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Wavelet formulation of the polarizable continuum
model. II. Use of piecewise bilinear boundary
elements†

Monica Bugeanu,a Roberto Di Remigio,*b Krzysztof Mozgawa,b

Simen Sommerfelt Reine,c Helmut Harbrechta and Luca Fredianib

The simplicity of dielectric continuum models has made them a standard tool in almost any Quantum

Chemistry (QC) package. Despite being intuitive from a physical point of view, the actual electrostatic

problem at the cavity boundary is challenging: the underlying boundary integral equations depend on

singular, long-range operators. The parametrization of the cavity boundary should be molecular-shaped,

smooth and differentiable. Even the most advanced implementations, based on the integral equation

formulation (IEF) of the polarizable continuum model (PCM), generally lead to working equations which

do not guarantee convergence to the exact solution and/or might become numerically unstable in the

limit of large refinement of the molecular cavity (small tesserae). This is because they generally make

use of a surface parametrization with cusps (interlocking spheres) and employ collocation methods for

the discretization (point charges). Wavelets on a smooth cavity are an attractive alternative to consider:

for the operators involved, they lead to highly sparse matrices and precise error control. Moreover, by

making use of a bilinear basis for the representation of operators and functions on the cavity boundary,

all equations can be differentiated to enable the computation of geometrical derivatives. In this

contribution, we present our implementation of the IEFPCM with bilinear wavelets on a smooth cavity

boundary. The implementation has been carried out in our module PCMSolver and interfaced with

LSDalton, demonstrating the accuracy of the method both for the electrostatic solvation energy and for

linear response properties. In addition, the implementation in a module makes our framework readily

available to any QC software with minimal effort.

1 Introduction

One of the grand challenges of quantum chemistry is the ability
to describe molecular behavior in complex realistic environ-
ments, far from the ideal picture of an isolated molecule: the
overall system is far too large to allow for a full quantum
chemical treatment, but the inclusion of the environment is
unavoidable to achieve a realistic picture of the molecular
processes under investigation. Overcoming such a challenge will
most likely never be fully accomplished but several strategies are
being pursued in that direction. One important consideration
about chemical processes which guides such a development is
their localized nature: only a small fraction of the system must be

modelled with quantum chemistry, whereas the remainder is
required only to provide a realistic environmental effect. This
consideration is the basis for the so-called focused models. Within
focused models, two strategies are the most widespread: on the
one hand are models which retain the atomistic description of the
environment, such as molecular mechanics (MM) or polarizable
embedding (PE);1–3 on the other hand are the dielectric continuum
(DC) models4,5 where the environment is described as a structure-
less medium with well defined properties (dielectric permittivity
and refractive index are among such properties).

Both strategies date back to the 70’s with the pioneering
work of Rivail et al.6 on the one hand and Warshel et al.7 on the
other. They have since known a steady development and most
quantum chemistry softwares feature at least one of them among
their methods. MM and PE models are appealing because they
retain the atomistic description of the system, but on the other hand
their parametrization and application require dedicated skills,
preventing their inclusion in any black-box approach. Continuum
models are by nature more approximate, disregarding the atomistic
structure of the environment altogether, but they are more suited
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for a black-box approach, requiring only a handful of para-
meters, defining the molecular cavity and the properties of the
continuum. The simplicity of the model is attractive and has
spurred several developments in order to make the model more
accurate, keeping at the same time the underlying simplicity in
the parametrization. One milestone in such a development has
been the introduction of a molecular-shaped cavity instead of a
simpler but less accurate analytic form (sphere or ellipsoid),
pioneered by Miertuš et al.,8 with the PCM. PCM has made
it possible to employ continuum models for molecules of
arbitrary shape. The development of efficient and accurate methods
to represent a molecular cavity has since become a research topic in
its own right.9 Most algorithms construct the cavity surface from
interlocking atom-centered spheres, although a formulation based
on molecular isodensity surfaces has been proposed.10 When atom-
centered spheres are used, the radii are chosen among suitable
sets, for example, the Bondi set.11,12 The radii are most of the
times scaled by a factor greater than one, to account for the
solvent-accessible surface (SAS). The most appropriate description
of the molecular surface is however given by the solvent-excluded
surface (SES), that is the surface described by the contact point of
a tiny probe sphere, mimicking a solvent molecule, rolling over
the SAS. An algorithm for the generation of the SES was first
devised by Connolly13,14 in the context of the modelling of the
molecular surface and volume of large proteins and nucleic acids.
Unlike the SAS, the Connolly surface features toroidal and concave
spherical sections for which it is difficult to formulate a numeri-
cally stable and efficient discretization procedure into small
patches. Most of the currently used algorithms thus approximate
the Connolly surface by employing only convex spherical sections.
This is done for example in GEPOL with the addition of extra, not
atom-centered spheres.15–17 Such an algorithm can be symmetry-
adapted.18,19 Another strategy to generate the solvent-excluded
surface (SES) has been provided by the DEFPOL algorithm.20,21

Not until recently the exact Connolly parametrization of the
surface has been used in quantum chemistry.22

In addition to a proper description of the molecular cavity, it
is necessary to provide a corresponding description of the
solute–solvent interactions. The lack of atomic structure on
the solvent side is here challenging. In practice, the solute–
solvent interaction is separated in different contributions, which
are connected to the underlying intermolecular interactions:
electrostatics, polarization, dispersion, repulsion, exchange, and
cavitation are the contributions which are generally considered.23

The first two are classical electromagnetic interactions, the last
one is the energy involved in the creation of the molecular cavity,
and the remaining three are contributions stemming from
quantistic interactions between the solute and the solvent.24–26

Due to a fortuitous cancellation, the non-electromagnetic inter-
actions (all besides the first two) often have a much smaller
impact on the total solvation energy than the electromagnetic
ones (electrostatics and polarization). Therefore, a large body of
work has focused on electrostatics and polarization. This amounts
to the solution of the Poisson equation in the presence of a
dielectric medium.27 The problem can then be recast as a boundary
problem at the cavity surface: the boundary integral equations

arising from the Poisson problem are discretized and the
resulting system of linear equations can be solved by making
use of an appropriate linear algebra technique.28 The most
critical point of such a procedure is the discretization method
that is employed, because its choice affects the final solution
in terms of accuracy, stability and efficiency.29 The original
procedure, which is still employed in most implementations, is
a simple collocation method: the cavity is discretized in elements
called tesserae and functions on the cavity surface are represented
by their values on the collocation points, selected as the tesserae
centroids. The representation of integral operators is straight-
forward, except for the diagonal elements where special care
must be taken by either using some form of analytic integration
or a numerical quadrature.9 Increased accuracy in the electrostatic
energy can be achieved by a careful selection of the procedure by
which the matrix representation of the integral operators is
obtained. Purisima et al.30 showed that the diagonal matrix entries
play a crucial role in this respect. More recently, Bardhan et al.
have thoroughly investigated the discretization procedure and the
solution method for the resulting linear system.31–33 In particular,
a simple interchange of the integration order in the centroid
collocation quadrature formulas was found to lead to substantial
increases in accuracy. This method was first proposed by Tausch
et al.34 and is termed qualocation. Very recently an altogether
different approach has been proposed by Lipparini et al.35

A domain decomposition method was used to achieve a formally
exact solution for a cavity made of interlocking spheres within
the COSMO-PCM approximation.36

However, in order to guarantee accuracy of the numerical
solution and to provide the necessary stability, for the general
problem (IEFPCM for an arbitrary cavity), a Galerkin approach
shall be employed.37 In a previous work, we presented the first
wavelet-based implementation of the IEFPCM, which is making
use of piecewise constant wavelets as basis functions.38 In this
work, we have extended the approach to the use of a piecewise
bilinear wavelet basis. The additional flexibility provided by
piecewise bilinear functions has two main advantages: on the
one hand, the convergence towards the limiting result is much
faster; on the other hand, it allows to compute the shape
gradient.39 The first point makes the approach more efficient,
for any given target precision, whereas the second point will allow
to compute the solvent contribution to the molecular gradient,
which is required both to optimize molecular geometries and to
compute molecular properties requiring geometrical derivatives,
such as ROA, CARS and SFG.

2 Theory
2.1 IEFPCM

When describing solvent effects by a continuum model, the
solvent degrees of freedom are replaced by a structureless
continuum characterized by the dielectric permittivity of the
bulk solvent. The solute is then placed in a cavity inside this
continuum. The mutual polarization between the solute charge
density r and the infinite continuum dielectric is taken into
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account in a classical fashion, by solving the Poisson equation
for the electrostatic potential u(r) with the appropriate bound-
ary conditions:

r2uðrÞ ¼ �rðrÞ 8r 2 C

er2uðrÞ ¼ 0 8r =2 C

lim
jrj!@Cþ

uðrÞ ¼ lim
jrj!@C�

uðrÞ

e lim
jrj!@Cþ

@uðrÞ
@n
¼ lim
jrj!@C�

@uðrÞ
@n

8>>>>>>>>>><
>>>>>>>>>>:

(1)

Here C C R3 is the cavity with boundary qC. The last
two equations above represent the boundary conditions. The
former is the usual requirement of continuity for the electro-
static potential at the boundary, while the latter is the jump
condition on the normal derivative of the potential.27 The
subscripts + and � refer to the direction, relative to the cavity
boundary, in which the limits are taken: from the outside or the
inside, respectively. SI-based atomic units have been used and
will be used throughout the text.

The solution of the Poisson problem can be achieved by its
reformulation in terms of a boundary integral equation.40 The
apparent surface charge (ASC) s(s) is introduced to represent
the reaction potential:

uðrÞ ¼
ð
C

dr0
rðr0Þ
r� r0j j þ

ð
@C

ds
sðsÞ
jr� sj ¼ N r þ x; (2)

where we have implicitly defined the Newton potential N r and
the solvent reaction potential x as the first and second integral,
respectively. Notice that the polarization in the continuum is
now represented by a surface charge, a scalar function of the
surface coordinate s. As shown by Cancés and Mennucci,28 the
ASC is the unique solution to the following integral equation

1

2
�De

� �
Si þ Se

1

2
þDyi

� �� �
s ¼ De �

1

2

� �
N r � Se

@N r

@n
(3)

where the integral operators are the components of the Calderón
projector:

S�f ðsÞ ¼
ð
@C

ds0G�ðs; s0Þf ðs0Þ

D�f ðsÞ ¼
ð
@C

ds0e rs0G�ðs; s0Þf ðs0Þ½ � � ns0

Dy�f ðsÞ ¼
ð
@C

ds0e rsG�ðs; s0Þf ðs0Þ½ � � ns

(4)

Here, the subscript * A {i,e} differentiates between the internal
and external Calderón projector. As apparent, knowledge of the
Green’s function for the differential operators is necessary in
setting up the proper integral operators. Despite the fact that
the Poisson problem has been formulated for a uniform, homo-
geneous dielectric, the boundary integral equation approach is
rather general and can be exploited on a more vast class of
physical problems, such as ionic liquids, liquid crystals28 and
dielectric interfaces.41

For a uniform, homogeneous dielectric the Green’s func-
tions are given as

Giðr; r0Þ ¼
1

4p r� r0j j; Geðr; r0Þ ¼
Giðr; r0Þ

e
(5)

and the boundary integral eqn (4) is simplified to

Sis ¼
1

e� 1

eþ 1

2ðe� 1Þ � Di

� ��1
N r �N r (6)

where only the single layer Si and double layer Di operators are
involved. Since Si is a symmetric operator,40 the solution of eqn (6)
could be achieved by use of the conjugate gradient (CG) method,42

whilst the right hand side is obtained by applying a generalized
minimal residual (GMRES) method.43 In a more general setting
one can apply the GMRES method directly to eqn (3).

2.2 Wavelet IEFPCM

Boundary integral equations, such as the IEFPCM eqn (6), can
conveniently be solved numerically by the application of the
boundary element method (BEM). Both the integral operators
and the functions on which these act are defined solely on the
boundary of the cavity.

The application of the boundary element method requires
that the boundary of the molecular cavity is discretized by a
number of suitable finite elements. The discretization of the
boundary leads to a discretization of the integral operators. This
discretization can be carried out by using either the collocation or
the Galerkin approach.29 In both cases, the integral equation is
transformed to a system of linear equations whose dimension is
related to the number of finite elements used in the discretiza-
tion of the boundary. The resulting system matrix is, in general,
a dense matrix. The boundary element method thus suffers from
limitations imposed by the number of matrix elements to be
stored and the memory and time requirements of solving the
resulting linear system.

The use of a wavelet basis in the Galerkin approach has been
proven beneficial in this respect.44–46 The resulting system matrices
are quasi-sparse and can be further reduced to a sparse form by
discarding negligible entries without considerable loss of precision.

The wavelet boundary element method starts by defining a
sequence of hierarchical trial spaces, spanned by standard
finite element ansatz functions:

{0} = V�1 C V0 C V1 C . . . C VJ, Vj = span{fj,k:k A Dj}.
(7)

Here, Dj is an index set for the single-scale basis of the space Vj.
In the wavelet method, the trial space Vj is split into the direct
sum Vj = Vj�1 " Wj. The resulting complementary space Wj is
called the wavelet space and is not necessarily orthogonal to
Vj�1. Recursive splitting of the trial spaces leads to the wavelet
decomposition Vj = " j

l=0Wl.
The complementary space is spanned by the wavelet basis:

Wj = span{cj,k:k A Dj+1\Dj}. (8)

The choice of this basis turns out to be very convenient, since
we can exploit the compression technique described in ref. 45
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to build up the sparse system matrix in the wavelet basis directly,
avoiding the computation of non-relevant matrix entries. The a
priori compression is carried out in two steps. In the first step,
contributions from basis functions sufficiently far away from
each other are discarded. In the following, elements of the
matrix where one wavelet is in the smooth part of the other
one are ignored. The number of relevant matrix entries scales
proportional to O(NJ) with NJ the number of degrees of freedom
for a refinement of the geometry up to level J.

In order to understand the compression steps, let us introduce
some notation. Let the convex hull of the support of the wavelet
cj,k be:

Oj,k = conv hull (supp cj,k). (9)

Moreover, let the singular support of the wavelet cj,k be:

O0j;k ¼ sing supp cj;k (10)

It contains all the points in the support where the wavelet is not
smooth. The compression steps are then governed by the
following set of equations

AJ½ � j;kð Þ j0 ;k0ð Þ¼

0 dist Oj;k;Oj0;k0
� �

4Bj;j0 and j;j
0 �0;

0

dist Oj;k;Oj0;k0
� �

t2�min j;j0f g and

dist O0j;k;Oj0;k0

� 	
4B0j;j0 if j

04j�0;

dist Oj;k;O0j0;k0
� 	

4B0j;j0 if j4j0 �0;

Acj0;k0 ;cj;k

D E
; otherwise

8>>>>>>>><
>>>>>>>>:

(11)

where dist (�,�) denotes the distance, either between the bound-
ing boxes of the wavelets or between the singular support and
the bounding box. The first and second conditions represent
the first and second compression step, respectively. The para-
meters j, j0 are the levels of the wavelets under consideration
and the level-dependent cut-off parameters Bj, j0 and B0j; j0 are
given by

Bj;j0 ¼ amax 2�min j; j0f g; 2

J 2d 0 � opð Þ� j þ j0ð Þ d 0 þ ~dð Þ
2 ~d þ opð Þ

8<
:

9=
; and

B0j; j0 ¼ amax 2�min j; j0f g; 2

J 2d 0 � opð Þ� j þ j0ð Þd 0�max j;j0f g ~d
~d þ opð Þ

8<
:

9=
;

with op being the order of the integral operator under considera-
tion. For the first kind integral equation op =�1, while op = 0 for
the second kind integral equation. The integer d̃ is related to
the vanishing moments of the wavelet basis:ð

dxxrcj;kðxÞ ¼ 0; r ¼ 0; . . . ; ~d � 1: (12)

In the particular implementation, d̃ = 3 for the piecewise constant
wavelet basis, while d̃ = 4 for the piecewise bilinear wavelet basis.47

The compression can thus be adjusted by the parameters a and d0:

a Z 1, d o d0 o d̃ + op (13)

where d is the approximation order of the trial spaces Vj: d = 1, 2
for piecewise constant and piecewise bilinear ansatz functions,
respectively. Note that, if the interaction between two wavelets,
cj,k and cj0,k0, on level j and j0 is neglected in the system matrix,
all other interactions between wavelets resulting from the
refinement of cj,k and cj0,k0 can also be ignored. Thus, the
compression pattern of the system matrix is calculated hier-
archically starting from the coarsest level.

Once the compressed system matrix is assembled, we arrive
at a sparse system matrix in the wavelet basis which can be
compressed further by leaving out sufficiently small elements.
This post-processing step is governed by the rule

AJ½ � j;kð Þ j0 ;k0ð Þ
0 if AJ½ � j;kð Þ j0 ;k0ð Þ




 


 � ej; j0

AJ½ � j;kð Þ j0;k0ð Þ; otherwise;

(
(14)

where the coefficients ej,j0 are given by

ej; j0 ¼ bmin 2�j j � j0 j; 2
� 2J � j þ j0ð Þð Þ2d

0 � op

2 ~d þ op

( )
2
�2d 0 J � j þ j0

2

� 	

(15)

with the a posteriori compression parameter b o 1.

2.3 The quantum mechanical problem

Modelling the solvent as a classical continuum requires that
the quantum mechanical Hamiltonian be modified. The mutual
polarization of the quantum mechanical molecular charge density
distribution and the dielectric continuum can be accounted for
by introducing a suitable operator in the Hamiltonian:

H = H0 + Vsr[r]. (16)

The PCM operator Vsr[r] depends linearly on the solute charge
density, thus introducing a scalar nonlinearity into the quan-
tum mechanical problem. It can be shown that variational
minimization of the functional

G½C� ¼
C H0 þ

1

2
Vsr½r�










C

� �
CjCh i (17)

leads to the ground state of the nonlinear Hamiltonian.48 The
physical quantity associated with the functional is a free energy,
as it also takes into account the irreversible work spent in the
process of polarizing the solvent.

The derivation of the quantum mechanical equations is beyond
the scope of this work and the reader is thus referred to the existing
literature.4,5 The expressions reported are in the molecular orbital
(MO) basis. The usual notation for the indices is adopted: i, j, k,. . . are
used for occupied orbitals and a, b, c,. . . for virtual orbitals, while p,
q, r,. . . are reserved for general orbitals. It is here necessary to remark
that the use of a different strategy for the solution of the integral
equation arising from the classical electrostatic problem does not
affect the derivations. In the self-consistent field approximation (SCF)
for the electronic wave function (the Born–Oppenheimer approxi-
mation is assumed), the Fock matrix has the form

fpq = f vac
pq + (s,jpq)qC (18)
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where the usual vacuum terms are augmented by a solvent
term:

s;jpq

� 	
@C
¼
ð
@C

dssðsÞjpqðsÞ: (19)

The notation used here is general. We avoid making any reference
to the discretization scheme for the integral equation, thus keeping
the derivations transparent with respect to the choices made in the
solution of the classical problem. The vacuum-like term is given as

f vacpq ¼ hpq þ
X
j

gpqjj � ggpjjq
� �

þ vxc;pq (20)

and encompasses also the case of Kohn–Sham DFT with possibly
hybrid functionals. The reader is referred to the existing literature
for the explicit form of the above terms.49 The integrals jpq(s)
are called charge-attraction integrals:

jpqðsÞ ¼
ð
dr
�wpðrÞwqðrÞ
jr� sj ¼

ð
dr
�OpqðrÞ
jr� sj : (21)

In our notation, the polarization energy contribution can be
rewritten as:

Upol ¼
1

2
ðs;jÞ@C ¼

1

2
se;jeð Þ@C þ

1

2
sN;jeð Þ@C

þ 1

2
se;jNð Þ@C þ

1

2
sN;jNð Þ@C

¼ Uee þUNe þUeN þUNN:

(22)

The ASC and MEP have here been separated into their electronic-
induced –e– and nuclear-induced –N– components. The electronic
and nuclear electrostatic potential are expressed as

jeðsÞ ¼
X
pq

DpqjpqðsÞ; jNðsÞ ¼
X
A

ZA

RA � sj j (23)

where Dpq is the density matrix and ZA, RA are the charge and
position of nucleus A, respectively.

Turning our attention to the formulation of the linear
response function, introduction of the coupling with the continuum
leads to response equations of the usual form:

[E[2] � oS[2]]XB = �E[1]
B . (24)

Limiting ourselves to electric properties, only the electronic
Hessian

E½2� ¼ A B
B� A�

� �
(25)

has additional contributions from the continuum solvent. The
matrices A and B are now defined as:

Aai,bj = dij fab � dab fji + gaijb � ggabji + wxc;ai,jb + (sai,jjb)qC,

Bai,bj = gaibj � ggajbi + wxc;ai,bj + (sai,jbj)qC. (26)

Since explicit formation and inversion of the electronic Hessian
is too costly, the solution of the response equations is achieved
by means of subspace iteration methods.50 The solution vector
is expanded in terms of n trial vectors chosen in a proper
subspace. The reduced response equations are solved iteratively

by repeated calculation of the r vector E[2]XB, i.e. the linear
transformation of the given subspace by the electronic Hessian
which assumes the form of a generalized Fock matrix.51 From
eqn (26), one can see that the solvent contributions are now
included implicitly, via the unperturbed Fock matrix term, and
explicitly, via the last term. When a nonequilibrium response
formalism for the PCM is adopted, formation of the explicit
term in eqn (26) requires the use of the dynamic apparent
surface charge: the optical permittivity eN is used in the PCM
matrix, instead of the static one e0.52

3 Implementation

As apparent from Section 2.3, the solution of the PCM problem
is independent of the particular strategy employed to tackle the
quantum mechanical problem. The PCM functionality can be
then abstracted into a module, fully agnostic of the details of the
quantum mechanical problem at hand. Our current implementa-
tion of the PCM makes use of a recently developed application
programming interface (API) called PCMSolver.53 The API imple-
ments all the functionality needed to set up a PCM calculation:
cavity, Green’s functions and solver. The implementation is com-
pletely independent of the details in the quantum mechanical host
program. This is in line with the idea of a modular programming
paradigm, described already in the early 70’s by Dijkstra54 and
Parnas.55 The low coupling between the host QM code and the
API effectively allows to quickly introduce a PCM implementa-
tion into codes that are intrinsically different in their internal
structure. For this paper, we introduced the PCM functionality
into the LSDalton program,56 in much the same way as described
in ref. 57 for the DIRAC program.58

Fig. 1 shows a schematic view of the internal structure of the
API. PCMSolver is developed in C++, but legacy C and Fortran
codes coexist within the main object-oriented infrastructure.
Thanks to the polymorphism, available as a language mecha-
nism, the API is modular in itself: the cavity, Green’s functions
and solver are independent of each other. Coupling between the
three is achieved by means of abstract interfaces.59–61 The module
has some external dependencies. The Boost C++ libraries62 are
used for a number of tasks, unit testing and metaprogramming,
among others. Boost libraries are a highly reliable framework:
many of their functions are reference implementations.

Fig. 1 Internal structure of the PCMSolver module.
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The Eigen linear algebra library63 is extensively used for the
manipulation of vectors and matrices. The GetKw library provides
the input parsing facility.64 Finally, the header-only Taylor library is
used to implement automatic differentiation (AD) of the Green’s
function objects.65 Notice that AD relies on template program-
ming, i.e. static polymorphism, which is coupled to the dynamic
polymorphism, implemented by inheritance, through the meta-
programming algorithm of Langr et al.66 Despite the internal
complexity of the API, only a handful of functions (around 10)
are exposed to the QM code programmer.

Finally, let us remark that the API is publicly available as
an open-source project, licensed under the terms of the GNU
Lesser General Public License (LGPL).

3.1 The Wavelet Solver

The wavelet solver can be used to tackle any problem where the
Green’s function and the surface are known. The parameters
that play a role in the solution are: the number J of levels of
refinement given by the cavity generator, the a priori and
a posteriori compression parameters a, b, d0, and the number
d̃ of vanishing moments of the wavelets.

The wavelet solver flow chart is depicted in Fig. 2. We start
by building an interpolation structure of the points on the
quadrangular mesh as computed by the cavity generator for

the selected molecular surface, cf. Fig. 5. The interpolation of
these points will then be used to calculate the quadrature
points needed in the integration and the computation of the
normal derivatives.

The interpolation class is based on a tensorized Newton
interpolation which assumes that each patch is refined uni-
formly. The number of polynomials used in the interpolation is
determined by the degree of the polynomials and the level of
refinement of each patch. It is assumed that the patch can be
divided in disjunct polynomials, yielding a relation between the
refinement levels and the degree of the polynomials, 2 J mod
grade = 0. A simple picture showing the situation in case of J = 2
and grade = 2 for one patch is found in Fig. 3. Having determined
the coefficients of the Newton polynomial, we can then easily
compute the derivatives with respect to x, y or the normal derivative
by the Horner scheme as described in ref. 42.

After constructing the element list and the wavelet list, the
element-wise computation of the system matrix is carried out.
The elements of the matrix computed are determined by the
compression rule described in eqn (11). The integration is done
by using tensor product Gaussian quadrature rules and the Green’s
function definition in PCMSolver. The last step in the computation
of the sparse system matrix is the application of the a posteriori
compression described in eqn (14).

Fig. 2 Control flow for the wavelet solver.
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Having computed the system matrix, the right hand side is
assembled according to the boundary integral eqn (6). To that
end, the Generalized Minimal Residual (GMRES) solver43 is used
with a possible restart after 100 iterations. Finally, the linear
system of equations is solved by employing a CG solver.67 The
precision used for the solver is e = 10�6.

The class diagram of the wavelet solver can be seen in Fig. 4.
It is based on the implementation of an abstract class, the
GenericAnsatzFunction class, which implements only common
aspects of the code, for example the construction of the element
list and the a priori and a posteriori compression. The derived
classes ConAnsatzFunction and LinAnsatzFunction initialize the
implementation specific constants, that are a, b, d̃, and d0, for the
piecewise constant discretization and the piecewise bilinear
discretization. Furthermore the specific functions, for example
the integration functions, are found in the derived classes as well.

4 Applications

The current implementation of the IEFPCM wavelet code within
PCMSolver has been interfaced with a development version
of LSDalton. The wavelet code reimplements the piecewise

constant discretization presented in38 together with the piece-
wise bilinear discretization,44 as presented in Section 3.

To keep consistency with Weijo et al., we used benzene as
our test molecule. All calculations have been carried out at the
Hartree–Fock level of theory. Two different Gaussian basis sets
were employed: 6-31G and 6-311++G**, the latter to analyze how
the wavelet solver performs when a more realistic description of
the electronic charge distribution is sought.

The PCM calculations employ water as solvent (e = 78.39) and
the solvent-accessible surface (SAS). The radii used to generate
the SAS are the ones reported by Bondi,11 unscaled: 1.70 Å for
carbon and 1.20 Å for hydrogen.

All LSDalton calculations employed the augmented Roothaan–
Hall algorithm in combination with the ATOMS starting guess68

for density optimizations, and the linear-response solver of
Coriani et al.51 with the atomic orbital (AO) basis preconditioner.
For efficient integral evaluation, LSDalton combines J-engine69–71

acceleration for the Coulomb and LinK72 for the exchange
contributions.

Being the first such implementation, we have devoted our
attention to the following aspects: testing the intrinsic accuracy
of the bilinear wavelet solver with respect to the choice of the
compression parameters (a and d0); comparing to our previous
piecewise constant implementation; assessing the overall per-
formance of the method. In addition, we have for the first time
calculated static electric dipole polarizabilities with a wavelet
based PCM implementation.

All calculations were carried out on a single Intel E5-2670
processor, compiled with the Intel compiler suite version 14.0.2
in combination with OpenMPI version 1.6.5. For the standalone
version used for timing and convergence results found in the
Section 4.3 the GNU g++ compiler version 4.6.3 was employed.

4.1 Accuracy and compression parameters

The accuracy and memory requirements of the wavelet solver
depend on the chosen compression parameters. It is thus important
to determine the best set of compression parameters triplet a, d0

and b that, for fixed patch level (PL), limits the memory require-
ments, while retaining the highest accuracy. We will first look at
the behaviour of the wavelet Galerkin BEM for the Laplace
equation on 6 patches, in order to explore the impact of the
compression on the sparsity pattern and draw some conclusions
on the relative importance of the various compression steps.
A more thorough assessment of the accuracy will then be given
based on quantum mechanical calculations of benzene. Finally,
the convergence behavior with increasing PL will be discussed
for the C32H66 polyalkane system.

Table 1 contains a summary of the number of non-zero
elements retained in the system matrix for different choices of
the a priori compression parameters. The impact of the first and
second a priori compressions is also summarized. In all cases, the
first a priori compression already discards most of the negligible
entries (80% on average), achieving the desired sparsity in
the system matrix. The combination with the second a priori
compression discards additional negligible entries (8% on
average) but does not significantly affect the sparsity pattern.

Fig. 3 Example of 2D interpolation. The number of refinements of the
underlying patch is J = 2 and the degree of the polynomials in each
coordinate is grade = 2.

Fig. 4 Class diagram for the wavelet solver.
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This is reflected in Fig. 6 and 7, which show the patterns
obtained by applying only the first or the complete a priori
compression, respectively.

Table 2 shows the number of non-zero elements for different
values of the a posteriori parameters b and d0. The main conclusion
is that choice of the parameters for the a posteriori compression is
not as critical as for the a priori compression.

The comparison of the sparsity pattern for the piecewise
constant and piecewise bilinear wavelets in Fig. 8 shows that indeed
sparsity and linear memory requirements are a general feature of
the wavelet Galerkin scheme, although the piecewise bilinear wave-
lets features a larger number of non-zero matrix entries.

The effect of the matrix compression on the accuracy was
evaluated by performing quantum mechanical calculations on

benzene. The calculations were repeated at PL-2 and PL-3,
varying the compression parameters. The nuclear and electro-
nic components of the polarization energy UNN and Uee together
with the static isotropic polarizability aiso were considered.

Given that the a posteriori compression has a rather limited
influence on the memory requirements (see Table 2), only two
values of the b parameter were considered: 0.01 and 0.001.
The a priori compression parameters instead were varied in a
wider range: a A [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0], while
d0 A [2.0, 2.25, 2.5, 2.75, 3.0]. Results are only presented for a
number of selected a, d0 pairs. The reader is referred to the
ESI,† for the complete results of the parameter study.

The most important conclusion from Tables 3 and 5 is that a
higher accuracy can always be achieved by a further refinement
of the Galerkin discretization of the cavity surface. In passing
from PL-2 to PL-3, there is a significant gain in accuracy,
regardless of the compression parameter triplet chosen. This
is a general feature of Galerkin BEM schemes: mesh refinement
ensures convergence to the exact solution. A similar conclusion
was reached by Weijo et al.38 in their analysis of the wavelet
solver based on piecewise constant wavelets. The calculations
reported there were repeated in this study, but with our wider
parameter set. Results using piecewise constant wavelets are
though only reported for the calculations on aiso. See ESI,† for the
complete set of results.

A comparison of the results obtained with the different
a posteriori compression parameters shows that the more

Fig. 5 Quadrangulation of the solvent-excluded surface (SES) for the C32H66 molecule. The quadrangulation was generated by the code described in
ref. 22 and 73 at PL-4.

Table 1 Number of non-zero elements for the single layer operator S in a
piecewise bilinear wavelet basis. The effect of the first a priori and first and
second a priori compressions is shown, as adjusted by the a priori

compression parameters a and d0. The value d 01=2 ¼
~d þ opþ d

2
is selected

as an intermediate value for d0. The total number of elements of the full
matrix would be 1 048 576

d d 01=2 d 0max

First compression a = 1 158 540 169 550 180 022
a = 2 205 878 221 716 236 350

Complete compression a = 1 136 456 155 214 170 082
a = 2 181 470 204 404 227 930

Fig. 6 Sparsity pattern for the system matrix representing the single layer operator S in a piecewise bilinear wavelet basis. The effect of the parameter
a on the first a priori compression is shown. d0 is kept fixed at its minimum value: d0 = d. The number of non-zero elements (nnz) is reported under
each matrix.
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conservative choice b = 0.001 leads to a PL-2 reference result
deviating by at most 0.001% from the PL-3 values for both
energies and isotropic polarizabilities. It is however to be noted

that the relative accuracy, i.e. the absolute difference with
respect to the reference value at the same patch level and
choice of b, is worsened for the polarization energy components
analyzed here. From the results in Tables 1 and 2, it is easy to
see that the number of matrix elements that are discarded by
the a posteriori compression is largely inferior to the compres-
sion that is achieved a priori. Based on the relative accuracy
results in Table 3, we can however advocate for the use of the
less conservative setting b = 0.01. This choice is further justified
by the relative accuracy results for the isotropic polarizability,
reported in Table 4 for piecewise constant wavelets and in Table 5
for piecewise bilinear wavelets.

Comparing the results for aiso obtained with the two differ-
ent discretizations (piecewise constant wavelets in Table 4 and
piecewise bilinear wavelets in Table 5) it is evident that a higher
accuracy can be achieved already at PL-2 by use of the latter

Fig. 7 Sparsity pattern for the system matrix representing the single layer operator S in a piecewise bilinear wavelet basis. The effect of the first a priori
compression (left panel) is compared to the combined effect of the first and second a priori compression (right panel). Both parameters are kept fixed: a =
2.0 and d 0 ¼ d 01=2. The number of non-zero elements (nnz) is reported under each matrix.

Table 2 Number of non-zero elements for the single layer operator S in a
piecewise bilinear wavelet basis. The effect of the a posteriori compression
is shown, as adjusted by the parameters b and d0. The parameter a is set to

a = 1. The value d 01=2 ¼
~d þ opþ d

2
is selected as an intermediate value for

d0. The total number of elements of the full matrix would be 1048576

d d 01=2 d 0max

b = 0.1 121 678 145 782 163 602
b = 0.01 131 852 152 218 168 186
b = 0.001 135 642 154 634 169 920

b = 0 136 456 155 214 170 082

Fig. 8 Sparsity pattern for the system matrix representing the single layer operator S as resulting from the first a priori compression only. The piecewise
constant (left panel) and piecewise bilinear (right panel) wavelet bases are compared. In both cases the a priori compression parameters are kept

fixed: a = 2.0 and d 0 ¼ d 0max.
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wavelet basis. However, the high accuracy comes at the cost
of roughly twice as many points where the electrostatic
potential has to be evaluated: 10 240 vs. 23 040 at PL-2, 40 960
vs. 92 160 at PL-3.

As a result of the accuracy analysis, we conclude that a
sensible choice of default compression parameters is a = 2.5,
d0 = 3.0, b = 0.01 for piecewise bilinear wavelets and a = 2.5,
d0 = 2.0, b = 0.01 for piecewise constant wavelets. This choice
has been adopted in the rest of the present work.

4.2 Piecewise bilinear wavelets vs. piecewise constant
wavelets and standard PCM

In order to compare our piecewise bilinear wavelet implementa-
tion with previous ones, we have considered both our previous
piecewise constant wavelet implementation38 and a standard

IEFPCM implementation,28 which makes use of a collocation
method and the GEPOL algorithm for the cavity construction.
This comparison is illustrated in Fig. 9 for the nuclear part
of the solvation energy, in Fig. 10 for the electronic part, and
in Fig. 11 for the total solvation energy. Finally, the isotropic
polarizability results are displayed in Fig. 12.

The nuclear and electronic components of the solvation
energy show very similar trends. In particular, the piecewise
bilinear basis shows a faster convergence to the limiting
value, although it uses twice as many function evaluations as
the corresponding piecewise constant wavelet solver at the same
PL. Concerning the comparison with standard IEFPCM, it is
more difficult to compare calculations vis-á-vis, because the
cavity discretization is here significantly different and because
a fitted parametrization for the diagonal elements is employed.

Table 3 Effect of the a priori and the a posteriori matrix compression parameters a, d0 and b on the nuclear and electronic polarization energies for
benzene. Results were obtained at the Hartree–Fock level of theory either using a 6-31G or a large 6-311++G** basis set. The piecewise bilinear wavelet
basis was used in the Galerkin discretization of the PCM integral operators. All the energies reported are differences, expressed in Hartrees, with respect
to the case where a = 5.0, d0 = 3.0, which is the upper limit in (13). Only selected compression parameter triplets are shown. The number of points on the
cavity where the electrostatic potential has to be evaluated are 230 40 and 921 60 at PL-2 and PL-3, respectively

a d0 PL-2 PL-3 a d0 PL-2 PL-3

UNN

b = 0.01 1.0 2.0 �0.15413 �0.03528 b = 0.001 1.0 2.0 �0.25131 �0.03519
2.0 2.25 �0.07127 �0.00410 2.0 2.25 �0.14905 �0.00412
3.0 2.5 �0.03865 �0.00313 3.0 2.5 �0.05442 �0.00332
4.0 2.75 �0.01925 �0.00137 4.0 2.75 �0.01133 �0.00161

Reference 5.0 3.0 �177.71475 �177.60140 Reference 5.0 3.0 �177.60327 �177.60147

Uee, 6-31G
b = 0.01 1.0 2.0 �0.15310 �0.03461 b = 0.001 1.0 2.0 �0.24965 �0.03451

2.0 2.25 �0.07091 �0.00402 2.0 2.25 �0.14804 �0.00405
3.0 2.5 �0.03850 �0.00310 3.0 2.5 �0.05372 �0.00329
4.0 2.75 �0.01918 �0.00131 4.0 2.75 �0.01111 �0.00155

Reference 5.0 3.0 �177.90179 �177.78866 Reference 5.0 3.0 �177.79100 �177.78873

Uee, 6-311++G**
b = 0.01 1.0 2.0 �0.15290 �0.03454 b = 0.001 1.0 2.0 �0.24933 �0.03445

2.0 2.25 �0.07085 �0.00403 2.0 2.25 �0.14787 �0.00405
3.0 2.5 �0.03847 �0.00310 3.0 2.5 �0.05364 �0.00329
4.0 2.75 �0.01916 �0.00132 4.0 2.75 �0.01109 �0.00155

Reference 5.0 3.0 �177.78503 �177.67204 Reference 5.0 3.0 �177.67438 �177.67210

Table 4 Effect of the a priori and a posteriori matrix compression parameters a, d0 and b on the static isotropic polarizability of benzene. Results were
obtained at the Hartree–Fock level of theory either using a 6-31G or a large 6-311++G** basis set. The piecewise constant wavelet basis was used in the
Galerkin discretization of the PCM integral operators. All the values reported are differences, expressed in a3

0, with respect to the case where a = 5.0, d0 =
2.0, which is the upper limit in (13). Only selected compression parameter triplets are shown. The number of points on the cavity where the electrostatic
potential has to be evaluated are 102 40 and 409 60 at PL-2 and PL-3, respectively

a d0 PL-2 PL-3 a d0 PL-2 PL-3

aiso, 6-31G
b = 0.01 1.0 1.0 1.56827 0.42493 b = 0.001 1.0 1.0 1.58092 0.42590

2.0 1.25 0.54138 0.02795 2.0 1.25 0.55476 0.02786
3.0 1.5 0.10108 0.00005 3.0 1.5 0.10212 �0.00003
4.0 1.75 0.02073 0.00002 4.0 1.75 0.02050 �0.00001

Reference 5.0 2.0 76.72553 76.67398 Reference 5.0 2.0 76.72438 76.67395

aiso, 6-311++G**
b = 0.01 1.0 1.0 2.18743 0.55107 b = 0.001 1.0 1.0 2.20332 0.55214

2.0 1.25 0.73558 0.02995 2.0 1.25 0.74963 0.02973
3.0 1.5 0.13414 0.00022 3.0 1.5 0.13420 0.00002
4.0 1.75 0.02799 0.00001 4.0 1.75 0.02732 �0.00004

Reference 5.0 2.0 99.15263 99.08674 Reference 5.0 2.0 99.14895 99.08655
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Therefore, a standard PCM calculation is able to achieve a good
accuracy even with much coarser cavity parametrization. On the
other hand, the most accurate result is still different from the
wavelet one. Further refinement of the cavity description would
expose the instabilities of the collocation method. The values
for the electronic part are very similar and identical considera-
tions apply. Turning our attention to the total solvation energy,
it is evident that the piecewise bilinear wavelets are much more
accurate: already at PL-2 the result is practically converged.
A similar result requires PL-4 with piecewise constants wavelets
and almost 8 times as many elements. The comparison with
the collocation method shows that there is going to be a gap
between the converged IEFPCM results and the wavelet results.

For the electrostatic solvation energy of benzene the gap is not
large (0.02 kcal mol�1), but more polar substrates might show
wider gaps.

Concerning the isotropic polarization, similar findings to
the total solvation energies are obtained: the piecewise bilinear
wavelets yield a practically converged result at PL-2, whereas the
piecewise constant wavelets are converged at PL-3 and the ‘‘best’’
standard IEFPCM displays again a small gap with respect to the
converged wavelet results.

In conclusion, both wavelet methods converge to the same
result: the piecewise bilinear wavelets converge faster and require
a lower PL to attain a given accuracy, both for the overall solvation
energy and the polarizability. The traditional collocation method

Table 5 Effect of the a priori and a posteriori matrix compression parameters a, d0 and b on the static isotropic polarizability of benzene. Results were
obtained at the Hartree–Fock level of theory either using a 6-31G or a large 6-311++G** basis set. The piecewise bilinear wavelet basis was used in the
Galerkin discretization of the PCM integral operators. All the values reported are differences, expressed in a3

0, with respect to the case where a = 5.0, d0 =
3.0, which is the upper limit in (13). Only selected compression parameter triplets are shown. The number of points on the cavity where the electrostatic
potential has to be evaluated are 230 40 and 921 60 at PL-2 and PL-3, respectively

a d0 PL-2 PL-3 a d0 PL-2 PL-3

aiso, 6-31G
b = 0.01 1.0 2.0 0.01442 0.00076 b = 0.001 1.0 2.0 0.01696 0.00078

2.0 2.25 0.00498 0.00017 2.0 2.25 0.00640 0.00021
3.0 2.5 0.00227 0.00016 3.0 2.5 0.00245 0.00019
4.0 2.75 0.00103 0.00014 4.0 2.75 0.00011 0.00016

Reference 5.0 3.0 76.67687 76.67714 Reference 5.0 3.0 76.67300 76.67713

aiso, 6-311++G**
b = 0.01 1.0 2.0 0.01924 0.00275 b = 0.001 1.0 2.0 0.02503 0.00278

2.0 2.25 0.00797 0.00036 2.0 2.25 0.01207 0.00042
3.0 2.5 0.00384 0.00026 3.0 2.5 0.00487 0.00032
4.0 2.75 0.00181 0.00026 4.0 2.75 0.00083 0.00031

Reference 5.0 3.0 99.09592 99.09154 Reference 5.0 3.0 99.08813 99.09153

Fig. 9 Convergence of UNN with respect to the number of molecular
electrostatic potential (MEP) evaluation points on the cavity surface. The
values reported are in Hartree and refer to benzene. The upper axis reports
the average area for the collocation tesselation, while the lower axis refers
to the patch level in the wavelet Galerkin discretization. The annotation
report the number of MEP evaluation points. The compression parameter
triplet was set to a = 2.5, d0 = 2.0, b = 0.01 for piecewise constant wavelets
and to a = 2.5, d0 = 3.0, b = 0.01 for piecewise bilinear wavelets. The limit
value is extrapolated from the results obtained from the piecewise bilinear
wavelet Galerkin scheme.

Fig. 10 Convergence of Uee with respect to the number of molecular
electrostatic potential (MEP) evaluation points on the cavity surface. The values
reported are in Hartree and refer to benzene. The Gaussian basis 6-31G was
used. The upper axis reports the average area for the collocation tesselation,
while the lower axis refers to the patch level in the wavelet Galerkin
discretization. The annotation report the number of MEP evaluation points.
The compression parameter triplet was set to a = 2.5, d0 = 2.0, b = 0.01 for
the piecewise constant wavelets and to a = 2.5, d0 = 3.0, b = 0.01 for
piecewise bilinear wavelets. The limit value is extrapolated from the results
obtained from the piecewise bilinear wavelet Galerkin scheme.
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is able to achieve a reasonable accuracy with fewer points. However,
the limit of large refinement is slightly different than the wavelet
one, indicating a limitation of the collocation method. One possible
explanation for such a discrepancy could be the fitting of the
diagonal elements,74 introducing a bias at large refinements.

4.3 Performance of the wavelet solver

The convergence properties and memory requirements of the
wavelet solver were assessed by performing calculations on the
four linear polyalkane chains CnH2n+2 (n = 8, 16, 32, 64), using a
standalone version of the wavelet solver. The interpolation
parameter grade is set to 4 for levels = 2, 3, 4 and 8 for level
5. Only the nuclear charge distribution was considered. The
total apparent surface charge (ASC) can thus be compared to
the exact analytical value as obtained by the Gauss’ theorem

Ds ¼ scalc � sexact; sexact ¼ �
e� 1

e
Q (27)

where e is the permittivity and Q is the total charge enclosed by
the cavity. A similar analysis for the piecewise constant para-
metrization was presented by Weijo et al.38

The influence of the PL on the ASC convergence is shown in
Fig. 13, for three different sets of a priori compression para-
meters. Only the graph for C32H64 is shown because similar
trends were observed also for the other polyalkanes. See ESI,†
for the complete set.

From Fig. 13 we see that by increasing the PL leads to
convergence towards sexact, a general feature of any Galerkin
BEM method. Such convergence is achieved somewhat faster
when a less aggressive a priori compression is applied to the
system matrix. As discussed in Section 2.2, higher values of the
a priori compression parameters lead to a higher accuracy in
the calculated ASC since a larger number of matrix elements
is retained.

In the wavelet PCM formalism, both the construction of the
system matrix and the solution of the linear equations scale
linearly with the mesh size, given the same initial set of patches.
In Fig. 14, we see a summary of the convergence analysis for
the polyalkane chains CnH2n+2 (n = 8, 16, 32, 64), which also

Fig. 11 Convergence of Upol with respect to the number of molecular
electrostatic potential (MEP) evaluation points on the cavity surface. The
values reported are in kcal mol�1 and refer to benzene. The Gaussian basis
6-31G was used. The upper axis reports the average area for the colloca-
tion tesselation, while the lower axis refers to the patch level in the wavelet
Galerkin discretization. The annotation report the number of MEP evalua-
tion points. The compression parameter triplet was set to a = 2.5, d0 = 2.0,
b = 0.01 for the piecewise constant wavelets and to a = 2.5, d0 = 3.0, b =
0.01 for piecewise bilinear wavelets. The limit value is extrapolated from
the results obtained from the piecewise bilinear wavelet Galerkin scheme.

Fig. 12 Convergence of aiso with respect to the number of molecular
electrostatic potential (MEP) evaluation points on the cavity surface. The
values reported are in a0

3 and refer to benzene. The lower axis reports the
average area for the collocation tesselation, while the upper axis refers to
the patch level in the wavelet Galerkin discretization. The annotation
report the number of MEP evaluation points. The compression parameter
triplet was set to a = 2.5, d0 = 2.0, b = 0.01 for the piecewise constant
wavelets and to a = 2.5, d0 = 3.0, b = 0.01 for piecewise bilinear wavelets.
The limit value is extrapolated from the results obtained from the piece-
wise bilinear wavelet Galerkin scheme.

Fig. 13 Convergence with respect to the patch level for the piecewise
bilinear wavelet Galerkin scheme. Different a priori a and d0 compression
parameters were chosen, while the a posteriori compression parameter
was fixed to b = 0.01. The nuclear charge distribution of the C32H66

molecule was considered. Convergence is estimated with respect to the
theoretical surface charge, i.e. the difference with respect to the value

obtained by applying Gauss’ theorem sexact ¼ �
e� 1

e
Q, where Q is the total

nuclear charge. The axis has a logarithmic scale.
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contains the total computational time. In all cases, the com-
pression parameters were kept fixed: a = 1.0, d0 = 2.25 and

b = 0.01. Since we are still in the preasymptotic regime, the
observed scaling is N1.5

J instead of the proven linear behaviour
NJ, where J is the refinement level as described in Section 2.2.

The time spent for assembling the system matrix, discarding
unnecessary elements by compression and solving the linear
system of equations is shown in Fig. 15 for different choices of
the compression parameters. Only the results obtained in the
case of C16H34 are shown, as similar trends are exhibited by the
other molecules. For the other molecules the reader is referred
to the ESI.† Clearly, assembling the system matrix is the most
time consuming portion of the currently implemented version
of the wavelet algorithm. It is also evident that this takes longer
when the compression of the matrix is less aggressive and more
elements are to be retained. For example, up to 93% of the time
is spent in assembling the system matrix when a = 2.0, d0 = 3.0
and b = 0.01. The solution of the system of linear equations is
much less demanding and also less affected by the requested
accuracy. On the other hand, a finer mesh (higher PL) implies
an increased number of integral evaluations to obtain the
electrostatic potential.

Another crucial aspect to be considered is the construction
of the initial set of patches. The system matrix is indeed dense
for the scaling part and the algorithm scales quadratically with
number of original patches. In order to achieve linear scaling

Fig. 14 Convergence with respect to the patch level for for the piecewise
bilinear wavelet Galerkin scheme The compression parameters were set to
a = 1.0, d0 = 2.25 and b = 0.01. The nuclear charge distributions of the
polyalkane systems CnH2n+2 were considered. Solid lines show the differ-
ence with respect to the theoretical surface charge, i.e. the difference with

respect to the value obtained by applying Gauss’ theorem sexact ¼ �
e� 1

e
Q,

where Q is the total nuclear charge. Dashed lines show the overall
computation times. Both, the left and right axes, have a logarithmic scale.

Fig. 15 Timings for C16H34 at patch level 5 for different values of the compression parameters. The time portions spent in assembling the system matrix,
performing its compression and for the solution of the linear system are reported in blue, green and red, respectively. Total times are reported below
each chart.
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with respect to the molecular size, it will be necessary to devise
a cavity generator which scales sub-linearly (ideally O(N1/2)
where N is the number of atoms) with the molecular size. This
is however not the case for the current implementation, as
already shown in our previous work38 and therefore the scaling
with the molecular size is almost quadratic.

5 Conclusions

We have presented the first implementation of the Polarizable
Continuum Model which combines the Integral Equation
Formalism with a wavelet solver with piecewise bilinear wavelets
for the solution of the underlying boundary integral equation.
This is a further development of a previous work,38 which made
use of piecewise constant wavelets. Thanks to the construction of
the system matrix within the wavelet formalism, the solution of
the boundary integral equation exhibits fast and guaranteed
convergence to the exact limiting values of the problem, which
cannot be achieved with a collocation method. Due to the high
modularity of PCMSolver, linear response was immediately
available (both with picewise constant wavelets and piecewise
linear wavelets) and we have demonstrated that the accuracy
attained for energy calculations is reflected in the response
calculations as well.

The robustness of the wavelet formalism makes our imple-
mentation an important reference benchmark for accurate
calculations, which has so far been missing. In order to make
the implementation competitive also on the performance side
the two most important bottlenecks will have to be addressed.
The accuracy achieved with wavelets depends on the evaluation
of electrostatic potentials in a large number of mesh points.
Speeding up this part will require the use of interpolation
techniques (integrals are calculated at a coarser mesh and
interpolated at a finer one) and fast multipole methods. The
second bottleneck is constituted by the construction of the initial
parameterization of the cavity into patches. The current imple-
mentation does not guarantee linear scaling with the molecular
size, which could only be achieved if the number of patches
scales sub-linearly with the molecule size.
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