Issue 4, 2018

Mesoporous layered hexagonal platelets of Co3O4 nanoparticles with (111) facets for battery applications: high performance and ultra-high rate capability

Abstract

The thermally stable and crystalline 2D layered mesoporous hexagonal platelets of cobalt oxide (Co3O4) with (111) facets were prepared by using the template-free wet chemical synthesis approach. The high surface energy (111) facets known for a highly electroactive surface are expected to enhance the electrochemical properties, especially the rate capability. The highly crystalline Co3O4 with an average particle size of 25 nm formed a 2D mesoporous layered structure, with an average thickness of ∼40 nm, a pore size of 8–10 nm, and a specific surface area of 45.68 m2 g−1 promoting large surface confined electrochemical reaction. The 2D layered mesoporous Co3O4 exhibits a maximum specific capacity of 305 mA h g−1 at a scan rate of 5 mV s−1 and 137.6 mA h g−1 at a current density of 434.8 mA g−1. The maximum energy and power densities of 32.03 W h kg−1 and 9.36 kW kg−1, respectively, are achieved from the 2D hexagonal platelets of mesoporous Co3O4 nanoparticles with (111) facets. An excellent ultra-high rate capability of ∼62% capacity retention was observed after increasing the discharge current density from ∼434.8 mA g−1 to 43 480 mA g−1. Furthermore, a cycling stability of 81.25% was achieved even after 2020 charge–discharge cycles at a current density of 12 170 mA g−1. This high performance and ultra-high rate capability could be attributed to the (111) facets ‘crystal plane’ effect of Co3O4. Our results presented here confirm that the 2D mesoporous layered hexagonal platelets of Co3O4 exhibit “battery-mimic” behaviour in an aqueous electrolyte of KOH.

Graphical abstract: Mesoporous layered hexagonal platelets of Co3O4 nanoparticles with (111) facets for battery applications: high performance and ultra-high rate capability

Supplementary files

Article information

Article type
Paper
Submitted
23 Okt 2017
Accepted
07 Dez 2017
First published
08 Dez 2017

Nanoscale, 2018,10, 1779-1787

Mesoporous layered hexagonal platelets of Co3O4 nanoparticles with (111) facets for battery applications: high performance and ultra-high rate capability

P. Bhojane, L. Sinha, R. S. Devan and P. M. Shirage, Nanoscale, 2018, 10, 1779 DOI: 10.1039/C7NR07879J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements