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S66x8 noncovalent interactions revisited:
new benchmark and performance of composite
localized coupled-cluster methods†
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Amir Karton *bc and Jan M. L. Martin *a

The S66x8 noncovalent interactions benchmark has been re-evaluated at the ‘‘sterling silver’’ level, using

explicitly correlated MP2-F12 near the complete basis set limit, CCSD(F12*)/aug-cc-pVTZ-F12, and a (T)

correction from conventional CCSD(T)/sano-V{D,T}Z+ calculations. The revised reference values differ

by 0.1 kcal mol�1 RMS from the original Hobza benchmark and its revision by Brauer et al., but by only

0.04 kcal mol�1 RMS from the ‘‘bronze’’ level data in Kesharwani et al., Aust. J. Chem., 2018, 71, 238–

248. We then used these to assess the performance of localized-orbital coupled cluster approaches

with and without counterpoise corrections, such as PNO-LCCSD(T) as implemented in MOLPRO,

DLPNO-CCSD(T1) as implemented in ORCA, and LNO-CCSD(T) as implemented in MRCC, for their

respective ‘‘Normal’’, ‘‘Tight’’, and ‘‘very Tight’’ settings. We also considered composite approaches

combining different basis sets and cutoffs. Furthermore, in order to isolate basis set convergence from

domain truncation error, for the aug-cc-pVTZ basis set we compared PNO, DLPNO, and LNO

approaches with canonical CCSD(T). We conclude that LNO-CCSD(T) with veryTight criteria performs

very well for ‘‘raw’’ (CP-uncorrected), but struggles to reproduce counterpoise-corrected numbers even

for veryveryTight criteria: this means that accurate results can be obtained using either extrapolation

from basis sets large enough to quench basis set superposition error (BSSE) such as aug-cc-pV{Q,5}Z, or

using a composite scheme such as Tight{T,Q} + 1.11[vvTight(T) � Tight(T)]. In contrast, PNO-LCCSD(T)

works best with counterpoise, while performance with and without counterpoise is comparable for

DLPNO-CCSD(T1). Among more economical methods, the highest accuracies are seen for dRPA75-

D3BJ, oB97M-V, oB97M(2), revDSD-PBEP86-D4, and DFT(SAPT) with a TDEXX or ATDEXX kernel.

I. Introduction

Noncovalent interactions (NCIs) are crucial to several chemical
and biological phenomena occurring in the solid, liquid, and
gaseous phases.1–3 These interactions play a pivotal role in
designing new functional materials,4–7 controlling solvation
dynamics,8–10 protein folding,11 and catalysis12,13 with applica-
tions in, e.g., liquid-crystal technology,14 drug delivery,15 and
many more. Over the decades, several experimental studies
have been performed (see ref. 1, 16, 17 and references therein).

NCIs in the condensed phase are often determined via NMR
spectroscopy,18–20 while in the gas phase, rotational spectro-
scopy is a reliable technique for polar molecules; for recent
studies, see ref. 21–24. Significant efforts are still ongoing
to understand and quantitatively measure different types of
noncovalent interactions, present in bulk as well as inter-
faces. Unfortunately, results from experimentally studied
noncovalently-bonded systems often include dynamical and
(or) environmental effects, thus rendering them inappropriate
to use as a reference for developing semi-empirical methods.
Hence, accurate wavefunction ab initio methods are often
essential for obtaining highly precise NCI energies. Over the
past few years, several datasets have been proposed25–38 for
intra- and intermolecular noncovalent interactions involving
biologically important organic molecules of different sizes.
The strong and weak NCIs in biomolecules are particularly
interesting because they often play prominent roles in deter-
mining their favorable structures, specific binding sites, and
dynamics.11 Hobza’s S6635 and its extended version, S66x8,37
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are two such datasets. The S66x8 set comprises equilibrium and
angular-displaced nonequilibrium geometries of 66 dimers—
built from 14 different monomers representative of biomole-
cule fragments. These nonequilibrium structures were gener-
ated by multiplying the equilibrium intermonomer distances
(re) by factors of 0.90, 0.95, 1.00, 1.05, 1.10, 1.25, 1.50, and 2.00,
respectively, while freezing the other degrees of freedom. All
dimers of S66x8 can be categorized into four subsets: hydrogen
bonds, p-stacking, London dispersion complexes, and mixed-
influence interactions.

It is already well established that even at the complete basis
set (CBS) limit, second-order Møller–Plesset perturbation the-
ory (MP2) performs poorly for atomization energies, electron
affinities, and barrier heights (see ref. 39 and references
therein). However, for noncovalent interactions, MP2 with a
large basis set can be considered a starting point, which,
combined with high-level corrections (e.g., CCSD(T)–MP2 in a
smaller basis), can lead to more accurate ab initio energies.35,37

[CCSD(T) refers to coupled-cluster theory, including singles,
doubles, and perturbative triples40,41].

The original S66x8 NCI reference energies were obtained by
adding a [CCSD(T)-MP2]/AVDZ high-level correction (HLC) to
the extrapolated MP2/AV{T,Q}Z with full counterpoise (CP)
correction. In ref. 42 Brauer et al. improved the reference
energies by combining explicitly correlated MP2-F12 energies
at the CBS limit with an HLC from [CCSD(Tcsc)-F12b � MP2-
F12]/cc-pVDZ-F12. Depending on the ab initio methods used for
high-level correction, Martin and coworkers43 proposed a hier-
archy of revisited standards for NCI energies: gold, silver or
sterling silver, and bronze (see Section IIIa for further details).
In practice, the ‘‘sterling silver’’ (i.e., an alloy of 92.5% pure
silver and 7.5% other metals, usually copper) level NCI energies
are a low-cost version of the original ‘‘silver’’ standard. Due to
the daunting computational cost, the authors in ref. 43 com-
puted the interaction energies at the ‘‘gold’’ level for only 18
dimers out of 66 present in S66. However, they successfully
calculated the ‘‘sterling silver’’ and ‘‘bronze’’ standard ener-
getics of the S66 and S66x8 sets, respectively.

Although canonical CCSD(T) or explicitly correlated
CCSD(T)-F12 is often desired for highly accurate NCI energies,
the steep N7 cost scaling of these methods with the system size
(N) makes them prohibitively expensive for applications on
larger systems. Hence, over the past few years, localized
coupled-cluster methods, such as the PNO-LCCSD(T) [pair
natural orbital localized coupled-cluster with singles, doubles,
and perturbative triples] approach of the Werner group,44

DLPNO-CCSD(T) [domain localized pair natural orbital
CCSD(T)] and related methods by the Neese group,45,46 and
the LNO-CCSD(T) [localized natural orbital CCSD(T)] method of
Kallay and coworkers47–49 have gained considerable attention.
These methods’ attractive linear scaling behavior (for suffi-
ciently large systems) allows calculations on systems consisting
of hundreds of atoms. Often, with tight accuracy cutoffs and
large basis sets, they can achieve accuracy comparable to
canonical CCSD(T). Examples of recent use include the
energetics of the (H2O)20 cages using PNO-LCCSD(T)-F12b,50

(the F12b suffix refers to explicit correlation51), the noncovalent
interaction energies of seven large dimers (L7 set32) with LNO-
CCSD(T),52 the main group thermochemistry, barrier heights,
intra-, and intermolecular interaction energies of GMTKN5553

using DLPNO-CCSD(T),54 and benchmark studies on the Ru(II)
complexes involved in hydroarylation,55 highly delocalized
polypyrroles (POLYPYR56 set), and metal–organic barrier
heights (MOBH35, 35 reactions57–59).

Granted the linear cost scaling, the accuracy of localized
approaches is subject to various predefined cutoffs, and tuned
fixed combinations of these cutoffs are given as keywords in
several codes. The available options for DLPNO-CCSD(T) and
related methods in ORCA60 are LoosePNO, NormalPNO,
TightPNO, and VeryTightPNO (see Table 1 in ref. 61 for defini-
tions). The accuracy presets in LNO-CCSD(T) are set to Normal,
Tight, vTight, or vvTight (see Table 1 in ref. 49 for details). In
PNO-LCCSD(T), Default and Tight (see Tables 1–4 in ref. 44 for
more information) are the standard presets.

Recently, S66 noncovalent interactions were studied
with LNO-CCSD(T) by Kállay and Nagy,49 and with eight
low-cost LNO-CCSD(T)-based composite schemes by ourselves,
succinctly reported in a conference proceeding extended
abstract.62 Both studies showed a smooth error convergence
by gradually tightening the accuracy thresholds and increasing
the basis set size with respect to the ‘‘silver’’43 standard
reference energies. For our composite schemes, a two-point
CBS extrapolation with the same accuracy cutoff was employed,
and the effect of a tighter cutoff was estimated as a
scaled additivity correction in a relatively small basis set.
With half-counterpoise63,64 correction (i.e., the average of full
counterpoise-corrected and uncorrected results), some low-cost
composite LNO-CCSD(T) methods performed very well.

That being said, the main objectives of the present study can
be briefly summarized as: (a) climbing one step of the hier-
archical ladder of NCI reference energies toward ‘‘sterling
silver’’ standard S66x8 interaction energies; (b) evaluating the
performance of pure and composite localized coupled-cluster
methods based on LNO-CCSD(T), PNO-LCCSD(T), and DLPNO-
CCSD(T1) against the S66x8 set; (c) recommending a localized
coupled cluster method which can be used for calculating
accurate NCI energies, thus avoiding the expensive canonical
coupled-cluster options.

II. Computational methods

The Molpro 2021.365 program suite was used for the conven-
tional and explicitly correlated ab initio single-point calcula-
tions. The MRCC 2020,66 Molpro 2021.3,65 and ORCA 5.0.160

packages were employed for the LNO-CCSD(T), PNO-CCSD(T),
and DLPNO-CCSD(T1) calculations, respectively. The reference
geometries of the S66x8 dataset were extracted from the Bench-
mark Energy & Geometry Database website (https://www.begdb.
org/) and were used without further optimization. All electronic
structure calculations were performed jointly on the Faculty of
Chemistry’s Linux cluster, ChemFarm, at the Weizmann
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Institute of Science, and the Karton group’s Linux cluster at the
University of Western Australia (UWA).

For the explicitly correlated RI-MP2-F12 with the familiar
3C(FIX) ansatz,67,68 we used the correlation-consistent cc-pVnZ-
F12 basis sets69 for the atom of hydrogen and aug-cc-pVnZ-
F1270 (n = T, Q) for the nonhydrogen atoms; this expedient is
denoted haVnZ-F12 (n = T, Q) in the present manuscript. The
Boys and Bernardi counterpoise correction (CP)71 was also used
for removing the ‘‘basis set superposition errors’’ (BSSE).72,73

For the CCSD(F12*)74,75 (known in Molpro-speak as CCSD-
F12c), we used the non-augmented cc-pVTZ-F1269 throughout.

For the MP2-F12 steps, the 3C(D)76 approach might have led
to somewhat faster basis set convergence; however, while it is
both size-consistent and geminal BSSE-free like 3C(Fix), it is not
orbital-invariant. As we were already using quite large basis
sets, we opted for the orbital-invariant 3C(Fix) default instead,
which use fixed geminal amplitudes fixed by the cusp
conditions.77

CCSD-F12a,78 CCSD-F12b,78 and CCSD(F12*),74,75 represent
progressively more rigorous approximations to exact CCSD-
F12—for a detailed analysis see Köhn and Tew75 and
ref. 79—the latter of which has extensive numerical data for
total atomization energies. For interaction energies of water
clusters, Manna et al.80 showed clearly that CCSD(F12*) exhibits
the fastest basis set convergence of all three methods. Specifi-
cally for S66, the various approximations to CCSD-F12 were
investigated in some detail,43 and CCSD(F12*) was found to be
the most accurate by far. The repeatedly made claim, e.g. ref.
81, that CCSD-F12a is superior to CCSD-F12b for small
basis sets, rests on an error compensation between basis set
incompleteness of these small basis sets and the known
overbinding43,79,80 of F12a. The senior authors eschew ‘‘right
answers for the wrong reasons’’ to the greatest extent possible.

For the conventional CCSD and CCSD(T), we employed the
semi-augmented sano-pVnZ+ (n = D, T) atomic natural orbital
basis sets of Neese and Valeev.82 Appropriate auxiliary basis
sets for JKfit83 (Coulomb and exchange) and MP2fit84,85 (den-
sity fitting in MP2) were used across the board. As recom-
mended by Werner and coworkers86 for VTZ-F12 and VQZ-F12,
the geminal exponent b = 1.0a0

�1 was employed for the haVTZ-
F12 and haVQZ-F12 basis sets.

For the localized CCSD(T) calculations, haVnZ (n = T, Q, and 5)
basis sets, together with the corresponding haVnZ/MP2fit84,85 (n =
T, Q, and 5), were used. As the present paper was being revised,
ref. 87 was brought to our attention, where it was found that
substituting haV(n+1)Z/MP2Fit for haVnZ/MP2Fit significantly
reduces error in the absolute correlation energy. We tested this
at 1.0re for water dimer (system 1) and benzene dimer pi-stacked
(system 24) with Tight cutoffs and the haVTZ and haVQZ basis
sets. While the changes in absolute correlation energies are close
to what is reported in the ESI of ref. 87, they cancel almost exactly
between dimer and separate monomers, such that the interaction
energies remain unchanged to two decimal places (see also
discussion of Tables 4 and 5 in Sherrill et al.88).

Concerning accuracy thresholds, Normal, Tight, vTight, and
vvTight were considered for LNO-CCSD(T), whereas for the

PNO-LCCSD(T) calculations, we applied the Default and
Tight settings. On the other hand, for DLPNO-CCSD(T1),
we employed NormalPNO, TightPNO, and VeryTightPNO
(TightPNO with TCutMKN, TCutPNO, and TCutPairs tightened to
10�4, 10�8, and 10�6, respectively.89 For the detailed descrip-
tion of these cutoff parameters, see ref. 61) settings together
with the RIJCOSX (resolution of the identity in combination
with the chain of spheres90 algorithm) approximation. (T1)
refers to the more rigorous full iterative triples correction,91

and (T0), often confusingly referred to as (T), refers to the older,
more economical noniterative approach46 in which the off-
diagonal Fock matrix elements are neglected. Unlike (T0), (T1)
entails nontrivial I/O bandwidth requirements.

To investigate the dependence of the DLPNO-CCSD(T1)
correlation on the size of the PNO space, we also adjusted the
TCutPNO threshold in DLPNO-CCSD(T1)/Tight from the default
value 10�7 to 10�6. Two-point PNO extrapolations were also
carried out to the complete PNOs space limit (CPS), using the
simple two points extrapolation scheme proposed by Altun
et al.,92 E = EX + [Yb/(Yb � Xb)] � (EY � EX), where Y =
X + 1 and b = 7.13. This corresponds numerically to EX +
1.5 � (EY � EX).

Similar to our previous studies,62,64,80 in addition to full
counterpoise (CP) corrections,71 we have also considered the
average of raw and CP, i.e., ‘half-CP’, to calculate the dissocia-
tion energies of S66x8. A two-point basis set extrapolation was
carried out using the following expression from Halkier et al.,93

ECBS ¼ EL þ ðEL � EL�1Þ
�

L

L� 1

� �a

�1
� �

, where L refers to

the basis set cardinal number and a is the basis set extrapola-
tion exponent. For RI-MP2-F12/haV{T,Q}Z-F12, where
haV{T,Q}Z-F12 denotes the extrapolation from haVTZ-F12 and
haVQZ-F12 basis sets, we used the same a value of 4.6324
initially obtained for the S66 set.43 Like the W1 and W2
theories,94 for the localized CC methods, we employed a = 3
and 3.22 for the haV{Q,5}Z and haV{T,Q}Z extrapolations,
respectively. The optimal values of the linear combination
coefficients for the composite localized CC schemes were
obtained by minimizing the root mean square deviations
(RMSD) from the new reference energies.

Most of the DFT results were extracted from the ESI of
ref. 42; the revDSD functionals from ref. 95 were evaluated
using ORCA, while for oB97M-V96 and oB97M(2),97 the refer-
ence implementations in Q-CHEM 5 were used.98

III. Results and discussion
(a) Re-evaluation of reference energies

We were able to calculate the RI-MP2-F12/haVTZ-F12 and RI-
MP2-F12/haVQZ-F12 level dissociation energies of the S66x8
dimers with and without counterpoise (CP) correction. With
respect to the full-CP corrected RI-MP2-F12/haV{T,Q}Z-F12
energies, the RMS error of the counterpoise-uncorrected (i.e.,
‘‘raw’’) and half-CP are 0.005 and 0.002 kcal mol�1, respectively.
Hence, either full-CP, half-CP, or ‘‘raw’’ MP2-F12/CBS energies
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can be a starting point for re-evaluating the S66x8 reference NCI
energies.

Originally proposed43 for the S66, the four types of HLCs are:
(a) gold (employing [CCSD(F12*)–MP2-F12]/cc-pVQZ-F12 half-
CP combined with (T)/haV{T,Q}Z half-CP), (b) silver (using
[CCSD(F12*)–MP2-F12]/cc-pVTZ-F12 half-CP plus (T)/haV{D,T}Z
half-CP), (c) sterling silver (combining [CCSD(F12*)–MP2-F12]/
cc-pVTZ-F12 raw and (T)/sano-PV{D,T}Z+ raw), and (d) bronze
(employing half-CP CCSD(F12*)(Tcsc)/cc-pVDZ-F12). In the pre-
sent study, we adopt the ‘‘sterling silver’’-level HLC on top of
the full-CP corrected RI-MP2-F12/haV{T,Q}Z-F12 noncovalent
interaction energies, i.e., RI-MP2-F12/CBS is combined with
counterpoise uncorrected [CCSD(F12*)–MP2-F12]/cc-pVTZ-F12,
and [CCSD(T)–CCSD]/sano-pV{D,T}Z+. The equation for the
final energy looks like this:

ERef ¼ ECP
MP2�F12=haVfT;QgZ�F12 þ ERAW

½CCSDðF12�Þ�MP2�F12�=VTZ�F12
þ ERAW

½CCSDðTÞ�CCSD�=sano�pVfD;TgZþ

Our best estimates of the S66x8 dissociation energies are
listed in Table 1. Relative to the ‘‘sterling silver’’ standard
dissociation energies, the RMS deviation for Hobza’s37 original
S66x8 reference is 0.103 kcal mol�1, which is marginally
reduced to 0.096 kcal mol�1 for the revised reference proposed
by Brauer et al.42 However, the ‘‘bronze’’ quality dissociation
energies lately proposed by Kesharwani et al.43 have only
0.041 kcal mol�1 deviation. Among the four subsets, the most
significant contribution to the RMS error comes from the
p-stack complexes. In general, the error is most prominent
for the compressed geometries, which gets dramatically
reduced for the relaxed cases (see Table 2).

As the present paper was being finalized for submission, a
paper by Nagy, Kállay, and coworkers99 was published in which
they revisited the S66 reference energies at what they call a ‘‘14-
karat’’ [sic] ‘‘gold’’ (14k-gold) level. Their levels of theory
through CCSD are nearly identical to those used in the ‘‘silver’’
and ‘‘sterling silver’’ datasets of ref. 43, but their (T) treatment
is effectively that of the ‘‘gold’’ level (used only for a subset of 18
systems ref. 43 owing to computational cost), namely CCSD(T)/
haV{T,Q}Z albeit with a DF approximation.

Essentially all of the discrepancies between ‘‘14k-gold’’ on
the one hand and ‘‘silver’’ and ‘‘sterling silver’’ on the other
hand can be attributed to the more economical triples correc-
tions in these latter reference standards, namely CCSD(T)/
haV{D,T}Z and CCSD(T)/sano-{D,T}Z+, respectively.

For the 18 systems where we were able to obtain ‘‘gold’’
answers in ref. 43, the 14k-gold values of Nagy et al.99 agree to
0.008 kcal mol�1 RMS. The ‘‘silver’’ is very close to both, with
RMSD of just 0.011 kcal mol�1 from the ‘‘14k-gold’’ for the
whole S66 set, and of just 0.006 kcal mol�1 from the ‘‘gold’’ for
the subset of 18 systems where the latter is available. In
contrast, the more economical ‘‘sterling silver’’ level used for
S66x8 in the present study deviates by a somewhat larger
0.027 kcal mol�1 from ‘‘14k-gold’’ for S66. For the 18-system
‘‘gold’’ subset, we find a not dissimilar 0.024 kcal mol�1 deviation.

Keeping also in mind residual uncertainties in other com-
ponents, we conclude from the above that 0.03 kcal mol�1

RMS is a realistic estimate of the uncertainty in our revised
S66x8 data.

(b) LNO-CCSD(T)-based methods

In ref. 62 we benchmarked the performance of pure and
composite LNO-CCSD(T) methods with respect to the S66
noncovalent interaction energies (‘‘silver’’ standard43). In the
present study, we investigate the performance of LNO-CCSD(T)-
based methods for the S66x8 set using the different basis sets
and accuracy thresholds available.

Like in ref. 62 here too, we find a consistent improvement of
accuracy with increasing basis set size and tightening of the
thresholds; counterpoise correction also offers an appreciable
improvement (see upper blocks of Table 3). With vTight
threshold and half-CP, LNO-CCSD(T)/haV5Z is the best pick
(0.056 kcal mol�1) among the single basis set approaches tested
here. Except for the ‘‘Normal’’ settings, the RMS deviations with
half-CP are marginally better than the full-CP option for all
other accuracy thresholds.

Irrespective of the choice of accuracy threshold, a two-point
CBS extrapolation improves the RMS error statistics across the
board. Among all the LNO-CCSD(T)/CBS methods listed in
Table 3, the LNO-CCSD(T, vTight)/haV{T,Q}Z half-CP is the best
pick (0.025 kcal mol�1) for S66x8 noncovalent interactions.
With the ‘‘Normal’’ setting and counterpoise uncorrected inter-
action energies, the low-cost LNO-CCSD(T)/haV{T,Q}Z fortui-
tously outperforms LNO-CCSD(T)/haV{Q,5}Z, and gradually
tightening the accuracy threshold narrows that performance
gap. The LNO-CCSD(T)/CBS methods with half-CP have slightly
lower RMSD than their full-CP counterparts; however, the
differences are within the uncertainty of the reference data.
(Needless to say, at the true CBS limit, the difference between
raw and CP-corrected values should be zero: a significant
discrepancy between raw and CP in a CBS extrapolation sug-
gests that the underlying calculations are inadequate, or that
the extrapolation procedure is problematic.)

Closer scrutiny of LNO-CCSD(T) performance for the subsets
of S66x8 reveals that, for any individual haVnZ basis set, CP
correction always degrades performance for hydrogen bonds,
but improves it for the three other subsets. Upon CBS extra-
polation, we find a significant raw-CP difference for hydrogen
bonds with Normal cutoffs and haV{Q,5}Z basis sets, favoring
full CP, while the opposite is true for the other three subsets.
With Tight cutoffs, the raw-CP differences upon extrapolation
approach the uncertainty in the reference values; with vTight
cutoffs, one can no longer meaningfully choose between raw
and CP. One might elect to use half-CP and use the difference
between raw and CP as a crude uncertainty bar; on the other
hand, the ‘‘raw’’ calculations are more convenient, especially
when applied to intramolecular interactions where CP correc-
tion would be impractical. Using the vTight threshold and half-
CP, LNO-CCSD(T)/haV{T,Q}Z and LNO-CCSD(T)/haV5Z are sta-
tistically tied for best pick for all four subsets of S66x8 (see the
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Table 1 Sterling silvera level S66x8 dissociation energies (kcal mol�1). re represents the equilibrium distance for each complex

Dimers 0.90re 0.95re 1.00re 1.05re 1.10re 1.25re 1.50re 2.00re

Hydrogen bonding
1 Water� � �Water 4.666 4.954 4.946 4.762 4.480 3.470 2.117 0.874
2 Water� � �MeOH 5.298 5.629 5.627 5.423 5.106 3.956 2.391 0.954
3 Water� � �MeNH2 6.606 6.957 6.941 6.695 6.318 4.928 2.980 1.142
4 Water� � �Peptide 7.739 8.131 8.128 7.878 7.482 5.994 3.830 1.439
5 MeOH� � �MeOH 5.387 5.771 5.804 5.620 5.312 4.151 2.528 1.011
6 MeOH� � �MeNH2 7.081 7.554 7.601 7.378 6.994 5.505 3.345 1.273
7 MeOH� � �Peptide 7.756 8.235 8.289 8.072 7.692 6.188 3.647 1.098
8 MeOH� � �Water 4.675 5.017 5.045 4.881 4.610 3.598 2.205 0.909
9 MeNH2� � �MeOH 2.837 3.051 3.037 2.892 2.682 1.971 1.098 0.393
10 MeNH2� � �MeNH2 3.722 4.104 4.153 4.002 3.742 2.781 1.302 0.385
11 MeNH2� � �Peptide 4.958 5.354 5.397 5.222 4.923 3.197 1.397 0.455
12 MeNH2� � �Water 6.861 7.291 7.312 7.077 6.691 5.231 3.155 1.196
13 Peptide� � �MeOH 5.753 6.165 6.220 6.054 5.759 4.608 2.948 1.307
14 Peptide� � �MeNH2 6.907 7.411 7.500 7.324 6.986 5.610 3.549 1.488
15 Peptide� � �Peptide 8.096 8.586 8.659 8.464 8.105 6.649 4.407 1.775
16 Peptide� � �Water 4.761 5.108 5.150 5.005 4.754 3.799 2.454 1.137
17 Uracil� � �Uracil (BP) 16.066 17.187 17.405 17.034 16.293 13.190 8.357 3.337
18 Water� � �Pyridine 6.484 6.870 6.879 6.653 6.289 4.929 3.006 1.184
19 MeOH� � �Pyridine 6.876 7.374 7.448 7.253 6.897 5.473 3.373 1.328
20 AcOH� � �AcOH 17.925 19.170 19.397 18.965 18.125 14.635 9.219 3.594
21 AcNH2� � �AcNH2 15.274 16.299 16.472 16.094 15.380 12.460 8.007 3.008
22 AcOH� � �Uracil 18.324 19.524 19.759 19.361 18.565 15.198 9.867 4.150
23 AcNH2� � �Uracil 18.076 19.195 19.432 19.086 18.367 15.265 10.240 4.662

p stack
24 Benzene� � �Benzene (p–p) -0.138 1.791 2.521 2.633 2.450 1.479 0.468 0.059
25 Pyridine� � �Pyridine (p–p) 0.964 2.891 3.610 3.689 3.452 2.299 0.945 0.233
26 Uracil� � �Uracil (p–p) 7.593 9.266 9.619 9.256 8.541 5.993 3.071 0.986
27 Benzene� � �Pyridine (p–p) 0.362 2.413 3.156 3.234 3.001 1.913 0.705 0.143
28 Benzene� � �Uracil (p–p) 3.178 4.924 5.465 5.351 4.916 3.207 1.334 0.246
29 Pyridine� � �Uracil (p–p) 3.374 5.878 6.576 6.391 5.820 3.793 1.752 0.529
30 Benzene� � �Ethene 0.021 0.939 1.269 1.292 1.172 0.651 0.159 -0.013
31 Uracil� � �Ethene 2.396 3.092 3.257 3.137 2.878 1.949 0.918 0.251
32 Uracil� � �Ethyne 2.587 3.387 3.587 3.464 3.183 2.159 1.012 0.264
33 Pyridine� � �Ethene 0.668 1.447 1.721 1.719 1.581 0.985 0.350 0.042

London dispersion complexes
34 Pentane� � �Pentane 2.796 3.564 3.723 3.567 3.265 2.211 1.039 0.263
35 Neopentane� � �Pentane 1.822 2.460 2.580 2.456 2.228 1.479 0.690 0.185
36 Neopentane� � �Neopentane 1.425 1.705 1.742 1.625 1.502 1.018 0.497 0.132
37 Cyclopentane� � �Neopentane 1.576 2.217 2.373 2.295 2.111 1.449 0.699 0.189
38 Cyclopentane� � �Cyclopentane 2.198 2.800 2.956 2.824 2.563 1.693 0.780 0.201
39 Benzene� � �Cyclopentane 1.969 3.081 3.438 3.364 3.083 2.026 0.884 0.189
40 Benzene� � �Neopentane 1.712 2.549 2.791 2.721 2.502 1.674 0.762 0.187
41 Uracil� � �Pentane 3.679 4.560 4.724 4.502 3.999 2.402 0.961 0.212
42 Uracil� � �Cyclopentane 2.900 3.836 4.019 3.823 3.459 2.249 1.000 0.246
43 Uracil� � �Neopentane 2.756 3.500 3.613 3.415 3.083 2.013 0.912 0.229
44 Ethene� � �Pentane 1.597 1.918 1.943 1.822 1.639 1.069 0.481 0.117
45 Ethyne� � �Pentane 0.992 1.510 1.646 1.589 1.444 0.932 0.400 0.092
46 Peptide� � �Pentane 3.655 4.115 4.162 3.974 3.665 2.586 1.172 0.282

Mixed influence complexes
47 Benzene� � �Benzene (TS) 1.493 2.452 2.762 2.731 2.536 1.734 0.818 0.222
48 Pyridine� � �Pyridine (TS) 2.402 3.199 3.440 3.375 3.154 2.259 1.168 0.370
49 Benzene� � �Pyridine (TS) 1.945 2.922 3.226 3.176 2.955 2.068 1.042 0.332
50 Benzene� � �Ethyne (CH–p) 1.791 2.580 2.810 2.747 2.545 1.772 0.890 0.272
51 Ethyne� � �Ethyne (TS) 1.170 1.434 1.489 1.431 1.318 0.913 0.452 0.134
52 Benzene� � �AcOH (OH–p) 3.908 4.525 4.655 4.508 4.213 3.107 1.697 0.554
53 Benzene� � �AcNH2 (NH–p) 3.768 4.242 4.334 4.201 3.945 2.960 1.641 0.481
54 Benzene� � �Water (OH–p) 2.745 3.161 3.224 3.094 2.870 2.089 1.154 0.417
55 Benzene� � �MeOH (OH–p) 3.338 3.950 4.106 3.998 3.749 2.774 1.524 0.518
56 Benzene� � �MeNH2 (NH–p) 2.381 2.977 3.139 3.044 2.803 1.922 0.933 0.260
57 Benzene� � �Peptide (NH–p) 3.595 4.828 5.176 5.059 4.715 3.384 1.799 0.619
58 Pyridine� � �Pyridine (CH-N) 2.884 3.869 4.166 3.890 3.442 2.173 1.005 0.274
59 Ethyne� � �Water (CH–O) 2.604 2.865 2.899 2.799 2.628 1.999 1.178 0.461
60 Ethyne� � �AcOH (OH–p) 4.306 4.787 4.854 4.679 4.371 3.234 1.760 0.556
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upper block of Table 3). Hence, the more economical of the two
would seem preferable.

Let us take a closer look at the composite LNO-CCSD(T)
schemes (a.k.a, cLNOs62) with different accuracy thresholds
and basis sets. Regardless of CP correction or lack thereof,
the RMS deviations of all the cLNO methods are below
0.1 kcal mol�1 for the complete S66x8 set. With RMS error of
0.024 and 0.028 kcal mol�1, respectively, vTight{T,Q} +
0.31[vvTight � vTight]/T half-CP and vTight{Q,5} + 0.71[vvTight
� vTight]/T half-CP are the two best picks among the eleven
cLNOs listed in Table 3. However, the first cLNO scheme is
clearly preferred due to the lower computational cost. Either
with ‘‘raw’’ or half-CP, the most affordable composite scheme
Normal{T,Q} + c1[vTight � Normal]/T performs similarly to the
very expensive LNO-CCSD(T, vTight)/haV5Z half-CP.

In special cases, where a counterpoise correction is impos-
sible (e.g., intramolecular or conformer interactions), the com-
posite method, vTight{Q,5} + 1.55[vvTight � vTight]/T offers
excellent performance (0.030 kcal mol�1). Another low-cost
alternative for such situations is the Tight{T,Q} + 0.72[vvTight
� Tight]/T scheme (0.039 kcal mol�1). Without CP corrections,
the two-tier scheme, Tight{T,Q} + 0.72[vvTight � Tight]/T,
marginally outperforms more expensive three-tier method,

Tight{Q,5} + 2.45[vvTight � vTight]/T + 0.59[vTight �
Tight]/Q, which is contrary to what we observed for S66 in a
previous study.62 With half-CP, a relatively low-cost method,
Tight{T,Q} + 0.95[vTight � Tight]/T, offers very good accuracy
(0.037 kcal mol�1) when compared to the ‘‘sterling silver’’ level
S66x8 interaction energies.

(c) PNO-LCCSD(T)-based methods

The RMS deviations for the pure and composite PNO-LCCSD(T)
methods using different basis sets and accuracy thresholds are
listed in Table 4.

Overall, the counterpoise uncorrected results indicate a
consistent improvement in accuracy with increasing basis set
size for any threshold. Among the PNO-LCCSD(T)/haVnZ meth-
ods, PNO-LCCSD(T, Tight)/haVQZ offers the best performance
(0.071 kcal mol�1), followed by PNO-LCCSD(T, Default)/haV5Z
(0.075 kcal mol�1). Further investigation reveals that the former
method does better for the hydrogen-bonded systems and
London dispersion complexes, whereas the latter is preferred
for the p-stacks. Using a full-CP correction worsens perfor-
mance across the board. However, half-CP can still perform
close to the ‘‘raw’’ accuracy with a large basis set. Now,
comparing the performance of ‘‘raw’’ and half-CP variants of

Table 1 (continued )

Dimers 0.90re 0.95re 1.00re 1.05re 1.10re 1.25re 1.50re 2.00re

61 Pentane� � �AcOH 2.629 2.835 2.820 2.677 2.467 1.757 0.773 0.166
62 Pentane� � �AcNH2 3.074 3.426 3.437 3.259 2.988 2.078 1.025 0.268
63 Benzene� � �AcOH 2.547 3.444 3.671 3.546 3.253 2.195 1.007 0.259
64 Peptide� � �Ethene 2.527 2.881 2.928 2.801 2.585 1.828 0.867 0.188
65 Pyridine� � �Ethyne 3.661 4.008 4.066 3.946 3.724 2.866 1.679 0.618
66 MeNH2� � �Pyridine 3.360 3.796 3.893 3.784 3.560 2.677 1.488 0.490

a Sterling silver = MP2-F12/haV{T,Q}Z-F12 full-CP + [CCSD(F12*) � MP2-F12]/VTZ-F12 ‘‘raw’’ + (T)/sano-PV{D,T}Z+ ‘‘raw’’.

Table 2 Root-mean-square deviations (RMSDs, kcal mol�1) of Hobza’s original, Martin’s revised (ref. 42), and ‘‘bronze’’ standard S66x8 dissociation
energies evaluated relative to the ‘‘sterling silver’’ reference. Together with full S66x8, we have also included the RMSDs for its four subsets (i.e., hydrogen
bonds, p-stacking, London dispersion complexes, and mixed-influence interactions). Heat mapping is from red (worst) via yellow to green (best)
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PNO-LCCSD(T, Tight)/haVQZ for the four subsets of S66x8, we
have found that for the hydrogen bonding complexes, ‘‘raw’’ is
preferred, but for the p-stack dimers, ‘‘half-CP’’ variant offers
significantly better accuracy than its half-CP counterpart. For
the London dispersion and mixed influence dimers, there is
very little to choose between these two methods (see Table 4).

Now, what is the effect of CBS extrapolation? Both
haV{T,Q}Z and haV{Q,5}Z, in combination with the full-CP
and Default threshold, perform remarkably well (0.027 and
0.028 kcal mol�1, respectively). Using a tighter threshold mar-
ginally improves the accuracy of PNO-LCCSD(T)/haV{T,Q}Z
(0.020 kcal mol�1). Hence, irrespective of the choice of accuracy

threshold, the standard PNO-LCCSD(T)/CBS methods with full-
CP perform similar to the best cLNO schemes.

Unlike for cLNOs, we have not found any significant
improvement in accuracy when PNO-LCCSD(T)-based compo-
site schemes (i.e., cPNOs) are considered instead of the stan-
dard PNO-LCCSD(T)/haVnZ or PNO-LCCSD(T)/CBS methods
with full-CP. However, for special cases where counterpoise
correction is not applicable (in other words using ‘‘raw’’ ener-
gies), the composite methods outperform the standard PNO-
LCCSD(T) alternatives. With RMS deviations of 0.033 and
0.034 kcal mol�1, respectively, Default{Q,5} + 0.15[Tight �
Default]/T and Default{Q,5} + 0.33[Tight � Default]/Q are the

Table 3 Root-mean-square deviations (RMSDs, kcal mol�1) of pure and composite LNO-CCSD(T) methods with respect to the ‘‘sterling silver’’
reference. Heat mapping is from red (worst) via yellow to green (best)

Table 4 Root-mean-square deviations (RMSDs, kcal mol�1) of the pure and composite PNO-LCCSD(T) methods with respect to the ‘‘sterling silver’’
reference. Heat mapping is from red (worst) via yellow to green (best)
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two best picks in the counterpoise uncorrected category. In the
same vein, comparing the top performers from the ‘‘raw’’ cLNO
and cPNO schemes, we have found that for hydrogen bonding
and p-stack complexes, cLNOs are preferred, whereas cPNOs
offer better accuracy for London dispersion complexes. For the
mixed influence subset, there is very little to choose between
cLNO and cPNO.

(d) DLPNO-CCSD(T1)-based methods

Table 5 summarizes the RMSDs of the pure and composite
DLPNO-CCSD(T1) methods for different basis sets, accuracy
thresholds, and TcutPNO combinations.

The ‘‘raw’’ results indicate a gradual improvement of accu-
racy with increasing basis set size and tightening of the thresh-
olds, provided that we use the default TcutPNO (i.e., 3.33 � 10�7

and 1.0 � 10�7 for Normal and TightPNO, respectively). Moving
from ‘‘raw’’ to full-CP correction further improves the perfor-
mance of DLPNO-CCSD(T1, Normal)/haVTZ, but stays more or
less indifferent when haVQZ is employed. However, while using
the Tight threshold, the performance of ‘‘raw’’ and full-CP
DLPNO-CCSD(T1)/haVTZ are comparable, but with haVQZ basis
set, ‘‘raw’’ performs better.

Fortuitously, the strategy of using the threshold TCutPNO =
1.0 � 10�6 in TightPNO and a haVTZ basis set offers the best
performance (0.309 kcal mol�1) for ‘‘raw’’ interaction energies.
The RMS error counter-intuitively increases as the TCutPNO

parameter becomes tighter. When CP correction is included,
we observe the reverse trend. Irrespective of the choice of
TCutPNO, half-CP correction is more beneficial than full-CP.
With the same basis set, tightening the accuracy threshold
further (i.e., VeryTightPNO) is only beneficial for half-CP. Using
a more extensive basis set and default TCutPNO improves accu-
racy throughout, with and without CP correction. Although
‘‘raw’’ DLPNO-CCSD(T1, Tight)/haVTZ underperforms ‘‘raw’’
DLPNO-CCSD(T1, Tight)/haVQZ for p-stacks, London disper-
sion, and mixed influence subsets, these two methods offer
similar performance for H-bonds.

Now, what is the effect of CBS extrapolation? Except for
the hydrogen bonding, we noticed an improvement in perfor-
mance across the board when the Normal threshold is
employed. By tightening the accuracy threshold further, we
found that CBS extrapolation does more harm than good for
‘‘raw’’ but improves the performance for full and half-CP.
With full-CP correction, the DLPNO-CCSD(T1, Tight)/haV{T,Q}Z
(0.095 kcal mol�1) is the best pick among the pure methods,
followed by its half-CP version (0.117 kcal mol�1). Using
DLPNO-CCSD(T1, Tight)/haVQZ/TCutPNO = 10�7 and DLPNO-
CCSD(T1, Tight)/haVTZ/CPS interaction energies for two-point
CBS extrapolation worsen the performance regardless of con-
sidering a CP correction.

Among the counterpoise-uncorrected DLPNO-CCSD(T1)-
based composite schemes, a relatively low-cost composite
method, Normal/{T,Q} + 0.93[Tight/CPS � Normal]/T offers
the best accuracy (0.072 kcal mol�1). The use of counterpoise
correction only offers marginal improvement (RMSD = 0.065
and 0.067 kcal mol�1, with full and half-CP, respectively). With

an RMS error of 0.059 kcal mol�1, the full CP corrected
composite method, Tight{T,Q} + 1.1[vTight � Tight]/T is the
best pick among all the standard and composite DLPNO-
CCSD(T1) listed in Table 5.

DLPNO-CCSD(T1) is much more demanding in terms of I/O
storage and bandwidth requirements than DLPNO-CCSD(T0),
and this will hold especially true for the largest basis sets. It was
previously observed by Iron and Janes57,58 and by Efremenko
and Martin,55 both in the context of organometallic catalysis,
that the (T1)–(T0) difference is relatively insensitive to the basis
set; hence, we considered here a two-tier composite method,
DLPNO-CCSD(T0)/haVQZ + c1[DLPNO-CCSD(T0)/haVQZ �
DLPNO-CCSD(T0)/haVTZ] + c2[DLPNO-CCSD(T1)/haVTZ �
DLPNO-CCSD(T0)/haVTZ], where the CBS extrapolation is car-
ried out at the DLPNO-CCSD(T0) level and the (T1) � (T0)
difference is evaluated in a smaller basis set. With a root-
mean-square error of 0.079 kcal mol�1, the performance of this
cDLPNO-scheme is comparable to the best pick in the ‘‘raw’’
category, Normal{T,Q} + 0.93[Tight/CPS � Normal]/T. While
using counterpoise-uncorrected energies, the optimized coeffi-
cient for the (T1) � (T0) contribution is anomalously large
(c2 = 3.33). However, with full-CP correction, c2 is reduced to
1.33, and the RMS error improves to 0.068 kcal mol�1, which is
not very far from the accuracy of the more expensive DLPNO-
CCSD(T1)-based composite method, Tight{T,Q} + 1.1[vTight �
Tight]/T (see Table 5). These two-tier cDLPNO methods may be
an attractive option for larger systems.

(e) A few observations regarding computational requirements

This is not the appropriate place to enter into a discussion on
the relative computational efficiency of the various codes—par-
ticularly since our computing cluster is extremely heteroge-
neous in terms of CPUs, and a fair comparison would require
not only ‘‘all else being equal’’ but a broad and representative
sample.

That being said, we can state a few observations concerning
the effect of different accuracy settings. For illustration, wall
clock timings for system 26 (stacked uracil dimer) at 1.0re have
been given in the ESI.† All these calculations were carried out
on 8 cores of an otherwise idle 2.4GHz Intel Xeon Gold Intel(R)
Xeon(R) Gold 6240R ‘‘Cascade Lake’’ node with 192GB of
RAM—the ORCA jobs, which are more demanding in terms
of I/O bandwidth, were run on a machine with the same CPU
and 2.9TB of striped SSD.

As a rule, for LNO-CCSD(T), turning up accuracy from
Normal to Tight requires between triple and quintuple the wall
clock time.

The additional expense going from Tight to vTight tends to
be smaller—doubling to tripling wall clock time.

As for the dependence of wall clock times on the basis set
size, naively one would expect it to tend towards linear scaling
with the number of basis functions for sufficiently large sys-
tems and basis sets. In practice, we are not yet operating in
such a size regime: the numbers of basis functions are in a
848 : 408 = 2.08 ratio for haVTZ : haVDZ, and a 1520 : 848 = 1.79
ratio for haVQZ : haVTZ, but the wall clock times definitely go

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
O

kt
ob

er
 2

02
2.

 D
ow

nl
oa

de
d 

on
 3

0.
10

.2
02

5 
08

:1
3:

03
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2cp03938a


This journal is © the Owner Societies 2022 Phys. Chem. Chem. Phys., 2022, 24, 25555–25570 |  25563

up faster than that, by a factor of 3-4. Still, this is much gentler
than the N4 scaling of the canonical calculation—so while
canonical CCSD(T) calculations in the smallest haVDZ basis
set may not be abysmally more demanding than their linear-
ized counterpart, a wide chasm opens for the larger basis set.
This militates in favor of a composite method where basis set
extrapolation is carried out using localized methods, and the
difference between canonical and localized method in the
smallest basis set used as a differential correction.

Another observation that may be relevant here concerns the
PNO cutoff extrapolation of the TcutPNO = 1.0 � 10�{6,7} type. The
more expensive TcutPNO = 1.0 � 10�7 calculation is equivalent to
standard Tight, while the TcutPNO = 1.0 � 10�6 calculation is not
much more expensive than Normal. So, it would seem that this
is an economical as well as accurate option.

(f) How far can we go with canonical CCSD(T)?

We could do the canonical CCSD(T) calculations with density
fitting and haVnZ (n = D and T) basis set for the whole S66x8 set.
Relative to the ‘‘sterling silver’’ reference, DF-CCSD(T)/haVDZ
offers RMS deviations of 1.16, 0.90, and 0.53 kcal mol�1 with
‘‘raw’’, full-CP, and half-CP correction, respectively. Except for
NCIs involving hydrogen bonds, CP correction is beneficial
across the board. Using a larger basis set improves RMSDs
substantially, and on top of that, a two-point CBS extrapolation
(using Schwenke’s100 formula) further ameliorates the statis-
tics. With full-CP, DF-CCSD(T)/haV{D,T}Z offers an RMS devia-
tion of 0.11 kcal mol�1. For p-stack, London dispersion, and
mixed influence subsets, full-CP performs noticeably better
than the ‘‘raw’’ and half-CP. The only exceptions are the H-
bonded systems, where half-CP wins the race. Compared to the
‘‘sterling silver’’ level HLC, the canonical [CCSD(T)-MP2]/haVTZ
energies offer RMS errors of 0.04, 0.05, and 0.07 kcal mol�1

with ‘‘raw’’, full, and half CP correction.
Now, let us compare the performance of different localized

coupled cluster methods relative to the canonical DF-CCSD(T)
interaction energies. LNO-CCSD(T) with vTight and vvTight
settings perform remarkably if we do not use any CP correction.
Irrespective of the choice of accuracy threshold, full-CP

correction is beneficial for the pure PNO-CCSD(T) methods,
but they are not even close to ‘‘raw’’ LNO-CCSD(T)/vTight.
However, with full CP correction, the PNO-based composite
method, Tight + A(Tight � Default), offers accuracy similar to
‘‘raw’’ LNO-CCSD(T)/vTight. For DLPNO-CCSD(T1), it does not
make a significant difference whether we use counterpoise
correction or not (see Table 6).

(g) Some remarks on the evaluation of more approximate
methods, such as DFT functionals and SAPT(DFT)

The revised reference data prompt the question: to what extent
do the revised values affect or modify prior observations (e.g., in
ref. 42) on the performance of DFT functionals for the S66x8
dataset?

The easiest way to see this would be to take the Excel
workbook in the ESI† of the said paper, splice in our new
reference data, and compare the published tables in the paper
with the dynamic versions in leaf ‘‘Summary’’ of the ESI,†
particularly for Tables 14 and 15.

Generally speaking, the conclusions from ref. 42 are unaf-
fected: for instance, the RMSDs for BLYP-D3BJ and BP86-D3BJ
with the def2-QZVP101 basis set and full counterpoise change
from 0.23 and 0.58 kcal mol�1, respectively, to 0.22 and
0.65 kcal mol�1. This does not affect the superiority of BLYP
over BP86 in this context. (The corresponding changes for
B3LYP-D3BJ and PBE0-D3BJ are from 0.20 and 0.35 kcal mol�1,
respectively, to 0.23 and 0.36 kcal mol�1.) Among double
hybrids, all with haVQZ basis set and half-counterpoise,
B2PLYP-D3BJ102 and B2GP-PLYP-D3BJ103 actually improve from
0.19 and 0.22 kcal mol�1 to 0.15 and 0.18 kcal mol�1, respec-
tively, while DSD-PBEP86-D3BJ104 deteriorates from 0.20 to
0.26 kcal mol�1. However, we previously found the revised
version of the latter, revDSD-PBEP86-D3BJ,95 to be an improve-
ment over DSD-PBEP86-D3BJ across the board, and this is also
seen here for the new S66x8 reference, RMSD = 0.19 kcal mol�1.
Using the more up-to-date D4105 dispersion correction, this
latter RMSD drops to 0.17 kcal mol�1 for revDSD-PBE86-D4.
With RMSD of 0.10 kcal mol�1, dRPA75106 with a custom-
fitted42 D3BJ correction was the best performer in ref. 42 and

Table 5 Root-mean-square deviations (RMSDs, kcal mol�1) of the pure and composite DLPNO-CCSD(T1) methods with respect to the ‘‘sterling silver’’
reference. Heat mapping is from red (worst) via yellow to green (best)
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continues to be so here (0.12 kcal mol�1). [As explained in
ref. 42, the D3BJ correction has a small coefficient and is
similar to that found for CCSD: in effect, it compensates for
the missing dispersion terms from (T), which start at fourth
order in symmetry-adapted perturbation theory (SAPT)107]

As a parenthetical remark, the combinatorially optimized,
range-separated hybrid, oB97M-V96 and double hybrid,
oB97M(2)97 functionals were not yet available to us when ref.
42 was published; we find here 0.15 and 0.14 kcal mol�1 root-
mean-square deviations relative to the new reference, respec-
tively. It means oB97M-V outperforms all other rung 4 func-
tionals, plus all rung 5 functionals considered in ref. 42 other
than dRPA75-D3BJ and oB97M(2).

DFT(SAPT),108 i.e., SAPT using DFT orbitals, has recently
gained some currency as a relatively low-cost/high-accuracy
approach for noncovalent interactions. Heßelmann109 applied
such approaches to S66x8 using asymptotically corrected
PBE0ac orbitals and three different response kernels, namely
ALDA (adiabatic local density approximation), TDEXX (time-
dependent exact exchange), and ATDEXX (adiabatic TDEXX).
The RMSD between Table 5 of his ESI† and the present
‘‘sterling silver’’ reference data is 0.224 kcal mol�1 using
ALDA, but this drops to 0.150 kcal mol�1 for TDEXX
and slightly further to 0.136 kcal mol�1 for ATDEXX. Most
of the improvement results from the p-stacked subset (see
ESI† for details); suffice to say that both TDEXX and ATDEXX

Table 6 Root-mean-square deviations (RMSDs, kcal mol�1) of different localized orbital coupled cluster methods with respect to the canonical DF-
CCSD(T)/haVTZ level interaction energies of S66x8. Raw, CP, and half-CP represents the counterpoise uncorrected, full-, and half-CP corrected results.
DCP represents the size of the counterpoise correction; DDCP is the deviation between DCP with this particular localized method and with canonical
CCSD(T)
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are competitive with the best DFT functionals considered
here, and not greatly inferior to previous wavefunction
calculation sets.

IV. Conclusions

We have successfully calculated the ‘‘sterling silver’’ standard
noncovalent interaction energies of the entire S66x8 set. Ana-
lyzing the RMS errors of three other S66x8 reference dissocia-
tion energies available in the literature, we can safely conclude
that the ‘‘sterling silver’’ reference energies are markedly better
than Hobza’s original ones37 as well as the earlier revised
version proposed by our group,42 but only marginally better
than the ‘‘bronze’’43 level dissociation energies obtained at
much lower cost.

Additionally, examining the RMS deviations of a variety of
pure and composite localized coupled cluster methods for the
new S66x8 reference, we can conclude the following:

(i) With half-CP, LNO-CCSD(T, vTight)/haV{T,Q}Z is among
the top performers of all the pure and composite LNO-CCSD(T)
methods tested. Although none of the low-cost cLNO methods
are as good as the expensive LNO-CCSD(T,vTight)/haV{T,Q}Z
half-CP, the Tight{T,Q} + 0.95[vTight � Tight]/T half-CP would
be a viable alternative if someone is restricted to limited
computational resources. Especially for London dispersion,
the low-cost Tight{T,Q} + 0.78[vvTight � Tight]/T half-CP offers
accuracy comparable to the more expensive LNO-CCSD(T,
vTight)/haV{T,Q}Z half-CP or vTight{T,Q} + 0.31[vvTight �
vTight]/T half-CP. For the intramolecular interactions, where
counterpoise correction is not practical, we can safely recom-
mend the composite method, vTight{T,Q} + 0.72[vvTight �
vTight]/T.

(ii) Even with the Default threshold, PNO-LCCSD(T)/
haV{T,Q}Z full-CP performs remarkably sound—which gets
even better with a tighter threshold. This remarkable result of
the PNO-LCCSD(T, Tight)/haV{T,Q}Z full-CP could be due to the
benefits from fortuitous error compensation. Using a compo-
site scheme does not have any added advantage over the pure
PNO-LCCSD(T) methods. However, for the intramolecular inter-
actions, the low-cost cPNO method, Default{Q,5} + 0.15[Tight �
Default]/T still has the edge over the pure methods due to its
superiority for the p stack complexes.

(iii) Even with CPS and CBS extrapolation, the pure DLPNO-
CCSD(T1) methods are not up to the mark for S66x8 noncova-
lent interactions. An RMS deviation of 0.059 kcal mol�1 is the
best accuracy we can achieve by employing a composite
scheme, which is well behind the best picks among the PNO
or LNO-based composite methods.

For the situations where any kind of CP correction is
impractical, we recommend the composite cPNO and cLNO
methods, Default{Q,5} + 0.15[Tight � Default]/T and Tight{T,Q}
+ 0.72[vvTight � Tight]/T, respectively.

Among more economical methods, the highest accuracies
are seen for dRPA75-D3BJ, oB97M-V, oB97M(2), revDSD-
PBEP86-D4, and DFT(SAPT) with a TDEXX or ATDEXX kernel.

Note added in revision

While the present paper was being revised in response to
peer reviewer comments, a study by Förster110 appeared that
compares the performance of RPA, second-order screened
exchange111 (SOSEX), and second-order statically screened
exchange112,113 for a variety of chemical problems, including
S66x8. Extracting the RPA, RPA + SOSEX(W, nc), and RPA +
SOSEX(W(0), W(0)) level interaction energies from the ESI of ref.
110, we have evaluated the RMS deviations relative to the
‘‘sterling silver’’ reference data (see the ESI†). With full-CP
correction and CBS extrapolation, RPA, RPA + SOSEX(W, nc),
and RPA + SOSEX(W(0), W(0)) has RMSD of 0.44, 0.35,
0.40 kcal mol�1, respectively—note that none of these include
separate dispersion corrections, unlike the better-performing
DFT options in the present paper.
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Kállay, Construction and Application of a New Dual-
Hybrid Random Phase Approximation, J. Chem. Theory
Comput., 2015, 11(10), 4615–4626, DOI: 10.1021/
acs.jctc.5b00420.

107 K. Szalewicz, Symmetry-Adapted Perturbation Theory of
Intermolecular Forces, Wiley Interdiscip. Rev.: Comput.
Mol. Sci., 2012, 2(2), 254–272, DOI: 10.1002/wcms.86.

108 G. Jansen, Symmetry-adapted Perturbation Theory
Based on Density Functional Theory for Noncovalent

Interactions, Wiley Interdiscip. Rev.: Comput. Mol. Sci.,
2014, 4(2), 127–144, DOI: 10.1002/wcms.1164.

109 A. Heßelmann, DFT-SAPT Intermolecular Interaction Ener-
gies Employing Exact-Exchange Kohn–Sham Response
Methods, J. Chem. Theory Comput., 2018, 14(4),
1943–1959, DOI: 10.1021/acs.jctc.7b01233.

110 A. Förster, Assessment of the Second-Order Statically
Screened Exchange Correction to the Random Phase
Approximation for Correlation Energies, J. Chem. Theory
Comput., 2022, 18(10), 5948–5965.

111 D. L. Freeman, Coupled-Cluster Expansion Applied to the
Electron Gas: Inclusion of Ring and Exchange Effects, Phys.
Rev. B: Solid State, 1977, 15(12), 5512–5521, DOI: 10.1103/
PhysRevB.15.5512.

112 A. Förster and L. Visscher, Exploring the Statically Screened
G3W2 Correction to the GW Self-Energy: Charged Excitations
and Total Energies of Finite Systems, Phys. Rev. B, 2022,
105(12), 125121, DOI: 10.1103/PhysRevB.105.125121.

113 A. Grüneis, G. Kresse, Y. Hinuma and F. Oba, Ionization
Potentials of Solids: The Importance of Vertex Corrections,
Phys. Rev. Lett., 2014, 112(9), 096401, DOI: 10.1103/
PhysRevLett.112.096401.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
O

kt
ob

er
 2

02
2.

 D
ow

nl
oa

de
d 

on
 3

0.
10

.2
02

5 
08

:1
3:

03
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://doi.org/10.1021/jp801805p
https://doi.org/10.1021/jp801805p
https://doi.org/10.1039/c1cp22592h
https://doi.org/10.1063/1.5090222
https://doi.org/10.1021/acs.jctc.5b00420
https://doi.org/10.1021/acs.jctc.5b00420
https://doi.org/10.1002/wcms.86
https://doi.org/10.1002/wcms.1164
https://doi.org/10.1021/acs.jctc.7b01233
https://doi.org/10.1103/PhysRevB.15.5512
https://doi.org/10.1103/PhysRevB.15.5512
https://doi.org/10.1103/PhysRevB.105.125121
https://doi.org/10.1103/PhysRevLett.112.096401
https://doi.org/10.1103/PhysRevLett.112.096401
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2cp03938a



