Issue 2, 2025

Optical properties and photobleaching of wildfire ashes aqueous extracts

Abstract

Wildfires can severely degrade soils and watersheds. Post-fire rain events can leach ashes and altered dissolved organic matter (DOM) into streams, impacting water quality and carbon biogeochemistry. The photochemical properties and persistence of DOM from wildfire ash leachates are not well understood. To establish a range of properties, wildfire DOM leachates were generated from (i) surficial [grey and black] wildfire ashes, (ii) mineral soils below ash, and (iii) unimpacted soils from two Colorado wildfire scars. Subsequently, the leachates were studied under simulated sunlight. Photochemical properties of absorbance, fluorescence and 1O2 quantum yield (ΦF and Φ1O2) were determined for thirteen wildfire leachates. Φ1O2 of ash leachates was greatest (7.6 ± 3.4%), followed by underlying mineralized soil leachates (4.6 ± 0.7%), and control soil leachates (Φ1O2 = 3.9 ± 1%). Correlations between increasing E2 : E3, ΦF, Φ1O2 suggest that surface ash leachates with elevated molar absorptivity may play an important role in 1O2 production that is not well documented. Interestingly, photobleaching experiments comparing ash DOM to unimpacted soil DOM revealed ash leachates lost fluorescence, absorbance, while producing CO2 at rates ∼3 fold greater than soils. This suggests that aromatic features of ashes may cause degradation of wildfire DOM faster than unimpacted DOM in the environment.

Graphical abstract: Optical properties and photobleaching of wildfire ashes aqueous extracts

Supplementary files

Article information

Article type
Paper
Submitted
16 Okt 2024
Accepted
14 Jän 2025
First published
20 Jän 2025
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Processes Impacts, 2025,27, 473-485

Optical properties and photobleaching of wildfire ashes aqueous extracts

F. Leresche, S. J. Fischer, S. Buckley and F. L. Rosario-Ortiz, Environ. Sci.: Processes Impacts, 2025, 27, 473 DOI: 10.1039/D4EM00626G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements