
RSC Advances

REVIEW

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Ju

li 
20

17
. D

ow
nl

oa
de

d 
on

 0
9.

11
.2

02
4 

13
:3

6:
32

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Solubility predict
aCollege of Physics and Electronic Informati

Jiangxi, China, 341000. E-mail: jcimsli@16
bCollege of Mechanical and Electric Engin

Jiangxi, China, 330031

Li Mengshan received his Ph.D. in 2
the Gannan Normal University (
Electronic Information). He has co
cations that include articles in pe
nals, communications at national
His research interests include p
polymer theoretical calculation an
chemistry, articial intelligence, sw
its application, and quantitative s

Wu Wei is currently a senior studen
(in the College of Physics and El
published about 10 peer reviewed

Cite this: RSC Adv., 2017, 7, 35274

Received 13th April 2017
Accepted 8th July 2017

DOI: 10.1039/c7ra04200k

rsc.li/rsc-advances

35274 | RSC Adv., 2017, 7, 35274–3528
ion of gases in polymers based on
an artificial neural network: a review

Li Mengshan, *ab Wu Wei,a Chen Bingsheng,a Wu Yana and Huang Xingyuanb

As an important physical chemistry property, solubility is still a popular research topic. Its theoretical calculation

method has developed rapidly. In particular, the artificial neural network (ANN) has attracted the attention of

researchers because of its unique nonlinear processing ability. This review provides a brief explanation of the

ANN approaches that are most commonly applied to predict gas solubility in polymers, and states the

implementation principle, progress, and performance analysis of hybrid ANNs based on the intelligence

algorithm. The prospect of solubility prediction based on current research trends is then proposed. This

review attempts to analyze the solubility calculation method and provides an insight into and reference for

the application of the artificial intelligence method in chemistry and material fields, and can expand in the

future because of the increasing number of solubility prediction approaches being introduced.
on, Gannan Normal University, Ganzhou,

3.com

eering, Nanchang University, Nanchang,

014. He is currently working at
in the College of Physics and
authored more than 40 publi-
er-reviewed international jour-
and international conferences.
olymer materials processing,
d simulation, polymer physical
arm intelligence algorithm and
tructure–activity relationship.

t at Gannan Normal University
ectronic Information). She has
journal articles. Her current

2

1 Introduction

The solubility of gases in polymers is an important physico-
chemical property, it is widely applied in the elds of material
extraction and separation, material modication, and new
research interests include a swarm intelligence algorithm and its
application.
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material preparation and processing.1–4 Solubility data can be
obtained by experimental measurements and computational
simulations; given the rapid change in solubility with small
changes in temperature and pressure under supercritical high
temperature and pressure, experimental research is difficult,
and the experiment is laborious and time-consuming. There-
fore, a reliable prediction model must be established.

Many solubility factors, such as system temperature, pres-
sure, polarity, and system density, show strong non-linear
mapping relationships.5 Mutually restricted nonlinear charac-
teristics exist among the inuencing factors, especially in the
supercritical high temperature and pressure conditions; the
traditional thermodynamics research method is relatively
difficult, and the simulation precision and efficiency cannot
satisfy the demand.6–8 Articial neural network (ANN) has many
characteristics, such as self-organization and self-learning
ability, suitable fault tolerance, and strong non-linear process-
ing power; hence, it exhibits superior performance when
calculating solubility problems.9 The most commonly employed
methods to predict solubility are back propagation ANN (BP
ANN) and radial basis function ANN (RBF ANN). Scientists are
working to explore computing methods that are more efficient,
accurate, and adaptive to obtain a reliable solubility model.10,11

Therefore, the solubility of gases in different polymers based
on many varieties of ANN is taken as an example in this review.
The basic principles, research status, advantages, and disad-
vantages of different types of ANNs in solubility calculation are
reviewed. Combined with our previous studies in recent years,
this review mainly states the progress of the solubility predic-
tion of ANNs based on the swarm intelligence algorithm. The
solubility calculation is then summarized and prospected based
on current research trends. This review attempts to analyze the
solubility calculation method and provide an insight into and
reference for the application of the articial intelligence
method in chemistry and material elds.
Fig. 1 Solubility prediction model based on ANN.
2 ANN solubility model

ANN is one of the most commonly employed methods in the
nonlinear application eld. It has excellent functions, such as
nonlinear mapping, classication and recognition, optimiza-
tion calculation, and data processing. The basic mathematical
model can be expressed as follows:12

Ui ¼
Xn

j¼1

wijxj � qi

Yi ¼ f(Ui)

where X1, X2,., and Xn are the model inputs; n is the number of
input nodes; wij is the weight coefficient of the neuron and
input node; qi is the threshold value of neuron i; Yi is the output
of neuron i; and f(Ui) is the network excitation function.

The ANN was trained according to the experimental data and
optimized to obtain the parameter matrix in the network model.
Thus, a mathematical model that reects the inherent complex
This journal is © The Royal Society of Chemistry 2017
rules between the input and output of the experiment was
developed. The basic structure of the model is shown in Fig. 1.
The inuence of system temperature, pressure, density, and
other factors on solubility is generally analyzed according to the
solubility of the supercritical carbon dioxide in polymer. The
node number in the input layer is determined by the inuence
factors, such as temperature, pressure, and density. The output
layer nodes are generally soluble, and the number of hidden
layers and nodes is commonly determined by the empirical
formula method or the heuristic method.

Many scholars have successfully applied ANN to correlate
and predict solubility under supercritical conditions. Ghar-
agheizi F. et al.13 utilized ANN to predict the solubility of solid
complexes in supercritical carbon dioxide. Eslamimanesh A.
et al.14 utilized ANN to predict solubility of supercritical carbon
dioxide in ionic liquids, and showed the capability of the pre-
sented model. Modarress H. et al.15 also proposed a solubility
prediction model with ANN, and showed that the presented
model can predict the gas solubility satisfactorily. Khajeh
A. et al.16 proposed the use of ANN to predict the solubility
of carbon dioxide in polymers, and indicated that the
presented model is an effective method. Bakhbakhi Y.17 and
Lashkarbolooki M. et al.18–22 compared the solubility prediction
of ANN with several state equations Mehdizadeh B. et al.23,24

compared the solubility predictions of ANNs and semi-
empirical equations. Hussain M. A. et al.25 utilized the Kent–
Eisenberg model in conjunction with ANN to predict dissolu-
tion. Torrecilla J. S. et al.26 proposed the solubility model based
on multilayer ANN and mathematical regression methods.
Their results show that the performance of ANN is suitable for
correlating and predicting solubility, and showed that the ANN
model is a superior technique with high accuracy.

The reliability and accuracy of ANN prediction are better
than the traditional thermodynamics method. Researchers also
reported that the performance of ANN relies heavily on its
training algorithm, and the commonly utilized BP algorithm
can easily fall into the local search and other deciencies.
Meanwhile, the center of the base function of the RBF ANN
model and expansion constant and the network weights have
a more signicant impact on the model performance. Khajeh A.
et al.27 proposed the use of RBF ANN and the adaptive fuzzy
neural system method to predict gas solubility in polymers and
determined that the adaptive fuzzy neural system method has
RSC Adv., 2017, 7, 35274–35282 | 35275
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superior performance. Khayamian T. et al.28 utilized wavelet
ANN to establish the solubility model, which largely improved
the performance. The training algorithm of the ANN model is
currently attracting signicant attention. Thus, many
researchers have attempted to train ANN using the intelligent
optimization method and have applied different chemicals and
materials in different elds.
3 Hybrid ANN model
3.1 Hybrid ANNs based on some optimization algorithm

The ANN method overcomes the difficulties of modeling in
traditional prediction, is easy to implement, and has attained
remarkable results in terms of accuracy and efficiency.
However, ANN still has shortcomings. The rapid development
of computer science and the advanced computer technology for
solubility studies can generate new ideas to address these
limitations. The combination of ANN and optimization
Table 1 Hybrid ANNs commonly used in recent years

Abbreviation Hybrid method

SA-ANN ANN trained by simulated a
GA-ANN ANN with genetic algorithm
AC-A-RBF ANN RBF ANN with an adaptive A
AC-AR-RBF ANN Adaptive regulation (AR) ant
ANFIS Adaptive neuro-fuzzy inferen
SVM-ANN Support vector machine algo
BA-MPL-ANN ANN with Bees algorithm an
MLR, MQR, MLP, RBF ANN RBF ANN based on Multiple

Quadratic Regression (MQR
SVR-ANN CI-ANN ANN based on Support Vect

regression ANN based Comp
RS–BP ANN Rough sets and BP ANN
KE-ANN The Kent–Eisenberg (KE) m
BP-NL ANN Back-propagation (BP) mult
WANN Wavelet articial neural net
FANN Fuzzy articial neural netwo
HSF-RBF ANN Hybrid self-organizing fuzzy
ICO-VSA RBF ANN RBF ANN with improved ch

Table 2 Hybrid ANNs based on PSO algorithms

Abbreviation Hybrid method

UPSO-FFANN Feed-forward articial neura
unied particle swarm optim

ADPSO-RBF ANN Linearly decreased inertia w
optimization (ADPSO) mode

PSO ANN Articial neural network tra
BBPSO-AD RBF ANN RBF ANN based on bare-bon

optimization (BBPSO) with
GC-PSO ANN Group Contribution (GC) pl
ALPSO-RBF ANN RBF ANN with linearly decr
PSO-FNN Fuzzy articial neural netwo
IOFC-PSO RBF ANN RBF ANN using input–outpu
HPSO-GSA FFANN FFANN using hybrid particl

optimization (HPSO) and gr

35276 | RSC Adv., 2017, 7, 35274–35282
algorithms (or hybrid ANN) has been a popular research topic in
recent years. Some commonly used hybrid ANNs are collected
and shown in Table 1. The more discussions on the hybrid
ANNs elaborate on the correlative references.
3.2 Hybrid ANNs based on particle swarm optimization
algorithm

Particle swarm optimization (PSO) algorithm, which has
a simple implementation and fewer parameters, is one of the
most widely adopted intelligent algorithms.54,55 The two main
types of PSOs combined with ANN are as follows.56 One type
utilizes the PSO algorithm to optimize the weights of the ANN;
the other embeds the ANN PSO optimization process. Lazzus J.
A. et al.57 utilized PSO to predict the phase equilibrium data of
supercritical carbon dioxide and show that the PSO provides
a good method to optimize the parameters with high accuracy.
Ahmadi M. A. et al.58 applied unied PSO to train the feed
forward ANN, the results demonstrate the effectiveness of the
Reference

nnealing (SA) 29 and 30
s (GA) 31–34
nt Colony Algorithm (AC-A) 35 and 36
colony algorithm and RBF ANN 37
ce system 38
rithm and ANN 39–42
d multi-layer perceptron (MLP) method 43
Linear Regression (MLR), Multiple
), and Multi Layer Perceptron (MLP)

26

or Regression (SVR), and generalized
utational Intelligent (CI)

44

45
odel in combination with ANN 25
i-layer (ML) ANN 46
work (WNN) 47 and 48
rk (FANN) 49–51
(HSF) and RBF ANN 52
aos optimization and variable-scale analysis 53

Reference

l network (FFANN) optimized by
ization (UPSO)

58

eight particle swarm
l for RBF ANN

60

ined by particle swarm optimization 61–63
es particle swarm

an adaptive disturbance factor (AD)
64

us ANN plus PSO 65
eased inertia weight (ALPSO) 60
rks (FANN) with PSO algorithm 66 and 67
t fuzzy clustering (IOFC) and PSO 68
e swarm
avitational search algorithm (GSA)

69

This journal is © The Royal Society of Chemistry 2017
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Table 3 Solubility model of hybrid ANN based on improved PSO and several cluster methods

Abbreviation Method description Instance Reference

CSAPSO-BP ANN ANN trained by chaotic self-adaptive particle swarm
optimization (CSAPSO) algorithm and back
propagation (BP) algorithm

Solubility prediction of carbon
dioxide (CO2) in polystyrene (PS),
polypropylene (PP) and nitrogen (N2) in PS

71 and 72

CSAPSO-KCM
RBF NN

RBF ANN trained by CSAPSO and k-means
clustering method (KCM)

Solubility prediction of N2 in polystyrene (PS)
and CO2 in PS, PP, poly(butylene succinate) (PBS),
and poly(butylene succinate-co-adipate) (PBSA)

73

KCM-PSO FNN Four-layer fuzzy neural network (FNN) model combining
PSO algorithm and KCM

Solubility prediction of CO2 in PS, PP, and N2 in PS 74

CSAPSO-FCM
RBF ANN

RBF ANN model based on CSAPSO and fuzzy c-means
clustering method (FCM)

Solubility prediction of CO2 in PS, PP, PBS and PBSA 75

CSAPSO-KHM
RBF ANN

RBF ANN model combined with CSAPSO algorithm
and K-harmonic means
clustering method (KHM)

Solubility prediction of supercritical carbon dioxide
in 10 different polymers

76

CEAPSO KHM
RBF ANN

RBF ANN trained by accelerated particle swarm
optimization (APSO) algorithm with chaotic enhanced
disturbance factor (CE) and KHM algorithm

Solubility prediction of CO2 in polymers
including PP, PS, poly(vinyl acetate) (PVA),
carboxylated polyesters (CPEs) and PBSA

77
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proposed model. Zhang J. R. et al.59 proposed the combination
of PSO and BP algorithms, and their results show that their
hybrid algorithm performs better than the single algorithm.
Hybrid ANNs based on PSO algorithm are collected and shown
in Table 2. The more discussions on the hybrid ANNs based on
PSO elaborate on the correlative references.

The PSO algorithm has several disadvantages, such as slow
local search and premature convergence.70 Our research group
has discussed and developed some hybrid methods based on
the chaos theory, the adaptive PSO algorithm, and the clus-
tering method in recent years. We have also presented several
solubility models based on hybrid ANNs. Table 3 shows these
solubility models we proposed in the past few years.

There are mainly two types of solubility prediction models
based on PSO and ANN. First, BP ANN solubility prediction
models based on PSO and its variant; second, RBF ANN models
Fig. 2 Hybrid ANN solubility model based on PSO.

This journal is © The Royal Society of Chemistry 2017
based on several clustering method, PSO and its variant. The
improved PSO algorithm called CSAPSO was developed.

The improved PSO algorithm based on chaos theory and self-
adaptive weight strategy was developed, called CSAPSO. And
three clustering methods such as k-means clustering method
(KCM), fuzzy c-means clusteringmethod (FCM) and K-harmonic
means clustering method (KHM) are used to model training.
The rst type of model called CSAPSO-BP ANN was proposed by
training the BP ANN with CSAPSO algorithm. The second type of
model, such as CSAPSO-KCM RBF ANN, CSAPSO-FCM RBF ANN
and CSAPSO-KHM RBF ANN, were established by optimizing
the RBF ANN parameters by combining the improved CSAPSO
algorithm with clustering methods. The experimental results
show the superiority of each model in predicting dissolution.
The overall scheme of the said model is shown in Fig. 2.

The detailed model of the process and the detailed perfor-
mance analysis and discussion of these models can serve as
reference in the relevant literature.
4 Performance analysis of the hybrid
ANN model

So as to compare and analyze the performance of the hybrid
ANN model, four types of solubility prediction models,
proposed by the members of our research group recent years,
consisted of CSAPSO-BP ANN, CSAPSO-KCMRBF ANN, CSAPSO-
FCM RBF ANN, and CSAPSO-KHM RBF ANN, are employed as
comparative models. The more discussion on the hybrid ANNs
model elaborate on the correlative references.71–77 CSAPSO-KCM
RBF ANN, CSAPSO-FCM RBF ANN and CSAPSO-KHM RBF ANN
were referred to as CSAPSO-C RBF ANN. To verify the efficiency
and validity, the experimental data commonly divides into two
subsets, namely, training subset and non-training subset,
according to the different polymers. In this review, the training
subset consisted of 4 polymers such as polypropylene (PP),
poly(D,L-lactide-co-glycolide) (PLGA), polystyrene (PS) and
carboxylated polyesters (CPEs), respectively; and the non-
RSC Adv., 2017, 7, 35274–35282 | 35277
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Fig. 3 Prediction of ScCO2 in PP (training subset).

Fig. 4 Prediction of ScCO2 in PLGA (training subset).

Fig. 5 Prediction of ScCO2 in PS (training subset).

Fig. 6 Prediction of ScCO2 in CPEs (training subset).
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training subset consisted of poly(2,6-dimethyl-1,4-phenylene
ether) (PPO) and poly(vinyl acetate) (PVAc). Fig. 3–6 show the
correlation between prediction and experimental values of the
different comparative models in the training subset, and Fig. 7
and 8 show the correlation in the non-training subset.71–77

From the gures, we can summarize the following
characteristics.

(1) The performances of the three models in the CSAPSO-C
RBF ANN are the same.

The CSAPSO-KCM RBF ANN, CSAPSO-FCM RBF ANN, and
CSAPSO-KHM RBF ANN models based on the CSAPSO and
clustering methods are consistent in terms of prediction error
and correlation. The accuracy and efficiency of the three models
are basically the same. CSAPSO-KHM RBF ANN is slightly
superior in terms of stability, and its prediction performance is
suitable in most polymer systems. These can be attributed to
the global search ability of the CSAPSO training algorithm and
35278 | RSC Adv., 2017, 7, 35274–35282
optimized model weight. The integration of each clustering
method also makes the center of the basis function and
expansion constant more reasonable, which eventually leads to
the superior prediction performance of the model.

(2) The performance of the CSAPSO-C RBF ANN model is
better than that of the training set.

Model training guarantees the performance, as shown in the
training data. The model has suitable development and mining
abilities. In particular, the model has a suitable prediction
effect in the context of the experimental data and can be applied
to predict new experimental data under the same experimental
conditions.

(3) The CSAPSO-BP ANN model exhibits better stability in
untested training experiments.

First, the CSAPSO and BP algorithms have a suitable ability
to explore. The two algorithms also promote and complement
each other in the exploration of the model and provide a solid
This journal is © The Royal Society of Chemistry 2017
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Fig. 7 Prediction of ScCO2 in PPO (non-training subset).

Fig. 8 Prediction of ScCO2 in PVAc (non-training subset).
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theoretical basis. In particular, the exploration and develop-
ment of this model are better. Here, pioneering performance
refers to the absence of any target material under the premise of
experimental data through other existing material prediction
approaches of target substances.

(4) The predictive model has better performance, higher
precision, and better correlation in the training set than in the
non-trained set.

The essence of model prediction is the data tting in
mathematics, specically by mining the inherent data law
through known data and then predicting the tting process of
the new data. The data without training essentially have
a similar principle (i.e., predicting new items through other
similar data). The training set is clearly more theoretical than
the unsupervised training set, and its comprehensive perfor-
mance is better.
This journal is © The Royal Society of Chemistry 2017
5 Model evaluation

The ANN model is generally developed in three steps: training,
verication, and testing. The purpose of training is to explore
the regularity between the input and output data and save them
through network parameters. The purpose of verication is to
ne-tune the trained network parameters and enhance the
comprehensive performance and fault tolerance. Finally, the
model is applied for practice. The main features of the ANN
utilized in the solubility prediction are as follows:

(1) ANN avoids the problem of non-steady-state correction in
the traditional thermodynamic solubility model.

The supercritical gas in the traditional thermodynamic solu-
bility prediction model is regarded as a compressed gas or
expanded liquid. The solubility problem is determined by
calculating the mass and volume. Under low temperatures and
pressures, the gas can be regarded as an ideal gas, and the results
are more accurate. By contrast, high temperatures and pressures
in supercritical conditions transform the system into a non-
steady state, thus the gas cannot be regarded as an ideal gas.

(2) ANN has suitable prediction reliability under high
temperatures and pressures.

ANN predicts solubility by modeling the nonlinear relation-
ship between the model input and output. For the model
parameters, the numerical value of the condition data is
unrecognized, and the prediction reliability is also suitable even
at high temperatures and pressures.

(3) The ANN model has suitable fault-tolerance and strong
anti-interference ability.

ANN establishes a non-linear relationship according to the
training data, and the accuracy of the training data directly
affects the comprehensive effect. Training data are generally
real experimental data. However, experimental operation errors
and other reasons can make some of the training data false,
which are then called invalid data. An error in the experimental
record and writing a higher or lower number of data bits can
cause individual data to become extremely abnormal, which are
then called disturbing data. ANN can train the model with other
data when it encounters invalid or disturbing data. This model
can then determine this type of abnormal data during training.
The ANN model can slowly address such abnormal data by
training normal data to minimize their impact on the model
and deal with them effectively. Hence, this model has better
fault-tolerance and stronger anti-interference ability.

The main deciencies of the ANN solubility model are as
follows:

(1) Lacks a rational explanation of the dissolving machine.
The essence of ANN prediction is data tting. The model is

a function of the black box, which can obtain the output as long
as the input is received. However, what is the mechanism by
which the output is obtained?What is the law between the input
and output? What is the relationship between the output and
the impact of factors on the model that cannot be reected?
Although the predictive effect of the solubility model has an
impeccable function, its solubility mechanism still needs to be
comprehensively explained.
RSC Adv., 2017, 7, 35274–35282 | 35279
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(2) The prediction performance depends on the experi-
mental data.

The realization principle of the ANN model is to study and
train the experimental data, as well as record the law between
the input and output data by network weight. If no experimental
data are available, then the model cannot work. Moreover, the
model performance and experimental data quantity and accu-
racy are also highly relevant. The more experimental data
available, the better the training model. Hence, the ANN is
extremely dependent on the experimental data.

(3) Its prediction performance depends on its training
algorithm.

Model training adjusts the model parameters. A suitable
training algorithm has a decisive inuence on the model
performance. However, the training algorithm does not have
a unied standard, and the algorithm for suitable performance is
not necessarily applicable to all types of ANN training. The
selection of a training algorithm, which is oen through
comparison or the test method, is relatively difficult. Thus, this
process ismore difficult for non-computer professionals to grasp.
6 Prospects

Computer simulations have replaced experiments in laboratories
to a certain extent. The signicance of this is undeniable.
Approximately 100 types of calculation models exist for two-
phase or multi-phase systems. The performance of each predic-
tion model is slightly different. However, none can be properly
applied to all engineering analyses of the forecast. The advan-
tages and disadvantages of the prediction model and the calcu-
lation accuracy are critical in the actual selection of a forecasting
model according to the system and model characteristics.

The combination of hybrid ANN technology and chemical
engineering can be further developed and has a broad appli-
cation prospects. Given the solubility prediction of supercritical
carbon dioxide in polymers, the following aspects can be dis-
cussed intensively.

(1) Study on the solubility mechanism.
The actual process parameters of the solubility prediction

model can be studied by combining with the actual industrial
production processes and conditions, such as adsorption,
diffusion, and interface renewal theory. The model can deter-
mine the law and mechanism of solubility in industrial
production and provide theoretical guidance for the selection of
process parameters.

(2) Explore the solubility of new ideas.
The most considered factors in current solubility studies are

system temperature and pressure, and the solubility model of
many inuencing factors can reect the real implementation
rules better, which can improve model adaptability. Solubility
prediction based on hybrid ANN technology, such as combining
with diffusion theory and synergy theory, must also be studied
further. Hybrid ANN methods can be adopted to solve different
nonlinear problems in chemistry, material science, biology, and
medicine.

(3) Study the solubility method of multi-scale calculation.
35280 | RSC Adv., 2017, 7, 35274–35282
Multi-scale studies from different times and spatial scales
can be referenced to study the physical and chemical properties
of materials. Multi-scale solubility studies can also be utilized to
analyze the solubility problems of different substances at the
microscopic, mesoscopic, and macroscopic levels. For example,
the ANN model can provide scientic and theoretical guidance
for the selection of process parameters at themulti-scale level in
the eld of materials processing. It also has suitable application
prospects in polymer self-assembly, phase rheological proper-
ties, and kinetic analysis. The multi-scale computation method
has important interdisciplinary, cross-level, and time-span
research values. The multi-scale calculation method will be
discussed in future studies and applied to chemical, material,
and other related computing elds.

Nomenclature
ANN
 Articial neural network

BP
 Back propagation

RBF
 Radial basis function

PSO
 Particle swarm optimization

CSAPSO
 Chaotic self-adaptive particle swarm optimization

SA
 Simulated annealing

GA
 Genetic algorithms

ACO
 Ant colony optimization

BA
 Bees algorithm

SVM
 Support vector machine

KCM
 k-Means clustering method

FCM
 Fuzzy c-means clustering method

KHM
 K-Harmonic means clustering method

PBS
 Poly(butylene succinate)

PBSA
 Poly(butylene succinate-co-adipate)

PP
 Polypropylene

PS
 Polystyrene

PLLA
 Poly(L-lactide)

PLGA
 Poly(D,L-lactide-co-glycolide)

HDPE
 High-density polyethylene

PVAc
 Poly(vinyl acetate)

PPO
 Poly(2,6-dimethyl-1,4-phenylene ether)

CPEs
 Carboxylated polyesters

ANFIS
 Adaptive neuro-fuzzy inference system
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