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Sensorless force and displacement estimation
in soft actuators†

Sagar Joshi a and Jamie Paik*b

Sensing forms an integral part of soft matter based robots due to their compliance, dependence on

loading conditions, and virtually infinite degrees of freedom. Previous studies have developed several

extrinsic sensors and embedded them into soft actuators for displacement and force estimation. What

has not been investigated is whether soft robots themselves possess intrinsic sensing capabilities,

especially in the case of pneumatically powered soft robots. Such an approach, that exploits the

inherent properties of a system toward sensing is called sensorless estimation. Here, we introduce

sensorless estimation for the first time in pneumatically powered soft actuators. Specifically, we show

that the intrinsic properties of pressure and volume can be used to estimate the output force and

displacement of soft actuators. On testing this approach with a bending actuator, we observed errors

under 10% and 15% for force and displacement estimation respectively, with randomized and previously

unseen test conditions. We also show that combining this approach with a conventional embedded

sensor improves estimation accuracy due to sensing redundancy. By modelling soft actuators

additionally as sensors, this work presents a new, readily implementable sensing modality that helps us

better understand the highly complex behaviour of soft matter based robots.

1. Introduction

Robotic actuators designed from soft matter are gaining
increasing attention due to their unique properties including
compliance, conformability and mechanical resilience.1 These
robots can perform complex motions and manoeuvres such as
grasping a range of objects, or self-aligning and navigating
through obstacles using simple inputs such as voltage or
pressure. However, the non-linear behaviour, compliance, and
highly redundant kinematics of such soft actuators lead to
challenges in predicting their behaviour and therefore necessi-
tate sensing and feedback control for practical use.1 Several
researchers have embedded extrinsic displacement sensors in
soft actuators, including commercial flex sensors,2,3 or custom-
fabricated sensors such as microchannels filled with ionic
solutions4,5 or liquid metal alloys,6,7 stretchable capacitors,8,9 and
also magnetic,10,11 optical12,13 and pneumatic-based sensors.14,15

Force sensing has been implemented more recently, using either
dedicated force sensors16,17 or more commonly, indirect force
estimation via embedded displacement sensors.18–20 Although

considerable progress has been made, no sensing modality is
perfect and existing methods suffer from challenges such as failure
at the sensor–actuator interface, noise, drift, and proneness to local
sensitivity at the sensing body.

One approach that has largely been neglected in soft matter
based robots is to assess if the soft actuators themselves
possess any intrinsic sensing capabilities. As soft actuators
deform and interact with their environment, some of their
properties change, which could be potentially used for sensing.
Since the actuator itself acts as the sensing element, such an
approach is called self-sensing or sensorless estimation. Sen-
sorless estimation has the potential to eliminate the need for
dedicated sensors entirely. Alternatively, combining sensorless
estimation with conventional sensing methods adds sensing
redundancy, which can improve estimation accuracy and dis-
turbance rejection.9,20 In some electrical systems like electric
motors,22 shape memory alloys,23,24 piezoelectric actuators,25,26

and twisted coil actuators,27 sensorless estimation has been
implemented to estimate the actuator state (e.g. temperature,
displacement and/or force) by measuring and monitoring the
voltage, current, and capacitance. Such an approach has also
been implemented up to a certain extent in soft dielectric
elastomer actuators28,29 and metal–polymer hybrid soft
actuators.30 However, for soft pneumatic actuators (SPAs) pow-
ered by pressurized air, it has not been explored at all. SPAs are
found in a wide range of designs as shown in Fig. 1 and have
been abundantly used in previous studies in a diverse set of
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loading conditions. Despite this diversity, the fundamental work-
ing principle behind SPAs is the same: when pressurized by
pneumatic supply systems, they expand and generate output
displacement and force, depending on the actuator design,
powering pressure, and loading conditions. In this paper, we
focus on exploiting this fundamental working principle and
investigating this intrinsic sensing capacity.

To appreciate sensorless estimation for SPAs, consider the
following two extremes shown in Fig. 1B. Under fully blocked
conditions (red), we get the maximum or blocked force output
of the soft actuator. In this case, the SPA has the least volume
for the given pressure, and displacement is zero. When allowed
to fully expand (blue), the internal volume and displacement
are at maximum capacity, but the output force is zero. The
pressure and internal volume together could be thus, used
as sensing elements to calculate the soft actuator force and
displacement without using dedicated sensors. However,

sensorless estimation in pneumatically powered soft actuators
has many challenges and uncertainties that must be addressed.

Firstly, the feasibility of sensorless methods in any kind of
pneumatic actuators has not been previously studied. This
feasibility could be determined by investigating whether a
bijective (one-to-one and onto) mapping exists between the
quantities of soft actuator pressure, internal volume, displace-
ment, and force. This is a necessary and sufficient condition for
any type of sensing as it ensures that unique values of sensor
readings correspond to unique values of the transduced quan-
tity and that the sensor readings span across the entire range of
the transduced quantity. Secondly, even if such a mapping exists,
there are no existing methods for estimating the internal volume or
airmass of soft actuators in real time. Integration of measured flow
over time is a potential approach, but integration-based methods
are prone to errors accumulating over time. Furthermore, as the soft
actuator loading conditions strongly govern its mechanical
behaviour,21 the mapping between the different quantities is bound
to change with the loading conditions.

In this paper, we address these challenges and investigate
sensorless estimation in pneumatically powered soft actuators
for the first time. We first demonstrate experimentally for a
bending soft actuator that there exists a bijective (one-to-one
and onto) relationship, unique to the loading conditions,
between the intrinsic properties of pressure and volume, and
the output force and displacement. To calculate the soft
actuator volume, we introduce a novel volume estimation
strategy based on the following fundamental principle of
pressure dynamics31: the rate of change of pressure is inversely
proportional to the soft actuator volume. We exploit this
fundamental principle by injecting pressure oscillations into
the soft actuator and monitoring its response to calculate the
soft actuator volume online, as shown in Fig. 1C. We combine
the bijective mapping with online volume estimation and
estimate the soft actuator force and displacement using infor-
mation derived solely from readily available pressure sensors.
Even for random and previously unseen testing conditions, the
estimated force and displacement using the proposed method
showed good agreement with the ground truth values, thereby
demonstrating sensorless estimation as a viable method for
soft actuators. Finally, we compared the estimation accuracy to
that obtained using a conventional flex sensor affixed to the
soft actuator. While the flex sensor led to better accuracy than
the sensorless approach, results showed that combining sen-
sorless estimation with the flex sensor led to consistently
improved accuracy due to sensing redundancy. Based on intel-
ligently utilizing measured pressure data, the proposed method
can be readily implemented for any type of pneumatic actuator,
rigid and soft, without the need for any additional components.
The main contributions of this work are:
� A novel sensing concept to predict force and displacement

in pneumatic actuators without dedicated sensors
� Novel volume estimation strategy by injecting pressure

oscillations in soft actuators
� Experimental validation by testing with a bending soft

actuator under two commonly observed loading conditions

Fig. 1 Sensorless estimation for soft pneumatic actuators (SPAs).
(A) Types of commonly seen SPAs1 and loading conditions21 in literature.
(B) An illustrative example of the pressure–volume–force–displacement
relationship of a typical SPA, highlighting two extreme conditions: free
expansion (blue) and blocked (red). (C) Volume estimation using signal
injection: we inject pressure oscillations in the SPA and monitor its
response. A fully expanded SPA oscillates slower than the blocked SPA
because the former has a larger volume than the latter.
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� A comparative analysis of the estimation accuracy of three
sensing approaches: sensorless, flex sensor, and sensor fusion

2. Investigating the bijective
relationship between pressure–
volume–force–displacement

In order to establish sensorless estimation as a viable option for
soft pneumatic actuators (SPAs), it is first necessary to prove the
existence of a bijective relationship between the pneumatic
quantities of pressure and volume, with its mechanical outputs
of force and displacement. As the force and displacement of
soft actuators are dependent on the loading conditions, the
corresponding loading conditions must also be taken into
account. To address this, here we use a characterization plat-
form that allows for controllable, repeatable loading condi-
tions, and investigate two of the most commonly observed
application scenarios with SPAs, which use a bending actuator.

2.1. Experimental setup

The interactions of soft actuators with their surroundings are
governed by constraints at the points of contact. Displacement
of the soft actuator is then defined as the relative motion
between these points of contact. To physically emulate this
under repeatable conditions, we have previously developed an
experimental protocol and platform.21 We define the actuator
loading conditions using the (i) anchoring condition, which
describes the nature of contact between the actuator and
surroundings, and (ii) displacement boundary condition, which
specifies how the actuator moves at these contact points.

Testing platform. In order to accurately control the SPA
loading conditions and measure its force and displacement,
we used a modular robotic platform shown in Fig. 2A and B.21 It
consists of three modules, attachments, and a rigid frame. The
attachments are custom, loading-specific components used to
affix the SPA to the characterization setup while enforcing the
desired anchoring conditions. The modules, affixed to the
frame, consist of linear stepper motors (Fuyu motion) to
enforce the desired displacement boundary conditions, and
load-cells (Sensor and Control Co., Ltd) to measure the ground-
truth force values. This platform helps to recreate repeatable,
realistic, and well-defined loading conditions by accurately
controlling the anchoring conditions and displacement bound-
ary conditions.

Pneumatic supply system. To provide pressurized air for the
SPA, we use a pneumatic supply system (PSS) as shown in
Fig. 2C. It consists of a regulated pressure supply at 220 kPa
from an external compressor, solenoid valves (SMC VV100
series) and standard pneumatic tubes (SMC, I.D. = 2.5 mm),
and pressure (Panasonic MPX5500DP) and flow sensors (Hon-
eywell AWM5000 series). The different components were con-
trolled and measured using a Teensy 3.6.

SPA used. The bending SPA that we use for this study is
known as an SPA-pack and consists of a bundle of four fibre-
reinforced SPAs placed laterally in a soft silicone matrix (Fig. 2C).32

To facilitate the comparison of sensorless estimation with conven-
tional sensing, we affixed a standard flex sensor (SpectraSymbol,
113 mm � 6.4 mm � 0.5 mm) on the non-extending side of the
SPA-pack as described in Fig. S3 (ESI†).

2.2. Defining SPA loading conditions

We focus on two of the most common application scenarios of
SPAs which use a bending actuator, and define their loading
conditions as follows:
� Pulling. The two ends of the SPA are constrained to hinge

joints, which allows free rotation at the ends as shown in
Fig. 3A. Such an anchoring condition is observed in inchworm

Fig. 2 Experimental setup: (A) schematic of the characterization setup: a
multi-DoF robotic platform for characterization of soft actuators.21 The
reconfigurable device consists of a rigid frame for structural support,
attachments for enforcing anchoring conditions, and modules with
motors and load-cells for enforcing displacement boundary conditions
and for measuring interaction forces respectively, (B) photo of the experi-
mental setup, (C) the pneumatic supply system (PSS) and the SPA used for
the study. The PSS consists of a regulated pressure source, and standard
solenoid valve and tubing, and the SPA consists of a bundle of four fibre-
reinforced actuators encased in a soft silicone matrix.
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robots,33–35 wherein the ends rotate freely and the robot moves
forward as the distance between the contact points changes.
The SPA displacement is accordingly defined by the distance
between its two ends.
� Three-point bending. The central section of the SPA is

fixed, while the two ends are constrained using an overlapping
fabric to prevent vertically upward motion of the ends as shown
in Fig. 3B. This type of anchoring condition is observed in
wearable devices where an SPA is attached to the user’s body via
flexible, non-stretchable straps.36,37 The wearer’s motion causes
actuator displacement which can be defined as the deflection
of the central section of the SPA with respect to its two ends. In
this anchoring condition, there are additional non-linearities
due to making and breaking of contact, slack in the fabric
strap, and friction at the cantilever.

We affixed the SPA-pack to the experimental setup in the two
loading conditions above as shown in Fig. 3. For pulling,
displacement is directly calculated from the distance between
modules 1 and 3, ranging from 0 mm, when the SPA-pack is
flat, to 80 mm when the SPA-pack is bent (Fig. 3A). For three-
point bending, SPA displacement is calculated as the deflection
of the SPA mid-point with respect to its two ends, ranging from
0 mm when the SPA-pack is flat, to 70 mm, when it is bent
(Fig. 3B). Since the SPA-pack is constrained by the fabric strap,
there are instances when the straps become loose and the SPA

is in free expansion (zero force). As a result, the ground-truth
values of displacement cannot be directly calculated using the
motion of module 2. We address this by calculating the ground-
truth of the displacement separately for regions of constrained
(non-zero force) and free motion (zero force) of the SPA as
described in Section S2 (ESI†).

2.3. SPA characterization

We affixed the SPA-pack in the two anchoring conditions and
monitored its pressure, Pspa, displacement, x, force, F, and
volume, Vspa, to study the relationship between these quanti-
ties. While the ground-truth values of the first three terms are
readily available, measuring SPA volume is non-trivial. To
address this during characterization, we inputted a fixed
amount of air to the SPA at the start of every test and then
switched the valve to HOLD condition, such that no air was
allowed in or out for the remainder of the test. With this
protocol, the SPA volume can be calculated using conservation
of mass as described in Section S1 (ESI†). The final expression
for SPA volume during the characterization tests is given by:

Vspa

� �
t
¼

P0

Ð t
t0
Qspadtþ PspaVspa

� �
defl

Pspa

� �
t

(1)

Here, [Pspa]t and [Vspa]t are the current SPA pressure and volume
respectively, Qspa is the instantaneous airflow to the SPA, and P0

is the atmospheric pressure. [Vspa]defl is the SPA volume at
deflated state calculated using the CAD model of the SPA and
[Pspa]defl = P0. The detailed derivations are given in Section S1
(ESI†).

For characterization, at the beginning of each test, we
inflated the SPA-pack to a predefined pressure at zero displace-
ment and switched the valve state to HOLD to fix the amount of
air inside for the remainder of the test. We then moved the SPA-
pack from zero displacement (x = 0) to its maximum value
(x = 80 mm for pulling and x = 70 mm for three-point bending),
and back to zero using the characterization platform. We
repeated this process three times each for a range of initial
pressures: 20, 40, 80, . . ., 200 kPa. After measuring the data, we
fit the following mappings: (i) Pspa, Vspa - F, (ii) Pspa, Vspa - x,
(iii) Pspa, x - Vspa.

Since the nature of these mappings is highly nonlinear, we
fit the data using shallow neural nets with one input layer, one
output layer, and one hidden layer with 10 neurons. For
training the data, we used the Levenberg–Marquardt algorithm
and a total of 1000 epochs. During training, the MATLAB deep
learning toolbox split the data as 70% for training, 15% for
validation, and 15% for testing. To prevent overfitting, training
was stopped if the validation error failed to decrease for six
successive iterations.

Fig. 4 and 5 show the measured and predicted quantities of
the three mappings for pulling and three-point bending respec-
tively. Tables S2 and S3 (ESI†) show the root mean squared
errors, along with the coefficient of determinations (R2). These
results demonstrate for the first time, the existence of a
bijective relationship between the SPA pressure, volume, force,

Fig. 3 Loading conditions considered in this study: (A) pulling force: this
loading condition is defined by hinge constraints on the two ends of the
bending SPA. It is observed in inchworm robots,33–35 (B) three-point
bending: this loading condition is defined by fixed constraint at the central
section, while the ends are constrained in the vertically upward direction. It
is observed in wearable robots.36,37
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and displacement. The existence of this mapping suggests that
any two quantities among pressure, volume, force, and displa-
cement can be used to estimate the other two. In this study, we
use the independent quantities of pressure and volume to
estimate the force and displacement. Furthermore, as expected,
this mapping is loading-specific.

While the mappings above are promising, estimating SPA
volume using eqn (1) is accurate only for short durations. For
longer durations, the error accumulates due to numerical
integration, noise, and leakage. To address these challenges,
we introduce a novel method to estimate SPA volume in the
next section.

3. Estimating SPA volume via signal
injection

In order to estimate SPA volume, we leverage a fundamental
principle of pressure dynamics: a smaller pressurized volume
has a faster pressure response than that of a larger pressurized
volume. Therefore, a fully blocked SPA (minimum volume) will
have a fast response, whereas a fully expanded SPA will have a
slower response (maximum volume). Modelling air as an ideal

gas under isothermal conditions, the pressure–volume
dynamics can be given by (Section S1, ESI†):

:
PspaVspa + Pspa

:
Vspa = P0Qspa (2)

Rearranging, we get,

Vspa ¼
P0Qspa

_Pspa

� Pspa
_Vspa

_Pspa

(3)

Thus, we see that the rate of change of SPA pressure,
:
Pspa, is

inversely proportional to its internal volume. Eqn (3) by itself is
not enough to estimate SPA volume since we also require
information about the instantaneous rate of change of volume,
:
Vspa. We address this by injecting high-speed pressure oscilla-
tions into the SPA such that the inertial dynamics minimize the
effect of

:
Vspa in the above equation. This can be explained as

follows:
Injecting pressure oscillations in the SPA also causes its

volume to oscillate. As volume oscillations correspond to whole
body movement of the SPA, the inertial dynamics govern the
volume dynamics. Analogous to a spring-mass-damper system,
the inertial dynamics at low frequencies will be dominated
by the stiffness, medium frequencies by the damping, and high

Fig. 4 Mapping between the pressure, volume, force, and displacement, for pulling. The round markers correspond to ground-truth values and the
continuous curves represent estimated values from the neural networks. The different colours represent the initial pressure value at zero displacement.
As the SPA-pack is displaced, the internal volume changes and therefore also the pressure. (A) Mapping from pressure and volume to force, (B) mapping
from pressure and volume to displacement, (C) mapping from pressure and displacement to volume.

Fig. 5 Mapping between the pressure, volume, force, and displacement, for three-point bending. The round markers correspond to ground-truth values
and the continuous curves represent estimated values from the neural networks. The different colours represent the initial pressure value at zero
displacement. (A) Mapping from pressure and volume to force, (B) mapping from pressure and volume to displacement, (C) mapping from pressure and
displacement to volume.
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frequencies by the mass.38 With increasing frequency, the ampli-
tude of Vspa oscillations will scale by a factor of 1/f2, and that of

:
Vspa

by a factor of 1/f, where f is the oscillating frequency. Thus, with
increasing frequencies, the effect of the second term on the right-
hand side of (3) will reduce. At sufficiently high frequencies, the
effect of this term can be neglected, and therefore the SPA volume
can be calculated simply using the measured pressure and flow
dynamics as:

Vspa ¼
P0Qspa

_Pspa

(4)

Since this volume estimation strategy is dependent purely
on the pressure dynamics, it is independent of the loading
conditions. Instead of using expensive sensors for measuring
flow, we model the SPA flow as a function of the valve state, SPA
pressure, and source pressure using the ISO standard 6358 as
described in Section S1 (ESI†).31,39 This enables us to estimate
SPA volume from information derived solely from already
existing pressure sensors.

To validate this strategy, we repeated the characterization
experiments of Section 2.3 with the SPA-pack. We placed the
SPA-pack in the two anchoring conditions shown in Fig. 3, and
enforced displacement �0 to 80 mm for pulling, and 0 to
70 mm for three-point bending – at pressure setpoints of 20,
40, 60, . . ., 200 kPa. The only difference here was that instead of
holding the amount of air inside the SPA, we switched the valve
cyclically to oscillate around the pressure setpoint with a small
amplitude of 5 kPa. The simple valve control for producing this
oscillation signal is as follows:

if(Pspa�set point 4 5 kPa & input == 1)
input = 0;
else if(Pspa � set point o 5 kPa & input == 0)
input = 1;
Here input = 1 corresponds to INFLATE state of the valve and

input = 0 corresponds to DEFLATE. The above valve switching
causes the SPA to oscillate around its setpoint with an ampli-
tude of 5 kPa. The time required for the SPA pressure to
increase from (setpoint �5) kPa to (setpoint +5) kPa is the rise
time, Trise and the time required for the SPA pressure to drop
from (setpoint +5) kPa to (setpoint �5) kPa is the fall time, Tfall.
The rise and fall times are thus the time intervals between
switching the valve and correspond to the increasing and
decreasing phases of the pressure wave. We average the quan-
tities in eqn (4) for each half cycle and calculate SPA volume as:

Vspa ¼ P0
�Qspa �

Trise=fall

DPspa
(5)

Here, %Qspa is the average flow to the SPA in the half oscillation
cycle, and DPspa/Trise/fall gives the average rate of change of
pressure, where, DPspa corresponds to the pressure difference of
10 kPa in the half cycle, and Trise/fall is the rise time or fall time.

The volume estimated using (5) followed the general trend
of – smaller volume for a faster response and larger volume for
a slower response. To validate the volume estimated from the
above, we used the mapping Pspa, x - Vspa, from Section 2.3 as
ground truth. The assumption here is that the mapping holds

true also during pressure oscillations in the SPA for mean
values of the pressure and volume. On comparison with (5),
however, we found significant deviations in the estimated
volumes, with root mean squared (rms) differences of
11.4 mL in pulling and 8.9 mL in three-point bending, for the
SPA-pack with an internal volume of 83 mL. This large error can
be attributed to uncertainties and non-linearities such as valve
dynamics, pressure sensor noise, and integration errors in
calculating the average flow rate. To address these, we fit a
shallow neural network to estimate volume using Pspa, Psrc,
%Qspa, Trise, and Tfall as the inputs. Fig. 6 shows the correlation
between the volumes estimated by the three methods (i) the
mapping, Pspa, x - Vspa, (ii) volume estimated using pressure
injection with 5, and (iii) volume estimated using pressure
injection with the shallow neural network. As seen from the
figure, using pressure injection with the neural network shows
a high correlation with volume estimated using the mapping
Pspa, x - Vspa with rms differences of 0.522 mL. These results
demonstrate that pressure injection could be used to accurately
calculate SPA volume in real time.

4. Validation

In Section 2.3, we proved the existence of a bijective relation-
ship between the SPA pressure, volume, force, and displace-
ment, and in Section 3, we introduced a novel volume
estimation strategy for SPAs. Here, we combine these two
principles to estimate SPA force and pressure without the need
for dedicated sensors.

4.1. Experimental protocol

We affixed the SPA-pack in the characterization platform
(Fig. 2) and tested it while controlling its displacement and

Fig. 6 Volume estimation using signal injection. We use the mapping Pspa,
x - Vspa from Section 2.3 as ground truth, and compare the volume
estimated from two approaches: (i) analytical model from (5), shown in
grey, and (ii) data fitted using a shallow neural network, shown in red.
Clearly, the neural network greatly outperforms the analytical model with
rms errors less than 0. 522 mL.
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pressure in a randomly varying pattern. Using a pseudo rando-
mizer, we generated random values from 0%, 5%, 10%,
15%, . . ., 100% for the SPA displacement and pressure. We
held the SPA at this set of values for a short duration, before
changing to the next set of random values. The time interval
between different value sets was also chosen randomly from 0 s,
0.5 s, 1 s, 1.5 s, . . ., 10 s. At each interval, we switched the valves
as described in Section 3 to inject pressure oscillations of
amplitude 5 kPa. We conducted the test for the two loading
conditions for 20 minutes each.

4.2. Data processing

We analyzed the measured pressure data and valve state to get
the following inputs:
� Pspa, Psrc, the mean measured SPA and source pressures

respectively, averaged over a half cycle
� %Qspa, the mean SPA flow, calculated using (S4) and aver-

aged over a half cycle
� Trise, Tfall, the rise and fall times respectively, calculated as

the ON and OFF times of the valve state respectively
� Vspa, the estimated SPA volume, calculated using the

shallow neural network described in Section 3
Using the above, it is possible to estimate the outputs, SPA

force and displacement by first calculating the volume, and
then using the mapping in Section 2.3. However, cascading
models could cause errors to pile up. Therefore, we instead
trained a new shallow neural network with the above inputs.
We trained the neural network using data from the first 14 minutes

(70%) of the validation experiment. The last six minutes (30%) were
kept aside as unseen data, and used for validation.

Lastly, rather than studying sensorless estimation by itself, it
would be advantageous to evaluate its effectiveness compared
to conventional sensing approaches. Therefore, we tested two
additional sensing methods described below:
� Flex sensor, which uses data from the air pressure sensor

and the flex sensor embedded in the SPA, as described in
Fig. S3 (ESI†).
� Sensor fusion, which simply uses data from the flex sensor

in addition to the inputs used in sensorless estimation
For these two approaches, we trained additional shallow

neural networks using the same training data as for sensorless
estimation. After training, we tested and compared the three
methods with the unseen data.

4.3. Results

Fig. 7A and B respectively show the force and displacement estima-
tion results for pulling. Similarly Fig. 8A and B show the estimation
results for three-point bending. For each figure, the black curve
corresponds to ground truth values, and the remaining correspond
to the estimated values using the three strategies: sensorless
estimation (blue), flex sensor (orange), and sensor fusion (green).
The error bars on the right of each figure also show the root mean
squared (rms) errors between the ground truth and the estimated
values using the three estimation methods.

From the blue curves in Fig. 7A and 8A, we see that
sensorless estimation is able to closely estimate the SPA force,

Fig. 7 Estimation results for pulling, along with root mean squared errors, using the three estimation strategies with previously unseen data. (A) Force
estimation, (B) displacement estimation.
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with rms errors under 1.5 N and 2.2 N for pulling and three-
point bending respectively. This corresponds to errors under
10% of the peak force capacity. Similarly, the blue curves in
Fig. 7B and 8B show the estimated displacement using sensor-
less estimation. We see that the errors are comparatively larger
for pulling (12.8 mm or 16% of full capacity) and lesser for
three-point bending (7.5 mm 11% of full capacity). Despite this,
Fig. 7 and 8 demonstrate for the first time that data solely from
pressure sensors can be intelligently used to extract information
about the SPA, even under randomly varying and previously
unseen conditions. The slightly larger errors for displacement
could be attributed to the specific sensitivity and distribution of
the estimated quantities with respect to the volume. These
aspects warrant additional investigation which will be
addressed in future work.

The orange curves in Fig. 7 and 8 correspond to the con-
ventionally used estimation strategy of combining pressure
sensor data with a displacement sensor. We see that for all
cases (force and displacement estimation in the two loading
conditions) the estimation accuracy for the flex sensor is higher
than sensorless estimation. This is partly expected, as the sensor
is specifically designed to measure displacement.

Lastly, we also implemented sensor fusion, i.e., combining the
inputs from sensorless estimation and flex sensor approaches.
While the flex sensor outputs the cumulative resistance across its
length, the proposed sensorless method outputs an estimate of the
actuator volume. Owing to this difference in the transducing
mechanisms, the two sensing approaches hold complementary
information that leads to sensing redundancy and improves overall
estimation accuracy. This can be seen from the green curves in

Fig. 7 and 8 that show the lowest errors for all conditions. These
results show that for existing SPA-based devices containing displa-
cement sensors, we can expect an improved estimation accuracy by
combining them with the proposed sensorless estimation, without
requiring any changes in the hardware.

Lastly, considering the differences between the two loading
conditions, we see that despite having more non-linearities, the
errors are smaller for the three-point bending loading condi-
tion. This can be attributed to the fact that there is a larger
volume change in this loading condition, which increases the
sensing range of the SPA. In future studies, we will study how
factors such as SPA volume, range of volume change, operating
pressure, and flow rate affect the sensitivity of this method.

5. Conclusion

In this paper, we presented a new concept to estimate the force
and displacement of pneumatically powered soft actuators
without requiring dedicated sensors. This sensorless estima-
tion method is based on the idea that the intrinsic properties,
pressure and volume, could be used to extract information
about how the soft actuator is interacting with its environment.
To enable sensorless estimation, we hypothesized and proved
experimentally for the first time that a bijective relationship
exists between the soft actuator properties and outputs of
pressure, volume, displacement, and force. Then, we presented
and experimentally validated a novel estimation strategy for esti-
mating soft actuator volume in real time using pressure injection.
By combining these two methods, we finally demonstrated that the

Fig. 8 Estimation results for Three-point bending, along with root mean squared errors, using the three estimation strategies with previously unseen
data. (A) Force estimation, (B) displacement estimation.
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soft actuator itself has sensing properties, which could be exploited
to estimate its output force and displacement, without the need for
dedicated sensors. The only sensors used in this approach were
the pressure sensors for the soft actuator and pneumatic source,
which are readily present in existing devices. The experimental
protocol, consisting largely of randomized loading sequences,
helped to validate that sensorless estimation can consistently
predict force and displacement under diverse loading conditions.
Predictions with sensorless estimation showed good agreement
with the ground truth values with under 10 and 16% rms errors for
force and displacement estimation respectively for previously
unseen conditions. These results represent the first application
and experimental validation of sensorless estimation in soft
actuators. Even though estimation accuracy for sensorless estima-
tion was slightly lesser than that using a conventional flex sensor,
combining the data from the two increased accuracy in all tested
conditions as it provides additional information via sensing
redundancy. While we used a bending soft actuator here, this
method could be used for any pneumatic actuator, soft or rigid,
and any type of motion as it depends only on the pressure, flow,
and volume dynamics. For systems without dedicated sensors, this
method enables soft actuator displacement and force estimation
and can be used for sensorless control, which was not possible
previously. For soft actuators containing displacement sensors,
sensor fusion with sensorless estimation may be implemented to
further improve accuracy, disturbance rejection, or possibly for
sensing multiple displacement modes such as simultaneous bend-
ing and extension. In the future, we will perform a sensitivity
analysis to study how different factors such as the soft actuator
size, shape, actuation mode, materials used and operating pres-
sure would affect its sensing accuracy.
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