisition function comparison and selection.
3.3 Clustering-based acquisition improves molecular
diversity

Scoring functions used in structure-based virtual screening can
exhibit systematic errors that bias selection toward specic
interactions.99 This poses a risk for experimental validation if
specic scaffolds are overrepresented in the top-scoring
© 2024 The Author(s). Published by the Royal Society of Chemistry
molecules. Selecting a structurally diverse set of candidates is
one strategy to mitigate this risk and can be achieved via
a diversity-enhanced acquisition strategy (Section 5.5). First,
a set of molecules larger than the target batch size is selected
according to the acquisition function and is then partitioned
into a number of clusters equal to the batch size in feature (e.g.,
molecular ngerprint) space. The molecule with the best
acquisition score in each cluster is acquired. We analyzed the
performance of diversity-enhanced acquisition for case 3, using
PHI as the acquisition function. All hyperparameters were the
same as those used for previous experiments (Section 5).

Feature space clustering slightly hinders optimization
performance according to all four performance metrics
(Fig. 6A–E), but it also increases the number of graph-based
Bemis–Murcko scaffolds100 acquired by 33% when compared
to a näıve batch construction strategy. This degradation in
measured performance is expected given that the performance
metrics do not consider the overall diversity of the selected
molecules. The increased structural diversity of the selected
molecules can be qualitatively visualized via dimensionality
reduction through UMAP101 (Fig. S4†).
Digital Discovery, 2024, 3, 467–481 | 471
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Fig. 5 Identification of molecules on the true Pareto front. (A) Fraction of non-dominated points acquired for cases 1, 2, and 3. (B) Final Pareto
front acquired in case 3 using probability of greedy, expected hypervolume improvement (EHI), expected improvement (EI), and hypervolume
improvement (PHI) acquisition, with the true Pareto front shown in grey. The Pareto front identified with greedy acquisition poorly reflects the
shape of the true Pareto front, a discrepancy captured well by the fraction of non-dominated points metric. Each plot represents individual runs,
all initialized with the same model seed and starting acquired set. Error bars denote ± one standard deviation across five runs.

Fig. 6 Impact of clustering in fingerprint and objective space on optimization performance. (A) Fraction of top ∼1% acquired. (B) Fraction of top
∼1% acquired acquired after 6 iterations. (C) Inverted generational distance (IGD) after 6 iterations. (D) Hypervolume profiles. (E) Fraction of the
library's non-dominated points acquired after 6 iterations. (F) Number of distinct graph-based Bemis–Murcko scaffolds acquired. Error bars (B, C
and E) and shaded regions (A, D and F) denote ± one standard deviation across five runs.

472 | Digital Discovery, 2024, 3, 467–481 © 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Distributions of objective function values to be maximized for a retrospective 3-objective virtual screen. (A and B) Docking scores for
targets IGF1R and EGFR, respectively. (C) Docking scores for off-target CYP3A4.
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Certain multi-objective optimization methods such as NSGA-
II64 also incorporate objective space diversity, i.e., the selection
of points better distributed along the Pareto front.46 We nd
that clustering in the objective space during acquisition
(Section 5.5) mildly hinders performance in all optimization
metrics (Fig. 6A–E). An acquisition strategy that considers
diversity in both the objective space and feature space (Section
5.5) performs similarly to the standard acquisition strategy
across most optimization metrics (Fig. 6A–D) while acquiring
a more structurally diverse set of molecules when compared to
standard acquisition (Fig. 6F and S4†). Overall, we recommend
Fig. 8 Performance of MolPAL for the identification of selective dual IGF
an exemplary three-objective optimization. Profiles are depicted for the
acquired, as well as the (D) hypervolume.

© 2024 The Author(s). Published by the Royal Society of Chemistry
the use of feature space clustering if having structurally distinct
candidates is a priority for experimental validation.
3.4 MolPAL scales to 3 objectives and larger libraries

As a nal demonstration, we show that MolPAL scales well to
larger virtual libraries and more than two objectives by
searching the Enamine Screening Collection45 of over 4 million
molecules for those that optimize three docking objectives. The
objectives were dened to identify putative dual inhibitors of
IGF1R and EGFR102–104 with selectivity over CYP3A4 94–96,105 which
could in principle serve as starting points for esophageal cancer
1R/EGFR inhibitors from the 4M-member Enamine screening library as
fraction of (A) top ∼0.1%, (B) top ∼0.5%, and (C) non-dominated points
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Table 2 Performance metrics after acquisition of 10% of the library. Means and standard deviation across three trials are shown. Metrics include
hypervolume (HV) and inverted generational distance (IGD), as well as the fraction of the library's top 0.12% (4829molecules), top 0.524% (21 015
molecules), and Pareto front points (39 molecules) acquired

Acquisition
function Top ∼0.1% [ Top ∼0.5% [ HV [ IGD Y

Fraction of true
front [

PHI 0.65 � 0.06 0.50 � 0.09 1.00 � 0.00 0.00 � 0.00 1.00 � 0.00
Random 0.10 � 0.00 0.10 � 0.00 0.81 � 0.05 0.88 � 0.04 0.10 � 0.04
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therapeutics. To analyze performance according to the four
considered evaluation metrics, we perform this search retro-
spectively aer docking the entire library using DOCKSTRING's
protocol for each target84 (Section 5.1). The distributions of
individual objectives for the entire library are shown in Fig. 7.
We use PHI acquisition without clustering and acquire 1% of
the library at each iteration, repeating each experiment three
times.

MolPAL succeeds in acquiring 100% of the library's non-
dominated points in all three replicates aer exploring only
8% of the search space (Fig. 8C), a 9X improvement of in the
fraction of acquired non-dominated points over random
acquisition. At this same degree of exploration (8% of the
library), over 60% of the library's top ∼0.1% molecules have
been identied (Fig. 8A). Improvements in IGD and hyper-
volume with MolPAL over random acquisition are also notable
(Fig. 8 and Table 2). The results of this retrospective run indi-
cate that MolPAL can substantially reduce the computational
resources required to identify molecules that simultaneously
Fig. 9 Visualization of the Pareto front for the 3-objective optimizatio
dominated points depicted were acquired by MolPAL after scoring only
front are shown. Many of these molecules (e.g., M4 and M20) would not
the imperfections of docking as a sole oracle function. Docking scores t
the AutoDock Vina wrapper DOCKSTRING.84

474 | Digital Discovery, 2024, 3, 467–481
optimize multiple properties from a virtual library of millions of
molecules.

The virtual library's true Pareto front of 39 molecules, all of
which were recovered by MolPAL, is visualized in Fig. 9. The
structures of all non-dominatedmolecules are shown in Fig. S6–
S8.† The structures of these molecules, several of which look
more like dye molecules than drug-like molecules, expose some
remaining challenges of docking for selectivity prediction.
Molecules predicted to be non-binders to CYP3A4, such as M4
and M20 in Fig. 9, are relatively large molecules that do not t
inside the pocket of CYP3A4, leading to steric clashes and less
favorable binding energetics. The ability for such molecules to
score well against the IGF1R and EGFR but poorly against
CYP3A4 is exemplied by the computed docking poses and
protein–ligand interactions of M4 (Fig. S5†). Although steric
clashes may be a valid reason for hypothetical selectivity
towards EGFR/IGF1R over CYP3A4, the molecules predicted to
be most selective (e.g., M4 and M20) are not attractive candi-
dates for experimental validation. In practice, dominated
molecules that are close to the identied Pareto front should
n for the identification of putative selective dual inhibitors. All non-
8% of the virtual library. Structures for some molecules on the Pareto
be suitable starting points for a drug discovery campaign, highlighting
o targets EGFR and IGF1R and off-target CYP3A4 were calculated with

© 2024 The Author(s). Published by the Royal Society of Chemistry
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also be considered for experimental validation or follow-up
studies. Molecules that are obviously not suitable starting
points for a drug discovery campaign, including those in Fig. 9,
should be deprioritized for experimental testing. A ligand effi-
ciency score may also be used as an objective function to
penalize very large molecules.106 Nevertheless, given the
imperfections of docking as an oracle function, MolPAL
perfectly identies the Pareto front at a reduced computational
cost and scores well in terms of all evaluation metrics. We do
not intend to nominate the visualized molecules as starting
points for a drug discovery project but instead aim to demon-
strate the ability for MolPAL to efficiently identify molecules
that optimize any set of oracles such as those that predict
binding affinity.
4 Conclusion

We have introduced an open sourcemulti-objective extension of
the pool-based optimization tool MolPAL37 and demonstrated
its ability to accelerate docking-based multi-objective virtual
screening. MolPAL provides a exible Pareto optimization
framework that allows users to systematically vary key design
choices like acquisition strategy. MolPAL is most appropriate
for optimizing objectives that are more expensive to calculate
than surrogate molecular property prediction models. Beyond
docking, these include objectives that require binding free
energy calculations, quantum mechanical simulations, or
experiments to measure. Objectives that are calculable in CPU
milliseconds, such as SA_Score or clogP, can be screened
exhaustively and do not warrant model-guided optimization
tools. MolPAL could also be applied to consensus docking by
optimizing multiple scoring functions that predict binding
affinity to the same target.81–83 MolPAL is designed to exibly
accommodate custom objectives and facilitate the optimization
of other property predictions relevant to molecular design.

We rst assessed MolPAL on three two-objective case studies
that aim to identify putative selective binders. We found that
expected hypervolume improvement and probability of hyper-
volume improvement, both Pareto optimization acquisition
functions, consistently performed as well as or better than
scalarization. A diversity-enhanced acquisition strategy that
applies clustering in molecular ngerprint space was found to
increase the number of Bemis–Murcko scaffolds observed by
33% when compared to standard acquisition. Finally, we
demonstrated that MolPAL can efficiently search large virtual
libraries and optimize three objectives simultaneously through
a case study aiming to identify putative selective dual inhibitors
from the Enamine Screening Collection of over 4 million
molecules; MolPAL acquired all of the library's non-dominated
molecules aer exploring only 8% of the library in all three
replicates.

Exploration of other multi-objective optimization
approaches, such as random scalarization and Chebyshev sca-
larization, in the context of molecular optimization could
expose benets of strategies not explored in this work. Other
published diversity-enhanced acquisition strategies79,107 may
© 2024 The Author(s). Published by the Royal Society of Chemistry
have the potential to improve both molecular diversity and
optimization performance.

While the use of docking to off-targets as a proxy for selec-
tivity is well precedented,18–20 the high false negative rates of
docking screens (i.e., binders predicted to be nonbinding) pose
a risk for experimental validation of molecules predicted to be
selective.20,21,108 Pharmacophore models and scoring functions
that are designed for off-target activity9,19,109 could be more
appropriate for cross-docking for selectivity in the future.
Because MolPAL is a general multi-objective optimization
strategy that can be applied to any combination of oracle
functions, it will maintain its relevance as these oracle func-
tions improve in time. Future efforts applying MolPAL to hit
discovery and early-stage molecular design are necessary to
validate the benets of considering multiple objectives at early
stages of molecular discovery.

5 Methods

All code required to reproduce the reported results can be found
in the branch of MolPAL at https://github.com/coleygroup/
molpal/tree/multiobj.

5.1 Data collection

All docking scores used in Sections 3.2 and 3.3 were used
without reprocessing from the DOCKSTRING benchmark84

(downloaded June 2023). For the larger scale study in Section
3.4, the Enamine Screening Collection of over 4 million
compounds45 (downloaded May 2023) was docked against
IGF1R, EGFR, and CYP3A4 using DOCKSTRING84 with default
settings for each target. Before docking, molecules were strip-
ped of salts using RDKit's SaltRemover module.110 Of the 4 032
152 in the library, 4 010 199 were docked successfully to
CYP3A4, 4 010 191 to IGF1R, and 4 010 187 to EGFR. Unsuc-
cessful docking calculations resulted primarily from failures
during the ligand preparation process. The full set of docking
scores are available at https://gshare.com/articles/dataset/
Enamine_screen_CYP3A4_EGFR_IGF1R_zip/23978547.

5.2 Objectives

Docking scores to on-targets were minimized objectives, and
scores to off-targets were maximized objectives. A positive
docking score is not meaningfully different from a docking
score of zero. We therefore adjust docking objectives to be:

fdock(x) = min(0,f(x)) (2)

where f(x) is the raw docking score and fdock(x) is the minimized
(for on-targets) or maximized (for off-targets) objective. Clipping
docking scores in this manner also mitigates the effect of
outliers on Pareto optimization metrics like hypervolume.

5.3 Acquisition functions

We modify PHYSBO's implementation111 of expected
hypervolume improvement and probability of hypervolume
improvement, which applies the algorithm proposed
Digital Discovery, 2024, 3, 467–481 | 475
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by Couckuyt et al.112 MolPAL uses the
utility in pygmo113 for non-

dominated sorting in two dimensions. In more than three
dimensions, MolPAL iteratively identies non-dominated
points using the Pareto class in PHYSBO111 and removes those
points from the unranked set until enough points have been
ranked.

In the scalarization runs, f was calculated according to eqn
(1) with l1 = l2 = 0.5. For prediction mean m, prediction stan-
dard deviation s, and current maximum value f*, expected
improvement and probability of improvement in the scalariza-
tion runs were calculated as:

EIðx; f *Þ ¼ ðmðxÞ � f *þ xÞ$F
�
mðxÞ � f *þ x

sðxÞ
�

þsðxÞ$f
�
mðxÞ � f *þ x

sðxÞ
�
PIðx; f *Þ

¼ F

�
mðxÞ � f *þ x

sðxÞ
�
GreedyðxÞ ¼ mðxÞ (3)

where F is the cumulative distribution function of the standard
normal distribution and f is the probability density function of
the standard normal distribution function. x is a hyper-
parameter that controls the competitiveness of the sampling,58

which we set to 0.01. Higher values of x encourages exploration
of uncertain points, while low values prioritize prediction
means.58
5.4 Surrogate model

Because the optimization campaigns explored in this study
comprise batches of thousands of molecules, we elect to use
a directed message-passing neural network architecture97 as the
surrogate model for all runs. MolPAL contains a PyTorch114

implementation of ChemProp97,98 as in the original publica-
tion.37 We use an encoder depth of 3, directed edge messages
only (no atom messages), a hidden size of 300, ReLU activation,
and two layers in the feed-forward neural network as default
parameters. The model was trained with an initial learning rate
of 10−4 using a Noam learning rate scheduler and an Adam
optimizer. In each iteration, the model is retrained from
scratch, as this was found to provide a benet over ne-tuning.37

We use mean-variance estimation115,116 for surrogate model
uncertainty quantication. The surrogate model is trained to
predict both the mean f(x) and the variance of the estimation
s2(x) via a negative log likelihood loss function:

Lðf ðxÞ;mðxÞ; sðxÞÞ ¼ ln2p

2
þ 1

2
lns2ðxÞ þ ðmðxÞ � yðxÞÞ2

2s2ðxÞ (4)

where f(x) is the true objective value, m is the predicted mean,
and s2(x) is the predicted variance.
5.5 Clustering

We implement three diversity-enhancing acquisition strategies
using clustering: in the feature space, in the objective space,
and in both (Section 3.3). Feature space clustering is performed
according to 2048-bit atom-pair ngerprints117 calculated using
476 | Digital Discovery, 2024, 3, 467–481
the func-
tion in RDKit110with theminimum length andmaximum length
of paths between pairs to 1 and 3, respectively. Atom pair
ngerprints have been shown to outperform other extended
connectivity ngerprints in recovering 3D-shape analogs118 and
ranking close analogs by structural similarity.119 The predicted
objective means were used for clustering in the objective space.

The acquisition strategy rst selects a superset of molecules
according to the acquisition scores as in a standard acquisition
strategy. In our trials, the size of the superset is 10X the batch
size, b. Then, the superset is clustered according to molecular
ngerprints or predicted objective values. We use the imple-
mentation of 120 in scikit-learn121 with
b clusters, 10 random initializations, an initialization size of 3b,
and a reassignment ratio of 0 for batch size b. Although b clus-
ters are specied, some clusters may be returned as empty in
the case of a low-dimensional cluster basis. We ensure that
b points are acquired by iteratively looping through all clusters,
beginning with the largest clusters, and acquiring the molecule
in the cluster with the highest acquisition score. This process is
continued until b molecules are acquired.

When clustering in both the feature and objective spaces, the
superset is rst clustered in the objective space into (b/2)
clusters, and (b/2) points are acquired by iterating through
the clusters and selecting the molecule with the highest
acquisition score. The superset is then supplemented with the
b/2 unacquired candidate points that have the highest acqui-
sition scores. Then, the superset is clustered in the atom-pair
ngerprint space into b − (b/2) clusters, and the point
with the highest acquisition score in each cluster is acquired.
Thus, when both forms of clustering are used, effectively b/2
points are selected to improve objective space diversity, and b/2
points are selected to improve feature space diversity.
5.6 Performance metrics

Four performance metrics designed for Pareto optimization
were measured to holistically assess the performance of Mol-
PAL. The underlying goal of a multi-property virtual screen (e.g.,
understanding the trade-offs between objectives, identifying
a set of potentially promising selective inhibitors) can guide
which evaluation metric to be deemed most important. Re-
ported metrics and the motivation for selecting each is
described below.

5.6.1 Fraction of top ∼k%. Virtual screening workows
based on active learning are oen evaluated using a top-kmetric:
the fraction of the true top-k molecules that have been acquired.
Using a top-k metric captures the goal of separating promising
molecules from the bulk while acknowledging that docking
scores are imperfect and imprecise predictors of binding affinity.
The best observed performance of a single compound is a less
usefulmetric in this context, as there is a high likelihood it would
not validate as a binder experimentally.

For multi-property virtual screening, the set of top-k mole-
cules is not well-dened. We opt to dene the top ∼k% through
non-dominated sorting of the library (Fig. S1†). The non-
dominated points in the library are iteratively selected and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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removed from the candidate pool until $k% of the library has
been selected. These points then serve as the top ∼k%. Because
multiple points are selected as part of the top ∼k% in each
iteration (i.e., all points of a certain Pareto rank), the fraction is
slightly larger than k%.

The top ∼k% metric best describes virtual screens aiming to
identify many molecules roughly close to the Pareto front.
Compared to other metrics that consider points on or much
closer to the Pareto front, it best captures the expectation that
not all top-performing molecules will validate experimentally.

5.6.2 Fraction of non-dominated points. In some multi-
property screens, the aim may be to elucidate as many points
on the true Pareto front as possible. This enables the shape of
the Pareto front and the inherent trade-off between objectives to
be well-understood. A metric related to only the true non-
dominated points is most appropriate in these cases. The
library's non-dominated points are identied using non-
dominated sorting (Section 5.3), and this metric is simply the
fraction of the non-dominated molecules that were acquired.

5.6.3 Hypervolume.Hypervolume is a commonmetric used
to assess the performance of multi-objective optimization
methods.122 It measures the size of the region dominated by the
Pareto front; in a bi-objective optimization, the hypervolume is
the area dominated by the acquired points (Fig. S1B†). Impor-
tantly, the hypervolume can be very sensitive to outliers, leading
to high variability across repeat experiments. Because outliers
may fail to be experimentally validated, the strong sensitivity of
hypervolume to specic points makes it slightly misleading. We
use the python package pygmo113 to calculate hypervolume and
report it as the fraction of the virtual library's total hypervolume.
In contrast to the other evaluated metrics, the absolute hyper-
volume can be measured in prospective studies.
5.7 Scaffold analysis

To quantify the improvement in molecular diversity using
diversity-enhanced acquisition, we count the number of
observed Bemis–Murcko scaffolds100 using RDKit's

and
functions.
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