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AlphaFold?2 is a machine-learning based program that predicts a protein structure based
on the amino acid sequence. In this article, we report on the current usages of this new
tool and give examples from our work in the Coronavirus Structural Task Force. With its
unprecedented accuracy, it can be utilized for the design of expression constructs, de
novo protein design and the interpretation of Cryo-EM data with an atomic model.
However, these methods are limited by their training data and are of limited use to
predict conformational variability and fold flexibility; they also lack co-factors, post-
translational modifications and multimeric complexes with oligonucleotides. They also
are not always perfect in terms of chemical geometry. Nevertheless, machine learning-
based fold prediction is a game changer for structural bioinformatics and
experimentalists alike, with exciting developments ahead.

Introduction
Cryo-EM structures are an under-determined problem with noisy data

In recent years, cryo-electron microscopy has opened up possibilities to see and
understand many large molecular machines and membrane complexes which
were previously inaccessible to the structural biology community.* Single-particle
cryo-electron microscopy (Cryo-EM) does not require crystallization, uses very
small amounts of material and is applicable to a wide range of macromolecule
sizes. It also permits us to study fibrils, membrane proteins and viral assemblies,
structures which are typically inaccessible by crystallography. The so-called
“resolution revolution”? (Fig. 1) led to the 2017 Nobel prize for developing cryo-
electron microscopy as researchers overcame limitations in sample preparation,
detector technology and image processing.* Very recently, the possibility to
determine atomic resolution structures has been experimentally demonstrated,**
a very exciting and long predicted development. However, solving an atomic
structure from Cryo-EM micrographs remains an under-determined problem with
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Fig. 1 Resolution revolution in Cryo-EM. (Left) Reconstruction maps shown for the 50S
ribosome with increasing level of detail from left to right as the field evolved. (Right) A
typical atomic model used for interpretation of reconstruction maps. Picture courtesy of
Andrea Thorn and Thomas SplettstoRer.

noisy data: molecular particlest are hard to make out with the bare eye in the
micrographs as the signal is so weak, and the inherent flexibility of molecules as
well as thousands of atomic positions in each particle represent a huge parameter
space for the atomic models we utilize for interpretation. For very large structures,
computation can be an obstacle. Furthermore, for many structures, only low-
resolution data are available, as inherent flexibility and particle heterogeneity
blur reconstruction maps. Another kind of revolution, reliable structure predic-
tion software like AlphaFold® and RoseTTAFold,” may now enable us to obtain
more from such low-resolution data and has many implications for Cryo-EM, as it
allows us to add prior knowledge in an unprecedented way to the experimental
data.

AlphaFold

AlphaFold® is a machine learning (ML)-based program that predicts a protein
structure based on the amino acid sequence. Its second generation, AlphaFold2
won the CASP14 challenge in 2020 in predicting protein folds, outperforming all
previous algorithms for fold prediction from individual protein sequences.
Chemical and Engineering News wrote “At this year’s competition, two-thirds of
the protein structures predicted by AlphaFold were within experimental error.
Basically, these structures were as good as the ones researchers could obtain
through their laboratory techniques.”

These experimental techniques, such as Cryo-EM, are currently the main
method for structure solution, and will certainly remain in use, in particular in
studies focussing on large macromolecular assemblies with complex interactions.
However, some structure determinations can now be replaced by ML-based fold
prediction. AlphaFold2, and its alternative RoseTTAFold which is also ML-based,

1 In this context, a particle can be both a single molecule or a distinct assembly of molecules, such as
avirus.

This journal is © The Royal Society of Chemistry 2022 Faraday Discuss., 2022, 240, 184-195 | 185


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2fd00072e

Open Access Article. Published on 24 Mai 2022. Downloaded on 20.02.2026 13:18:35.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online
Faraday Discussions Paper

are already used to solve, model and improve protein structures,'** and ab initio

model building in electron density or Cryo-EM reconstruction maps will no longer
be a major challenge for experimental structural biology. This will have signifi-
cant impact, not only for single-particle cryo-electron microscopy and crystal-
lography, but also on NMR, electron tomography and small angle X-ray scattering.
Most developments detailed here are very recent and ongoing, with many refer-
ences being not yet peer-reviewed.

Therefore, selected examples from our work as part of the Coronavirus
Structural Task Force will be used to highlight major points. This task force is an
initiative of 26 structural biologists and students who focus on evaluating,
improving and consolidating our knowledge of SARS-CoV-2 by critically assessing
and disseminating structural information about SARS-CoV-2 proteins,™ which
occasionally involves machine learning-based fold prediction as well. For the sake
of simplicity, we focus here on AlphaFold2 and do not compare it with RoseT-
TAFold, as both tools face similar challenges.

Applications in experimental structural biology

Machine learning-based fold prediction is an extremely valuable tool for struc-
tural biologists. We will highlight how it can be used in connection with experi-
mental work, but also which limitations apply. AlphaFold2 estimates per-residue
confidence on a scale from 0-100, with higher values being better; this score is
called predicted Local Distance Difference Test (pLDDT) and is stored in the B-factor
fields of the model file. The AlphaFold2 pipeline begins with the generation of
a deep multiple sequence alignment and a matrix of distance restraints derived
from covariant evolutionary differences in the amino acid sequences. These
inputs are then passed through a neural network block called “Evoformer” that
produces processed multi-sequence alignments and an array of pair-pair
distances. The following structure block uses these inputs to position and refine
the relative location of each amino acid in 3D space. This whole process is then
recycled several times to produce the final model.

Construct design

Perhaps the first application that comes to mind for usage of AlphaFold2 for
experiments is the design of expression constructs. Both the actual geometry of
a predicted fold as well as the pLDDT for each residue can be utilized to get an
idea about the less compact or ordered regions and the more ordered, or folded,
parts of a given protein sequence, where backbone hydrogen bonds are saturated.
Often, omitting less ordered regions from a protein sequence is beneficial to
design well behaved recombinant proteins for structural study. In order to ensure
solubility, ML-based fold prediction may also give information on surface resi-
dues of a given construct, and can permit biologists to better decide where
a domain starts and ends in the sequence.

One example for this is the betacoronavirus-specific marker domain of the
protein nsp3. The roughly 200 residues long domain had previously been pre-
dicted to be mostly disordered."”> However, an AlphaFold2 prediction in our lab
revealed a stable folded region of ~80 residues surrounded by large disordered
linkers, and recently, this region was experimentally confirmed to be folded (PDB
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ID 7T9W). Although it is not clear if this structure was solved with assistance from
structure prediction, it is a clear example on how AlphaFold2 could be utilized for
the identification and design of stable constructs.

De novo protein design

De novo protein design has been a goal of the structural biology community for
decades, but was limited by the need to experimentally validate each and every
new sequence in order to test hypotheses. With more reliable fold prediction
available, this has now changed.'®'” However, at the time of writing this article, no
experimentally validated folds designed by AlphaFold2 have yet been published.

An obvious translational outlet from de novo protein design would be the
creation of “biologics”, such as antibodies™ or DARPins.” To date, creation of
such molecules has favoured time- and resource-intensive experimental tech-
niques such as ribosome-scanning.” If the design of biologic therapeutics could
be carried out computationally, this would represent a huge advance for potential
therapeutics but also research and diagnostic tools.

Another related use of protein design technology would be vaccinology. At the
beginning of the COVID-19 pandemic, Pfizer/BioNTech and Moderna vaccines
included Spike-protein stabilising mutations to increase the half-life and thus the
efficacy of their vaccines.”* Mutations to SARS-CoV-2 Spike-protein were intro-
duced based upon knowledge of structures of the related SARS-CoV-1 and MERS
Spike proteins, but it is clear that de novo design of stabilised immunogens would
be beneficial to future vaccine-design work. Predicting such stabilizing mutations
would also be beneficial elsewhere, for example for membrane proteins.

Structure solution

ML-based fold prediction can be used to solve structures in crystallography by
molecular replacement,'” and to fit electron density and Cryo-EM reconstruction
maps. Terwilliger et al. have designed an iterative AlphaFold2 modelling pipeline
that iterates between AlphaFold2 modelling and refinement against experimental
data (either Cryo-EM or macromolecular crystallography) to yield improved
models.”® Machine learning-based fold prediction has not been used for valida-
tion yet, but it is being used to actively improve and correct experimental structure
determination.'*"*>*?

Limitations of machine learning based fold
predictions
Impact of training data

AlphaFold2 is a supervised machine learning method, hence its neural networks
are trained with data for which the fold is known, allowing its constituent neural
networks to learn how to derive the fold from the sequence. The correct choice of
training data is crucial to any machine learning project.” In the case of Alpha-
Fold2, the training data are from the world-wide Protein Data Bank (PDB),**
supplemented with selected “self-training” predictions* the source of which
remains somewhat vague.® However, the PDB data have some very specific
properties which affect the performance of AlphaFold2, mainly the lack of
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intrinsically disordered structures and a very limited sampling of conformational
space.”®

Dark proteome

The “dark proteome” is comprised of proteins with no stable fold that represents
a well-defined three-dimensional structure, an estimated 44% of proteins in
eukaryotes and viruses.”””® These are predominantly intrinsically disordered
proteins which are thought to contribute to defence and signalling, sometimes
becoming ordered when interacting with other macromolecules. As we have very
little data about these proteins in a structural sense, besides their sequence, their
structures as well as function cannot (yet) be modelled by machine learning.
However, to an extent AlphaFold2 is able to predict where disorder occurs, as the
pLDDT in such regions will be low.* Williams et al.*® differentiate structures
which AlphaFold2 cannot predict well into those which still look “like” proteins
and so-called “barbed wire” folds where residues are just lined up next to each
other in a nonsensical conformation with little hydrogen bonding. They speculate
that in the latter case, there was little evolutionary covariance in that region.

One exciting example of such a protein is the SARS-CoV-2 nucleocapsid, the
complete structure of which is still unknown, but which is essential for the viral
infection cycle, and hence an important drug target against COVID-19.>* The
nucleocapsid protein has two ordered domains (which were experimentally
determined®?) and three intrinsically disordered regions: the N-terminal (residues
1-47), C-terminal (365-419) and linker (175-247) domains. These regions may
order upon binding of RNA, when nucleocapsid protects the RNA as part of the
virion.*® Nucleocapsid has also been implicated in RNA regulation. AlphaFold2
simulations of the entire sequence are a very typical example of such a prediction,
where ordered compact domains are clearly separated from low confidence
disordered areas which show mostly “barbed wire” - with the exception of
a leucine-rich helix inside the conserved flexible linker (Fig. 2) and a lower
confidence helix in the C terminus. Interestingly, the predicted helix in the linker
domain is the site of the G215C mutation in the delta variant of SARS-CoV-2. This
mutation is likely to stabilize conserved transient helices.** If machine learning-
based fold prediction could give us more insight about what happens when RNA
is bound, this may shed light on nucleocapsid’s role in the cycle of infection.

Sampling conformational space

Many macromolecules exist in multiple conformations and are required to adopt
these conformations as part of their biological function, particularly enzymes and
membrane transporters.

Even when the structural biologists report only one structure from a Cryo-EM
experiment there is a wealth of hidden biological information in the Cryo-EM
dataset, which can, in principle, be used to observe structural changes and
determine free-energy landscapes.*® Currently, if structures of different states of
a molecular machine are needed, the usual approach is to collect and process
enough data to determine individual high-resolution reconstruction maps for
each state, which are then interpreted individually.*® However, the fact that many
molecular movements are more of a continuous process than jumps between
discrete states can make this classical approach problematic.*”
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Fig. 2 AlphaFold2 prediction for SARS-CoV-2 nucleocapsid. High pLDDT in blue, low
pLDDT in red. While the two known domains are predicted with a high confidence (blue),
the N-terminus, C-terminus and linker domain are showing a so-called "barbed wire”
structure where AlphaFold2 could not find a solution and has low confidence (red), with
the exception of two helices in the C-terminus and the linker domain. Picture courtesy of
Lisa Schmidt and Andrea Thorn.

Indeed, the PDB arguably contains mostly stable conformations, as the majority
of structures are derived from vitrified particles (in the case of Cryo-EM) or readily
crystallizable proteins (in the case of crystallography). As AlphaFold2 was trained on
this inherently biased training data, it could be assumed that, as a consequence, it
can tell us little about different conformations and the inherent flexibility or
movement of proteins. There are occasional exceptions, for example, when there is
a homomultimer as opposed to a monomer* (see section on “complexes with other
proteins”, below). A recent study by del Alamo and colleagues® showed that by
reducing the depth of the multiple sequence alignment and limiting recycling of
models within the AlphaFold2 pipeline, they were able to produce multiple fold
predictions that appeared to bridge experimentally-determined conformations of
the same protein, demonstrating that this technique samples conformational space
for a range of G-protein coupled receptors and transmembrane transport proteins.
As both these classes of protein are important drug targets,*® this is an important
step towards leveraging AlphaFold2 for translational applications.

It would be highly desirable to get a better grip on the conformational vari-
ability information which is present in crystallographic and Cryo-EM data, but not
currently really meaningfully used,*”** and then to utilize these data to enhance
the training data for neural networks like AlphaFold2.

Effects of mutations

It is still being debated whether AlphaFold2 is suitable*>** or not**** to predict the
outcomes of point mutations, with the EBI advising on its homepage that the
latter is the case. A preprint by Zhang and co-workers** suggests that, whilst there
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is no correlation between pLDDT and the destabilising effect of a point mutation,
there is however a correlation when looking at AAG or AAT), values derived from
the AlphaFold2 models, which would allow prediction of the destabilising effects
of point mutations on protein structure.

Ideal geometry

Currently, AlphaFold2 does not produce geometrically perfect structures, even if
there are good reference structures in the PDB. SARS-CoV-2 main protease is argu-
ably the most structurally researched drug target for COVID-19, with 485 experi-
mentally determined structures deposited in the PDB. However, when comparing
the PDB entry 6YB?7 for the viral main protease with the AlphaFold2 prediction of the
same sequence, AlphaFold2 produces four additional Ramachandran outliers and
a higher number of atoms that come too close to each other (with a Clashscore of 16
instead of 2.5 for the experimentally measured and manually built structure,
respectively). The predicted fold also has 88 bad bonds and angles as opposed to just
2 in the PDB entry. Some of these are in the C-terminal region which has a low
pLDDT, but they also occur in regions with higher confidence values. It is yet unclear
if the deviations from ideal geometry produced by AlphaFold2 differ from those
a human would introduce when modelling a fold to a reconstruction map, and how
representative such results are. It might be interesting to investigate this, for
example by training a so-called adversarial network* that differentiates between
AlphaFold2 and human-made structures.

Complexes with other proteins

AlphaFold-Multimer*” is a modification of AlphaFold2 to allow modelling of
protein oligomers. The adaptations include pairing the multi-sequence align-
ments either over n copies of the monomer for homo-oligomeric cases, or all
sequences for the hetero-oligomeric cases, and considering permutation
symmetry of homo-oligomeric sequences. Currently this methodology appears to
have more success with homo-oligomers than hetero-oligomers, and the authors
assume that this is because the alignment of the homo-oligomer contains more
evolutionary information about the homo-typic interfaces than for hetero-typic
interfaces.”” The authors of AlphaFold-Multimer also note that it is not yet
capable of accurately predicting antibody epitopes.*” Further development of this
technology is highly desirable of course, as there would be considerable synergy
with subtomogram averaging and single-particle Cryo-EM structure determina-
tions of large multimeric complexes. Predictions could be used to estimate the
mass of a complex and its projections, enabling a more target-oriented approach
during particle picking. Nevertheless, the users of such tools should be careful not
to rely on predictions only and therefore risk biased results. Combining Alpha-
Fold predictions of single components and maps from tomography in integrative
modelling can already reveal structures of large complexes at atomic resolution,
as Mosalganti et al. demonstrated with the human nuclear pore complex, where
the greatest limit is the resolution of the tomography map.*®

Complexes with ligands or oligonucleotides

AlphaFold2 is not designed to predict the interactions between proteins and other
molecules such as RNA, DNA or smaller ligands and co-factors, or of post-
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translational modifications, glycosides chief among them.*® As a consequence,
single-chain prediction may or may not correspond to the structure adopted in
a complex, be it ligand-induced or through interactions with another macro-
molecule. Some fold predictions have “holes” where there should be a co-factor or
a coordinated metal ion.*® Efforts to overcome this limitation are being made in
the form of adding ligands geometrically to predicted structures® and neural
network based methods may soon supplement them. Since information on post-
translational modification is readily available from UniProt, some of these such as
glycosylation and phosphorylation may be a very viable first target for modelling.

Experimental

For our research we used the Google Colab®* “Colabfold: AlphaFold2 using
MMseqs2” with the AlphaFold®*~>* version v2.2.0 and non-premium access.

Clashscores, Ramachandran outliers and so-called “bad” bond lengths and
angles were calculated with Molprobity.>

Conclusions

The Protein Data Bank®* represents the most important resource for structural
biology, and machine learning-based fold prediction is now taking full advantage
of this resource. In exchange, AlphaFold2 and more recently, RoseTTAFold, can
aid experimental design, facilitate structure solution and interpretation of maps,
and help to identify which part of a protein sequence may be intrinsically
disordered. AlphaFold2 and RoseTTAFold are exciting new tools which will allow
us to better understand macromolecular structures. Their shortcomings shine
a spotlight on the shortcomings of our current experiments and how we interpret
them with models. In order to push the boundaries of machine learning-based
fold prediction, we will need better training data. And this means that we need
experiments and modelling methods that sample, for example, the entire
conformational space of proteins. The machine learning methods themselves will
also have to evolve to include ligands, post-translational modifications and
complexes of different types of molecules. Nevertheless, machine learning-based
fold predictions are a game changer for structural bioinformatics and experi-
mentalists alike, with exciting possibilities ahead.
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