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processing models that automate
programming will transform chemistry research
and teaching†

Glen M. Hocky *a and Andrew D. White *b

Natural language processing models have emerged that can generate useable software and automate

a number of programming tasks with high fidelity. These tools have yet to have an impact on the

chemistry community. Yet, our initial testing demonstrates that this form of artificial intelligence is poised

to transform chemistry and chemical engineering research. Here, we review developments that brought

us to this point, examine applications in chemistry, and give our perspective on how this may

fundamentally alter research and teaching.
In 2021, Chen et al. released a new natural language processing
(NLP) model called Codex that can generate code from natural
language prompts.1 Interest has been broadly focused on its
application to soware engineering. We, somewhat sarcasti-
cally, asked it to “compute the dissociation curve of H2 using
pyscf”2 and the result is shown in Fig. 1. It generated correct
code and even plotted it (see ESI† for further details). Some may
scoff at the articial intelligence (AI) selected method (Hartree–
Fock) and basis set (STO-3G). Thus, we asked it to “use the most
accurate method” as a continuation of our “conversation” and it
switched to CCSD in a large basis. AI models that can connect
iation curve of H2 using the pyscf
hen repeating this prompt, the
ge due to under-specification of
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tion (ESI) available. See DOI:

the Royal Society of Chemistry
natural language to programming will have signicant conse-
quences for the eld of chemistry—here we outline a brief
history of these models and our perspective on where these
models will take us.

Recent developments

There has been a urry of advances in the topic of “autocom-
plete” style language models that can generate text given
a prompt. These language models are deep neural networks
with a specic architecture called transformers.3,4 These models
are trained on text that has words hidden,5 and have the task of
lling in missing text.4,6,7 This is called “pre-training,” because
these models were not intended to ll in missing words, but
rather be used on downstream tasks like classifying sentiment
in text or categorizing text.4 Surprisingly, it was found that these
models could generate a long seemingly real passage of text
simply from a short initial fragment of text called a prompt.4,8

These prompts can be to answer a question, summarize a story,
or make an analogy—all with the same model. This was inter-
esting, especially because the quality was beyond previous text
generation methods like recurrent neural networks or hidden
Markov models.9 Aer increasing model size and the training
corpus, the next generation of language models were able to
answer novel prompts beyond standard question-and-answer or
writing summaries.10 For example, given three worked out
examples of extracting compound names from a sentence, the
GPT-3 model could do the same for any new sentence. We show
the utility of this for parsing chemistry literature in Fig. 2 using
text from ref. 11 (see ESI† for full details). This result is
remarkable because it requires no additional training, just the
input prompt–literally a training size of 3. Not so long ago, this
was considered a difficult problem even when using thousands
of training examples.12 A caveat to these large language models
(LLMs) is that they have a limited understanding of the text
Digital Discovery, 2022, 1, 79–83 | 79
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Fig. 2 Example of chemical entity recognition after training on three
examples with GPT-3. Prompt including a direct quote of text from ref.
11 is in monospace and response is bolded and red. Note that this
misses the connection between tetrahydrofuran and THF, and does
not associate water with a chemical entity.
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which they parse or generate; for example, we nd they can
generate seemingly valid chemistry text but cannot answer
simple questions about well known chemical trends.

Aer these new LLMs were developed, anyone could have
state-of-the art performance on language tasks simply by con-
structing a few examples of their task. In the last few months,
even the need for worked out examples can be removed. In some
cases a simple ‘imperative’ sentence is enough.13 For example,
a variation on the name of this article was generated by asking
an imperative-style model to “write an exciting title” given an
earlier version of the abstract. The pace has been nothing short
of remarkable, going from the transformer in 2017 to a near
universal language model in 2020 to a model which can take
instructions in 2021.

The largest and arguably most accurate model in this class is
still the GPT-3 model from OpenAI.10 GPT-3 is an enigma in the
eld of natural language models. It is democratizing because
anyone can create a powerful language model in a few hundred
characters that is deployable immediately. Yet its weights are
a pseudo-trade secret, owned and licensed by OpenAI exclusively
to Microso. Thus the only way to run it is via their website (or
API). These kinds of models are known as Large Language
Models. Any state-of-the-art language models should start with
a LLM like GPT-3 or, for example, the freely available GPT-NEO.14

GPT-3 has been trained on billions of tokens and no effort has yet
to match its scale of training data and model size. It can be
unsettling too because it has quite adeptly captured the racism,
sexism, and bias in human writing and can be reected in its
responses.15 Mitigating this is an ongoing effort.16 Another inter-
esting outcome is that “prompt engineering,” literally learning to
interface more clearly with an AI, is now a research topic.17

GPT-3 has yet to make a major impact on chemistry, likely
because it was available starting only in 2021. We previously
prepared a demo of voice-controlled molecular dynamics anal-
ysis using GPT-3 to convert natural language into commands.18

Although an impressive example of voice controlled computa-
tional chemistry had been published using Amazon's Alexa,19

we found in our work that GPT-3 could handle looser prompts
such “wait, actually change that to be ribbons.” It also took only
about a dozen examples to teach GPT-3 how to do tasks like
render a protein, change its representation, and select specic
80 | Digital Discovery, 2022, 1, 79–83
atoms using VMD's syntax.20 This is a signicant reduction in
researcher effort to make such tools, only taking a few hours
total between the two of us. Our program itself adds an element
of accessibility for those who may have difficulty with
a keyboard and mouse interface through this voice-controlled
interface, and we could easily, and plan to, generalize this
approach to other analysis soware used in our groups.

Perhaps because programmers were the most excited about
GPT-3, frequent usage examples involved the generation of
code. And thus we reach the present, with OpenAI's release in
August of a GPT-3 model tuned explicitly for this purpose,
termed Codex.1 Although automatic code generation in chem-
istry is not new (e.g. ref. 21–23), we believe that the scope and
natural language aspects mean that code-generating LLMs like
Codex will have a broad impact on both the computational and
experimental chemistry community. Furthermore, Codex is just
the rst capable model and progress will continue. Already in
late 2021 there are models that surpass GPT-3 in language24 and
equal it but with 1/20th the number of parameters.25

Over time, there has been a tremendous increase in the
number of available soware packages to perform computational
chemistry tasks. These off-the-shelf tools can enable students to
perform tasks in minutes which might have taken a large portion
of their PhD to complete just ten years ago. Yet now, a large
fraction of a researcher's time that used to be spent on repetitive
coding tasks has been replaced by learning the interfaces to these
numerous soware packages; this task is currently done by
a combination of searching documentation pages on the web,
reading and following tutorial articles, or simply by trial and
error. These new NLP models are able to eliminate intermediate
steps and allow researchers to get on with their most important
task, which is research! Some successful examples we have tried
are shown in Fig. 3, with full details in the ESI.† While reading
these examples, remember that the model does not have a data-
base or access to a list of chemical concepts. All chemistry
knowledge, like the SMILES string for caffeine in example A, is
entirely contained in the learned oating point weights. More-
over, keep in mind that Codex may produce code that is appar-
ently correct and even executes, but which does not follow best
scientic practice for a particular type of computational task.
Immediate impact on research and
education
Scientic soware

Many scientic programming tasks, whether for data genera-
tion or data analysis, are tedious and oen repetitive over the
course of a long research project. Codex can successfully
complete a wide range of useful scientic programming tasks in
seconds with natural language instructions, greatly reducing
time to completion of many common tasks. These could
include writing a function to convert between two different le
formats, producing well formatted plots with properly labeled
axes, converting LATEX equations into a function, implement-
ing standard algorithms such histogramming, adding
comments to code, and converting code from one programming
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Example prompts and either resulting code (B and D), or final figures that emerged from running the resulting code (A and C) (full details in
the ESI†). Examples are in Python because our prompts include characteristics of Python code comments, but Codex can work in nearly any
programming language included in its corpus.
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language to another.1 We have even found that Codex is capable
of performing some of these tasks using non-english prompts,
which could help reduce barriers to accessing soware libraries
faced by non-native speakers—although result accuracy when
using non-English prompts has not been fully explored. Codex
is not always successful. However, the rapid pace of progress in
this eld shows that we should begin to think seriously about
these tasks being solved.

Will using code from Codex make chemists better or worse
programmers? We think better. Codex removes the tedium of
programming and lets chemists focus the high-level science
enabled with programs. Furthermore, the process of creating
a prompt string, mentally checking whether it seems reason-
able, testing that code on a sample input, and then iterating by
breaking down the prompt string into simpler tasks will result
in better algorithmic thinking by chemists. The code generated,
if not guaranteed to be correct, at least satises common so-
ware coding conventions with clear variable names, and typi-
cally employs relevant soware libraries to simplify complex
tasks. We ourselves have learned about a number of existing
chemistry soware libraries that we would not have discovered
otherwise through our iterative prompt creation. Note though
that Codex does not need to have a priori knowledge of how to
use your soware of interest; API usage can be suggested as part
of the prompt similar to how the task is dened in Fig. 2.
© 2022 The Author(s). Published by the Royal Society of Chemistry
Classroom settings

We and many of our colleagues around the world have begun
introducing programming assignments as a component of our
courses (especially in physical chemistry);26 this has dual
pedagogical purposes of reinforcing the physical meaning
underlying the equations we scribble on the board, and
teaching our students a skill that is useful both for research and
on the job market. One of us has even written a book on deep
learning in chemistry and materials science based around this
concept.27 But will code generation models result in poor
academic honesty, especially when standard problems can be
solved in a matter of seconds (Fig. 3)? Realistically we have few
methods to police our students' behavior in terms of collabo-
rating on programming assignments or copying from web
resources. We rely, at least in part, on their integrity. We should
rethink how these assignments are structured. Firstly, we
currently limit the difficulty of programming assignments to
align with the median programming experience of a student in
our course. Perhaps now we can move towards more difficult
and compound assignments. Secondly, we can move towards
thinking of these assignments as a laboratory exercise, where
important concepts can be explored using the soware rather
than concentrating on the process of programming itself.
Lastly, our coursework and expectations should match the
realities of what our students will face in their education and
Digital Discovery, 2022, 1, 79–83 | 81
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careers. They will always have access to web resources and, now,
tools like Codex. We should embrace the fact that we no longer
need to spend hours emphasizing the details of syntax, and
instead focus on higher level programming concepts and on
translating ideas from chemistry into algorithms.
Ongoing challenges
Access and price

Currently, access to advanced models from OpenAI and tools
like GitHub copilot are limited to users accepted into an early
tester program. Pricing from the GPT-3 model by OpenAI indi-
cates a per-query cost that is directly proportional to the length
of the input prompt, typically on the order of 1–3 cents per
query. This model may of course change, but it is reasonable to
expect that Codex will not be free until either there are
competing open-source models or the hardware required for
inference drops in price. Depending on this cost structure,
these commercial NLP models may be inaccessible to the
academic community, or to all but the best funded research
groups and universities. For example, a group might need to
run hundreds of thousands of queries to parse through
academic literature and tens of thousands for students in
a medium size course, and these would certainly be cost
prohibitive. Models developed by the open source community
currently lag commercial ones in performance, but are freely
useable, and will likely be the solution taken up in many areas
of academia. However, even these models require access to
signicant computational resources to store and execute the
models locally, and so we encourage the deployment of these
models by researchers who have such computational resources
in a way in which they can be equitably available.
Correctness

Code generation models do not guarantee correctness. Codex
typically generates correct code at about a 30% rate on a single
solution on standard problems, but improves to above 50% if
multiple solutions are tried.1 In practice, we nd that mistakes
occur when a complex algorithm is requested with little clarity.
Iterating by breaking a prompt into pieces, chaining together
prompts into a dialogue, and giving additional clues like
a function signature or imports usually yields a solution. The
code generated rarely has syntax mistakes, but we nd it fails in
obvious ways (such as failing to import a library, or expecting
a different data type to be returned by a function). Over-reliance
on AI-generated code without careful verication could result in
a loss of trust in scientic soware and the analysis performed
in published works. However, this is already an issue in scien-
tic programming and strategies to assess correctness of code
apply equally to human and AI-generated code. Interestingly,
Codex can generate unit tests for code, although it is not clear
that this strategy can identify its own mistakes.

Because the accuracy of Codex depends strongly on how the
prompts are phrased, it remains unclear how accurate it can be
for chemistry problems. We are currently developing a database
of chemistry and chemical engineering examples that can be
82 | Digital Discovery, 2022, 1, 79–83
used to systematically evaluate LLM performance in these and
related domains. A second question remains as to whether the
code produced is scientically correct (and best practice when
multiple solutions exist) for a given task, which will still require
expert human knowledge to verify for now. We also note that in
practice some of the correctness is ensured by default settings
of chemistry packages employed in the Codex solution, just as
they might be with human generated code.

Fairness/bias

As discussed in the Codex paper,1 there are a number of
possible issues related to fairness and bias which could accrue
over time. The use of AI generated code, and then the updated
training of that AI on the new code, could lead to a focus on
a narrow range of packages, methods, or programming
languages. For example, Python is already pushing out other
programming languages in computational chemistry and this
could increase due to the performance of Codex in Python over
languages like Fortran or Julia. Another example we noticed is
the preference of Codex to generate code using certain popular
soware libraries, which could lead to consolidation of use. For
example, a single point energy calculation shown in the ESI†
selects the package Psi4 if the model is not prompted to use
a particular soware.

Outlook

There are many exciting ways in which AI techniques are being
integrated into chemistry research [ref. 28–30]. Bench chemists
have expressed the fear that automation will reduce the need for
synthetic hands in the lab.31 Now it looks like these NLP models
could reduce the need for computational chemists even sooner.
We disagree in both cases. Better tools have not reduced the
need for scientists over time, but rather expanded the
complexity of problems that can be tackled by a single scientist
or a team in a given amount of time. Despite the challenges in
the previous section, we foresee the use of NLP models in
chemistry increasing accessibility of soware tools, and greatly
increasing the scope of what a single research group can
accomplish.

Data availability

All prompts and multiple response are presented in the ESI.†
Code was executed in Python 3.8. Access to OpenAI Codex and
GPT-3 is governed by OpenAI and not the authors.
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a helpful discussion on Twitter of how some code examples
could be seemingly correct while producing poor or incorrect
answers if it is not checked that a proper version of an algorithm
is employed.
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